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A comprehensive optical description of compound refractive lenses (CRLs)

in condensing and full-field X-ray microscopy applications is presented. The

formalism extends ray-transfer matrix analysis by accounting for X-ray

attenuation by the lens material. Closed analytical expressions for critical

imaging parameters such as numerical aperture, spatial acceptance (vignetting),

chromatic aberration and focal length are provided for both thin- and thick-lens

imaging geometries. These expressions show that the numerical aperture will be

maximized and chromatic aberration will be minimized at the thick-lens limit.

This limit may be satisfied by a range of CRL geometries, suggesting alternative

approaches to improving the resolution and efficiency of CRLs and X-ray

microscopes.

1. Introduction

Many recent advances in synchrotron X-ray imaging can be

attributed to X-ray focusing optics (Ice et al., 2011). These

optics may operate via three possible principles: (i) diffraction,

such as in Fresnel zone plates (Kirz, 1974) and multilayer Laue

lenses (Kang et al., 2006); (ii) total reflection, such as in

Kirkpatrick–Baez (Kirkpatrick & Baez, 1948) and Wolter

(Wolter, 1952) mirrors, and lobster-eye (Inneman et al., 1999)

and Kumakhov (Kumakhov & Komarov, 1990) lenses; and

(iii) refraction, such as in prisms (Cederstrom et al., 2000) and

compound refractive lenses (CRLs) (Snigirev et al., 1996). In

the hard X-ray regime (E > 15 keV), CRLs (linear arrays of

refractive lenslets) are widely used due to their relatively low

cost, ease-of-use and efficiency. Furthermore, their focal

length can be actively varied by adjusting the number of

lenslets (Vaughan et al., 2011). However, the spatial resolution

of CRL-based imaging systems is typically 50–100 nm

(Schroer et al., 2005), worse than that of other optics at

comparable energies: 7 nm (Yamauchi et al., 2011), 8 nm

(Morgan et al., 2015) and 20 nm (Vila-Comamala et al., 2012)

have been reported from microscopes based on mirrors,

multilayer Laue lenses and Fresnel zone plates, respectively.

Nonetheless, the advantages of CRLs make them uniquely

suitable for in situ experiments where efficiency, large working

distances and high X-ray energies are required. Under such

circumstances, improving the spatial resolution of CRLs could

facilitate new opportunities for multi-scale characterization.

One route to improving spatial resolution is by optimizing

the CRL geometry (Chen et al., 2014). Numerical optimization

requires concise analytical expressions for parameters such as

focal length, transmission and aberration. Furthermore, these

expressions are essential for imaging techniques that involve

sampling data in grids such as ptychography (Schroer et al.,
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2008), scanning X-ray microscopy (Schroer et al., 2005) or

dark-field X-ray microscopy (Simons et al., 2015). The optical

theory of CRLs and CRL-based imaging systems has been

addressed by various approaches such as ray-transfer matrices

(RTMs) (Protopopov & Valiev, 1998; Pantell et al., 2003)

[including Gaussian beam variants (Poulsen & Poulsen,

2014)], Monte Carlo ray tracing (Sanchez~del Rio & Alianelli,

2012), wavefront propagation methods (Kohn, 2003) and

others (Lengeler et al., 1999). While these have greatly

furthered the design and implementation of CRLs, no single

formalism fulfills the core requirements for optimization:

(i) simple, closed expressions, (ii) broad applicability to both

condensing and full-field imaging systems, and (iii) consid-

eration of both the thin-lens (where the focal length of the

CRL far exceeds its length) and thick-lens conditions (where

this approximation is no longer valid).

We present a formalism for CRL-based imaging systems

utilizing an RTM approach to model archetypal X-ray imaging

systems in a lens-by-lens manner, thus accounting for both

thin- and thick-lens conditions. Attenuation by the lens

material is calculated using RTMs to trace the ray position

through the CRL. We provide exact analytical expressions for

focal length, numerical aperture, spatial resolution, vignetting

and chromatic aberration among other key optical parameters.

These expressions form the basis of an efficient parametric

optimization of the CRL and imaging geometry, which ulti-

mately provides suggestions for future lens development

routes.

2. RTM formalism for CRLs

2.1. Assumed CRL and lenslet geometry

This formalism assumes a one-dimensional (1D) focusing

geometry valid for both axisymmetric two-dimensional and

planar 1D CRLs. The CRL is comprised of N identical para-

bolic and non-kinofirm lenslets (Fig. 1), each with radius of

curvature R, aperture 2Y and center-to-center distance

between successive lenslets T such that Y ¼ ðRTÞ
1=2. For

manufacturing reasons, lenslets have a small distance between

the parabolic apices (i.e. a web thickness) Tweb that affects

attenuation. There may also be a gap between adjacent lens-

lets, implying that the physical lenslet thickness Tphys is less

than T. Such geometries limit Y and necessitate defining the

physical aperture 2Yphys such that Yphys = ½RðTphys � TwebÞ�
1=2.

2.2. Background to the RTM approach and focusing behavior

RTM analysis is a paraxial ray-tracing approach that

assumes all rays propagate nearly parallel to the optical axis. It

does not intrinsically consider diffraction and total reflection;

however, these may be introduced ad hoc. The approach

treats each photon as a ray with transverse position y and

angle to the longitudinal optical axis �, within an optical

system defined by a matrix M (i.e. an RTM) that transforms an

incident ray ð y0; �0Þ into an exit ray ð y1; �1Þ,

y1

�1

� �
¼ M

y0

�0

� �
: ð1Þ

RTMs of compound systems may then be determined by

multiplying the RTMs for the individual optical components.

Previous RTM analyses of CRLs (Protopopov & Valiev, 1998;

Pantell et al., 2003; Poulsen & Poulsen, 2014) show that a single

refractive X-ray lenslet can be described by three such

components: a free-space propagation by T/2, a refracting thin

lens with focal length f = R=ð2�Þ (where � is the refractive

decrement) and a final free-space propagation by T/2. Because

f is many times larger than T, each lenslet behaves like an ideal

thin lens with the following transfer matrix,

M ¼
1 T=2

0 1

� �
1 0

�1=f 1

� �
1 T=2

0 1

� �
: ð2Þ

As the CRL is a linear array (i.e. a stack) of identical lenslets,

its transfer matrix is M N = ðMÞN . This can be calculated

through the matrix eigendecomposition theorem (Poulsen &

Poulsen, 2014) (see xS1 of the supporting information for

derivation),

M N
¼

cosðN’Þ f’ sinðN’Þ
� sinðN’Þ=ð f’Þ cosðN’Þ

� �
: ð3Þ

Within this paraxial treatment, the parameter ’ can be

expressed as ’ = ðT=f Þ
1=2 = Y=½ f ð2�Þ1=2

�. Thus, 1=ð f’Þ is the

refractive power of the CRL per unit length (Lengeler et al.,

1999) while ð2�Þ1=2 is the critical angle for total external

reflection (Schroer & Lengeler, 2005).

The trigonometric terms in equation (3) imply periodicity

with respect to N’. While attenuation by the lens means that

CRLs practically operate within the first half-period (i.e.

0 � N’ � �), optical behavior differs markedly between the

thin-lens limit (i.e. NT � fN and correspondingly N’� 1)

and the general thick lens case (i.e. all values of N’). This

formalism provides both cases in order to give straightforward

access to the most common and important optical parameters

for the vast majority of CRL geometries.

From equation (3), the focal length of the CRL as measured

from its exit surface is given by the following two expressions

(derived in xS2 of the supporting information), which are

identical to those given in the literature (Poulsen & Poulsen,

2014; Lengeler et al., 1999),
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Figure 1
CRL and lenslet geometry assumed in this formalism. A single refracting
lenslet element is shown in blue, annotated with symbolic dimensions.



fN ¼

�M N
11=M N

21 ¼ f’ cotðN’Þ general case;

f=N � NT=3 for N’� 1

ðthin lensÞ:

8>><
>>: ð4Þ

2.3. Ray transfer path

In order to predict the attenuation of the rays as they

traverse the CRL, the RTM approach must be extended.

Specifically, we require an expression for the position and

angle of a given ray at the center of the nth lenslet ð yn; �nÞ as a

function of its incident state ð y0; �0Þ. To this end, we compute

the RTM of the CRL after the nth lenslet and back-propagate

by T/2,

yn

�n

� �
¼

1 �T=2

0 1

� �
M n

y0

�0

� �

¼
M n

11 �
T
2 M n

21 M n
12 �

T
2 M n

22

M n
21 M n

22

" #
y0

�0

� �
: ð5Þ

Inserting from equation (3) and simplifying (see xS3 of the

supporting information), ð yn; �nÞ are then

yn ¼ y2
0 þ �0 f’ð Þ

2
� �1=2

cos n�
1

2

� �
’þ tan�1 �0 f’

y0

� �� �
;

�n ¼ �2
0 þ

y0

f’

� �2
" #1=2

sin n’þ tan�1 �0 f’

y0

� �� �
:

ð6Þ

Within the CRL, all rays have a sinusoidal trajectory that

varies with distance nT with a period of 2�Y=ð2�Þ1=2. The

physical aperture of the lenslets Yphys bounds this trajectory

however, imposing the following criteria for participation in

the focusing process,

yn

�� �� � Yphys 8 n: ð7Þ

Rays may be excluded due to total reflection by the parabolic

lenslet surfaces. In this case, the criteria for participation is

R=ð2ynÞ � �n > ð2�Þ1=2. However, we note that, at typical X-ray

energies, such reflection effects are only significant for lenslet

geometries with impractically large values of T=R. As such, we

do not consider them further.

2.4. Attenuation in CRLs

The attenuation U of a ray passing through a single lenslet

at a distance y from the optical axis depends on the absorption

coefficient � of the lens material and the local material

thickness tðyÞ = Tweb þ y2=R. Since the paraxial approximation

implies that the variation of y and tðyÞ within the lenslet is

negligible, the attenuation of the X-rays by the absorbing

lenslet can be simply expressed using the Beer–Lambert law,

Uð yÞ ¼ exp ð��TwebÞ exp
��y2

R

� �
H

y

Yphys

 !
: ð8Þ

Here, H is a box function of width 2Yphys that enforces the

criteria in equation (7). The cumulative transmission UNðynÞ of

a ray as it travels through N lenslets is then the product of the

individual attenuation contributions from each lenslet,

UNð ynÞ ¼
YN

n¼ 1

Uð ynÞ ð9Þ

¼ exp ð�N�TwebÞ exp
��

R

XN

n¼ 1

y2
n

 ! YN

n¼ 1

H
yn

Yphys

 !
:

The central expression
PN

n¼ 1 y 2
n is a geometric sum that can be

solved analytically (see xS4 of the supporting information). As

all yn are a linear function of ð y0; �0Þ, UN has a Gaussian

dependence on both parameters. Combined with the condi-

tions imposed by H, this results in a bounded two-dimensional

Gaussian transmission distribution, as shown in Fig. 2.

2.5. Effective aperture and transmission efficiency of a CRL

The spatial acceptance function for a homogeneous and

parallel incident beam can then be calculated from UNð y0; �0Þ

by inserting �0 = 0 into equation (6) (see xS5 of the supporting

information). This results in a 1D Gaussian transmission

profile in y0 with a root mean square (RMS) value �D of

�D ¼

ðR=�NÞ
1=2 1þ sincð2N’Þ½ �

�1=2 general case;

ðR=2�NÞ
1=2 1þ ðN’Þ2=6
� �

for N’� 1

ðthin lensÞ:

8>>>><
>>>>:

ð10Þ

From this, we can calculate the effective aperture Deff : the

diameter of a circular pinhole with the same total transmitted
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Figure 2
Transmission function UNð y0; �0Þ for a typical beryllium CRL at 17 keV
with parameters N = 50, R = 50 mm, T = 2 mm, Yphys = 0.5 mm. The white
region represents ð y0; �0Þ values excluded due to the constraints in
equation (7), which can be approximated by two pairs of dashed lines
corresponding to the entrance (horizontal pair) and exit (slanted pair) of
the CRL.



intensity as a (two-dimensional) CRL made from rotationally

symmetric paraboloids. For all values of N’, we find

Deff ¼ 2
ffiffiffi
2
p
�D 1� exp �

Y 2
phys

2�2
D

� �� �
: ð11Þ

The transmission efficiency is then given by

t ¼
Deff

2Yphys

: ð12Þ

These expressions for �D, Deff and t provide a convenient

means to compare the attenuation-limited properties of CRLs

independent of the optical system they are operating in.

Coupled with the expression for fN [equation (4)], they

constitute the simplest way to characterize CRL performance.

3. CRL-based imaging systems

3.1. The imaging condition

The general imaging case describes both condensing

(Schroer et al., 2005) and full-field (Lengeler et al., 1999)

geometries comprising a source, a lens (either as an objective

or condenser) and an image/detection plane. Note that these

geometries are mathematically identical; condensing can be

seen as full-field imaging of the source with a magnification

ratio of less than one (shown schematically in Fig. 3).

In an imaging configuration, a ray originating from the

source plane at ð ys; �sÞ travels a distance d1 to the objective,

where it is transformed by the CRL RTM M N before travel-

ling a distance d2 to a point ð yd; �dÞ on the detector plane. This

transformation between ð ys; �sÞ and ð yd; �dÞ can be expressed

as

yd

�d

� �
¼

1 d2

0 1

� �
M N 1 d1

0 1

� �
ys

�s

� �
� K

ys

�s

� �
; ð13Þ

where K is the matrix

K ¼
K11 K12

K21 K22

� �
ð14Þ

whose components can be expressed in terms of M N as

K11 ¼ M N
11 þ d2M N

21;

K12 ¼ M N
12 þ d1 M N

11 þ d2M N
21


 �
þ d2M N

22;

K21 ¼ M N
21;

K22 ¼ d1M N
21 þM N

22 :

ð15Þ

The imaging condition implies that K12 = 0, which leads to the

general imaging formula (derivation in xS6 of the supporting

information)

1

d1

þ
1

d2

�
1

fN

þ
f’ tanðN’Þ

d1d2

¼ 0: ð16Þ

The magnification of the imaging system M (a positive

number) is defined by M = �yd=ys = �K11. Combined with

equation (16), this gives a set of two equations, which can be

solved to give exact expressions for magnificationM and the

imaging distances d1 and d2,

M¼

ðd2=f’Þ sinðN’Þ � cosðN’Þ general case;

ðN’Þ2=2þ d2N=f � 1 for N’� 1

ðthin lensÞ;

8>><
>>: ð17Þ

d1 ¼

fN 1þ 1
M cosðN’Þ

h i
general case;

ð f=NÞ 1þ
1

M

� �
� NT=2 if N’� 1

ðthin lensÞ;

8>>>>>><
>>>>>>:

ð18Þ

d2 ¼

fN 1þ M
cosðN’Þ

h i
general case;

f=N 1þM½ � � NT=2 if N’� 1 ðthin lensÞ:

8><
>: ð19Þ

Note that d1 and d2 can never be negative in equations (18)

and (19), resulting in the following conditions on N’,

0 � N’ �

cos�1
�1=Mð Þ when M> 1

ði:e: full-field imagingÞ;

cos�1
�Mð Þ when M< 1

ði:e: condensingÞ:

8>>>><
>>>>:

ð20Þ

The number of lenses N necessary to achieve a given magni-

ficationM and source-to-detector distance L = d1 þ d2 þ NT

can be calculated by rewriting the imaging formula [equation

(16)] as follows,

N ¼
1

’
sin�1 Mþ ð1=MÞ

½ðL� NTÞ=f’�2 þ 4
� 1=2

 !
þ tan�1 2f’

L� NT

� �" #
:

ð21Þ

Despite a factor in the denominator, N can nonetheless be

evaluated iteratively since L� NT (solution by fixed-point

method). Furthermore, as N must be an integer number,

d1 and d2 must be adjusted to fulfill the imaging condition.

Consequently, a small deviation of the magnificationM from

the target value must be accepted.
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Figure 3
Comparison of CRL-based imaging systems. Full-field transmission X-ray
microscopy (rear) versus a condensing system that demagnifies a
(typically Gaussian) X-ray source (front).



We observe that equation (13) can also be used to describe

the geometry of the back focal plane, which for these imaging

systems is located at d2 = fN . The intensity distribution at the

back focal plane is closely related to the Fourier transform

of the object in the sample plane, and as such can be used as

a means for quantifying micro- and nano-scale periodicity

(Ershov et al., 2013). Inserting d2 = fN into equations (13)–(15)

gives K11 = 0 and

yd ¼
f’

sin ðN’Þ
�s: ð22Þ

Hence, X-rays emerging from the sample plane at the angle �s

will converge to position yd in the back focal plane.

3.2. Attenuation in imaging systems

The spatial and angular acceptance of the CRL are defining

characteristics of imaging systems, jointly defined by the

attenuation properties of the lens and the specific geometry of

the system. To find expressions for them, we first use equation

(6) to provide yn as a function of a ray’s position and angle in

the source plane, ð ys; �sÞ,

yn ¼ d1�s þ ysð Þ cos n�
1

2

� �
’

� �

þ f’�s sin n�
1

2

� �
’

� �
: ð23Þ

Inserting this into UN [equation (9)] gives the complete

acceptance function of the imaging system, which can be

rewritten as follows (derivation in xS7 of the supporting

information),

UN ys; �sð Þ ¼ exp �N�Twebð Þ exp �
�s þ �ysð Þ

2

2�2
a

� �

	 exp �
y2

s

2�2
v

� �
H ys; �sð Þ: ð24Þ

Notably, this is the product of a prefactor, a Gaussian with

RMS �a and offset coefficient � describing the system’s

angular acceptance, another Gaussian with RMS �v decribing

the system’s spatial acceptance (i.e. vignetting) and a box

function Hð ys; �sÞ representing the system’s physical aperture.

This physical aperture Yphys imposes a sharp cut-off to the

acceptances [see equation (7)]. In the same manner as equa-

tion (9), this is represented by
QN

n¼ 1 H½ ynð ys; �sÞ=Y� which,

from equation (23), is well approximated by

H ys; �sð Þ ¼

H d1�sþys

Yphys

� �
H

d1�sþysð Þ
2
þ f�s’ð Þ

2½ �
1=2

Yphys

� �
general case;

H d1�sþys

Yphys

� �
for N’� 1 ðthin lensÞ:

8>><
>>: ð25Þ

The angular acceptance, defined by its RMS �a and offset �ys,

describes the range of angles over which the lens collects

radiation emitted from a point ys on the source plane and

ultimately defines the theoretical image resolution achievable

by the system. At any point in the field of view (i.e. at any ys),

the system will have a Gaussian angular acceptance with RMS

�a given by

�a ¼

R

�N½d 2
1 þ ð f’Þ

2
�

� �1=2

	 1þ
1

N
�

1

N’
sin½ðN þ 1Þ’�

�

	 cos ðN � 1Þ’þ 2 tan�1 d1

f’

� �� ���1=2

general case;

R

�N d 2
1 þ ð f’Þ

2
� �

( )1=2

6 þ ðN’Þ2

6
ffiffiffi
2
p

� �

¼ �D�

for N’� 1

ðthin lensÞ:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð26Þ

The offset coefficient � describes the median angle accepted

by the lens at a particular point on the sample plane ys.

Notably, in the thin-lens case the characteristic distance 1=�
is the weighted average of the imaging distance d1 and the

period of the sinusoidal divided by 2�. The full derivation for �
is provided in xS7 of the supporting information.

The spatial acceptance has RMS �v and describes the

reduction in brightness from the center of the optical axis

towards its periphery, i.e. the maximum achievable field-of-

view of the system. This is defined as the total acceptance of

the system integrated across all incident angles �s. The general

expression for the RMS of the vignetting function is given by

�v ¼
�

��a

N 2’2
� sin2

ðN’Þ
� ��1=2

: ð27Þ

The leading term in the thin-lens limit is of the order ðN’Þ�3,

meaning that the vignetting does not originate from the

material attenuation at the thin-lens limit. Instead, the thin-

lens vignetting function, Ivð ysÞ, is defined by the physical

aperture of the small stack of lenses,

Ivð ysÞ ¼

1 for ys

�� ��<Yphys;

1�
Yphys� ysj j

Yphys�tan d1 þ
NT

2ð Þ tan�1 2Y
NTð Þ½ �

for Yphys < ys

�� ��<
tan d1 þ

NT
2


 �
tan�1 2Y

NT


 �� �
;

0 otherwise:

8>>>>>>>><
>>>>>>>>:

ð28Þ

The numerical aperture (NA) is a dimensionless number

characterizing the range of angles accepted by the imaging

system, and is therefore naturally related to �a. The parameter

is regularly used in the context of visible-light systems where

this range is sharply defined by the physical aperture of the

system. However, the Gaussian nature of the X-ray accep-

tance function of typical thick CRLs makes such approaches

inappropriate. Instead, the definition used for Gaussian laser

systems is used here (Born & Wolf, 1999), in which the NA at a

given position ys is given in terms of the ray angle where the

transmission drops to e�2,
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NA ¼ y� þ
�a 4�2

v � y2
sð Þ

1=2

�v

: ð29Þ

Note that this reduces to NA = 2�a at the center of the field-

of-view.

3.3. Spatial resolution

Analytical expressions for the spatial resolution of the

magnified image can now be derived from the magnification

M and the angular acceptance �a of the imaging system.

Spatial resolution may be defined as the minimum distin-

guishable distance �ys between two points at the source/

sample plane (Born & Wolf, 1999). The degree of blurring of

these points due to diffraction and the aberration inherent in

lens-based optical systems is described by the point spread

function (PSF), which can be calculated from the Fourier

transform of the CRL pupil function (Born & Wolf, 1999).

Neglecting aberration, the effective pupil function Pð y0Þ for

the center of the image can be derived from equation (24) by

substituting ys = 0 and �s = y0=d1, where y0 is the ray position

at the CRL entrance (i.e. n = 0) (see xS8 of the supporting

information),

Pð y0Þ ¼ exp
�y2

0

2�2
a d 2

1

� �
H

y0

Ypup

 !
; ð30Þ

where Ypup � Yphys= 1þ f’=d1ð Þ
2

� �1=2
. For a wavenumber k =

2�=� at X-ray wavelength �, and ignoring constant prefactors,

the point-spread intensity function at the source plane,

PSFð ysÞ, is then given by

PSFð ysÞ ¼

Z1
�1

Pð y0Þ exp �i
k

d1

y0ys

� �
dy0

������
������

2

¼ exp �k2�2
ay2

s


 �
erf

Ypup þ ik�2
a ysffiffiffi

2
p
�a

� ��

þ erf
Ypup � ik�2

a ysffiffiffi
2
p
�a

� ��2

: ð31Þ

The PSF has two components: a Gaussian with RMS �PSF =

1=ð
ffiffiffi
2
p

k�aÞ and a complex term comprising two error functions

representing the effect of the physical aperture Yphys. The

relative contributions of these components are shown in Fig. 4.

Notably, in the absence of a physical aperture (i.e. if the CRL

is limited by the attenuation of the lens material), only the

Gaussian component of the PSF remains.

In classical optical systems, the resolution is often defined

by the Rayleigh criterion, where two PSFs are regarded

distinguishable when the maximum of one PSF coincides with

the first minimum of the other (Born & Wolf, 1999). However,

this is inappropriate in the case of a Gaussian or near-Gaus-

sian PSF such as for CRLs, where such a minimum may not be

present. Instead, we propose that the resolution be defined by

the separation distance �ys between two PSFs corresponding

to a contrast ratio of C (where C is small when the contrast

is poor). Using equation (32), this can be determined by

numerically solving

PSFð0Þ þ PSFð�ysÞ

PSFð�ys=2Þ þ PSFð��ys=2Þ
¼ 1� C: ð32Þ

In the case of absorption-limited (i.e. Gaussian) CRLs, this

gives a function in terms of �, �a and C,

�yd ¼
�
0:06905� 0:1019 logð1� CÞ

�1=2
ð�=�aÞ: ð33Þ

The value of C necessary to distinguish details depends on the

sampling statistics. In the case of low-intensity (e.g. dynamic)

measurements, C should be greater than the equivalent for the

Rayleigh criteria (approximately 0.26).

3.4. Chromatic aberration

Imaging with a wide energy bandwidth can be advantageous

due to the significant increase in photon flux. The bandwidth is

ultimately defined by the type of X-ray source and condi-

tioning optics: the raw spectrum from an undulator (i.e. the

pink beam) is typically of the order of 10�2�E=E, while

monochromators can provide bandwidths from 10�2 to 10�4.

As most conditioning schemes use a diffraction-based mono-

chromator, the energy spectrum is typically Gaussian. As such,

the spectrum can be defined around a nominal energy E0 and

intensity I0, in terms of the energy perturbation ", defined by

E=E0 = 1þ " and the RMS bandwidth �e,

I" ¼ I0

1ffiffiffiffiffiffi
2�
p

�e

exp
�"2

2�2
e

� �
: ð34Þ

Small energy perturbations alter � from its nominal value �0

according to � 
 �0=ð1þ "Þ
2. Since the focal length of the

lenslets depend on �, CRLs are chromatic by nature. Under an

ideal imaging condition at " = 0, a ray departing from the

center of the sample plane will strike the center of the detector

plane, i.e. yd = ys = 0. At a slightly different photon energy,

" 6¼ 0; however, the same ray will be displaced in the detector

plane, yd 6¼ ys = 0. The position, yd, at which an incident ray

from ys = 0 strikes the detector, can be approximated by

inserting the chromatic expression for � above into equation

(13), and Taylor expanding to first order in ",
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Figure 4
Transmission function (a) and PSF (b) for a typical beryllium CRL at
17 keV with parametersM = 20, N = 50, R = 50 mm, T = 2 mm, Yphys =
0.15 mm. The solid black line corresponds to the cumulative response
of the CRL, while the dotted red and blue lines correspond to the
contributions from the material absorption and physical aperture,
respectively.



yd ¼ �s d1 þ d2ð Þ cosðN’Þ þ f’�
d1d2

f’

� �
sinðN’Þ

� �
¼ "�sdch; ð35Þ

where dch is a distance term for the imaging system given in

terms of the nominal values for ’ and f by

dch ¼ N’0

d1d2

f0’0

� f0’0

� �
cos N’0ð Þ

þ
d1d2

f0’0

þ f0’0 þ N’0 d1 þ d2ð Þ

� �
sin N’0ð Þ: ð36Þ

The ray is attenuated depending on its incident angle �s.

Noting from equation (35) that this angle may be written as

�s = yd=ðdch"Þ, the spatio-chromatic intensity distribution of

the rays on the detector plane, Idð"; ydÞ, is then determined

from equations (31) and (34) as (see xS9 of the supporting

information)

Idð"; ydÞ ¼ I0

1ffiffiffiffiffiffi
2�
p

�e

exp
�"2

2�2
e

� �
exp

�y2
d

2ð�adch"Þ
2

� �
: ð37Þ

This distribution (Fig. 5) is consistent with experimental

results in the literature (Falch et al., 2016) and illustrates that

the chromatic spread of intensity becomes broader as "
deviates further from zero.

The point-spread function as a result of this chromatic

behavior, PSFch, is determined by integrating Id across ", and

normalizing yd by the nominal magnificationM,

PSFch ¼ I0

1ffiffiffiffiffiffi
2�
p

�e

Z1
�1

exp
�"2

2�2
e

� �
exp

�y2
s

2 �adchM"ð Þ
2

� �
d"

¼ I0 exp
� ys

�� ��
�e�aMdch

� �
: ð38Þ

Notably, this is a Laplace distribution described by the char-

acteristic width �ch,

�ch ¼
�a�eMdch general case;

�a�eMð2d1d2N=f Þ for N’� 1 ðthin lensÞ:

(
ð39Þ

The combined PSF from a chromatic and diffraction-limited

system will be a convolution of the two PSFs in equations (31)

and (38), shown in Fig. 5. While this does not have a conve-

nient analytical expression, it can be readily solved by

numerical methods.

4. Optimization and the thick-lens limit

The analytical expressions for key optical parameters such as

spatial resolution, vignetting and aberration provide a foun-

dation for numerical optimization. In the most general case,

the aim is to optimize some figure-of-merit function with

respect to X-ray wavelenth (�), CRL geometry (R, T, N) and

imaging geometry (d1,M or L,M) for a given material (�, �).

In imaging systems, optimizing NA and �a can improve the

diffraction- and chromatic-limited resolution [equations (31)

and (38)] while increasing transmission efficiency. Because �a

is directly coupled to �v [equation (27)], it also determines the

image vignetting profile. The multidimensional problem of

optimizing �a for a given wavelength can, to a good approx-

imation, be greatly simplified by assuming that N is large,

i.e. N þ 1 
 N � 1 
 N. Then equation (26) becomes

�a ¼
�

�NT

� �1=2

gðN’;MÞ; ð40Þ

where gðN’;MÞ is the expression

gðN’;MÞ ¼
1

2
1þ

cosðN’Þ þ 1=M

sinðN’Þ

� �2
( )"

	

�
1� sincðN’Þ

	 cos N’þ 2 tan�1 cosðN’Þ þ 1=M

sinðN’Þ

� �� ����1=2

:

ð41Þ

Equation (40) confirms the well known belief that optical

performance (i.e. �a) is maximized when �=� is large (Snigirev

et al., 1996). However, the expression also dictates that

gðN’;MÞ be maximized too. Plotting gðN’;MÞ for the

allowable range of 0<N’< cos�1 ð�1=MÞ and some typical

M values (Fig. 6) shows that g reaches a maximum value at

large N’.

Correspondingly, there is a global optimum �a at N’ =

cos�1 ð�1=MÞ. For typical values of M, this thick-lens limit

is approximately at N’ = �=2, and is associated with some

unusual imaging geometries,

fN ¼ 0; d1 ¼
Y

M
ffiffiffiffiffi
2�
p ; d2 ¼

YMffiffiffiffiffi
2�
p ;

d2

d1

¼M
2; L ¼

YðMþ 1=MÞffiffiffiffiffi
2�
p :

ð42Þ

As discussed, the angular acceptance �a reaches its maximum

at the thick-lens limit close to N’ = �=2. As the magnification

approaches infinity, �a, �v and �c are
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Figure 5
Spatio-chromatic intensity distribution for a typical beryllium CRL at
17 keV with parametersM = 20, N = 50, R = 50 mm, T = 2 mm, Yphys =
0.5 mm at 17 keV (a). Point-spread function of the same Be CRL and
configuration, assuming a bandwidth of �e = 10�3 (b).



�a ¼ �
�

�Y

� �1=2

; �v ¼
8

Y��ð�2 � 4Þ½ �
1=2
;

�c ¼
Y��

2�

� �1=2
�

2
M

2
þ 1


 �
þ 2M

h i
:

ð43Þ

The first of these expressions show that the lenslet aperture Y

is the critical geometrical term that fundamentally limits the

optimal angular acceptance of CRL-based imaging systems.

Similarly, Y is also a fundamental term for the vignetting

profile and the chromatic spread. These expressions clearly

demonstrate the need to miniaturize the lenslet geometry, as

reducing Y is the only path to increasing the acceptance for a

given set of �; � parameters. Most importantly, the fact that

Y =
ffiffiffiffiffiffiffi
RT
p

implies that there are a range of lenslet geometries

that will satisfy the following conditions for optimization,

N
2�T

R

� �1=2

¼
�

2
; Y ¼

ffiffiffiffiffiffiffi
RT
p

�
� lnð2Þ�

�
: ð44Þ

5. Discussion

Following previous RTM formalisms (Protopopov & Valiev,

1998; Pantell et al., 2003; Poulsen & Poulsen, 2014), this

implementation is shown to be a versatile and effective tool

for many aspects of the optimization of CRL-based X-ray

imaging systems. It is particularly suitable for calculating

optical parameters for systems operating in the thick-lens

condition. Being a linear formalism, the approach does not

account for spherical or higher-order aberrations; however,

some effects of diffraction and refraction can be included.

Similarly, CRL geometries where the lenslet profile varies

along the CRL thickness direction [i.e. adiabatic lenses

(Schroer & Lengeler, 2005; Chen et al., 2014)] are not intrin-

sically accounted for, but can be calculated numerically by

substituting a function of, for example, rðnÞ or TðnÞ for R or T,

respectively. In the case of astigmatic lenses such as two-

dimensional CRLs produced by interdigitating 1D chips

(Simons et al., 2016), the RTM formalism can be readily

extended to either two 2	 2 systems or a single 4	 4 system

that can calculate the astigmatism analytically.

The optimization demonstrated in this work was largely

unconstrained and thus represents a simplified imaging

configuration. Applying the practical constraints of real

beamline hutch geometries therefore requires additional

constraints to the optimization. However, a significant

advantage of the RTM formalism is its versatility and math-

ematical simplicity compared with, for example, Monte Carlo

and wave propagation methods. As such, the number of free

parameters could be increased without necessarily resulting in

impractical computation times.

A major result of this work is that the spatial resolution is

globally optimized at the thick-lens limit: N’ = cos�1 ð�1=MÞ

 �=2. This can be observed directly in Fig. 7, where �a is

maximized and �ch is minimized at this limit. Furthermore, the

field-of-view and imaging geometries also remain practical at

this thick-lens limit: �v is above 200 mm, L is 4 m and d1 is

10 mm at the optimum �a in the example presented in Fig. 7.

The majority of CRL microscopes described in the litera-

ture (Simons et al., 2015) operate quite far from this opti-

mimum configuration, implying that there may be significant

resolution gains from increasing the focal power of CRLs

beyond their current state. This is particularly true in the case

of pink-beam X-ray imaging, where the chromatic blurring is

minimized at the thick-lens limit.

The formalism indicates that smaller R and T will offer

superior performance, making a strong case for miniaturizing

the lenslet geometry. However, the optimization also shows

that the global maximum for �a can be reached by any lens
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Figure 6
Value of gðN’;MÞ for different values ofM.

Figure 7
Critical optical parameters as a function of N’ for a typical imaging
system withM = 20, R = 50 mm, T = 2 mm, Yphys = 0.5 mm at 17 keV with
�e = 10�3. Shown are the sample–objective and total imaging distances
(a), the CRL focal length and transmission efficiency (b), the angular
acceptance and vignetting (c) and chromatic aberration width (d).



geometry that satisfies equation (44). Thus, significant gains

can still be had by reducing R or T alone. This is particularly

important when manufacturing CRLs, as certain processes

may prevent the realisation of specific lenslet geometries. For

example, the performance of a CRL comprising indented two-

dimensional metal lenslets may be improved by reducing the

thickness of the lenslet rather than reducing the parabola

radius, thus avoiding the shape-error and aberration that

usually accompanies the production of small radii.

This formalism and optimization approach are key for the

design of X-ray imaging experiments and instruments. The

global optimum at small imaging distances implies that

imaging systems with a small footprint will be optically

superior. Such systems can offer improved mechanical stabi-

lity and ultimately higher spatial resolution, and are therefore

recommended on the basis of this work. The calculations

performed here also shed light on the expected gains from

upcoming fourth-generation synchrotron sources, which are

characterized by unprecedented brilliance and a smaller

energy bandwidth. As demonstrated in Fig. 7, the contribution

of chromatic aberration to the PSF is expected to significantly

decrease for lenses whose geometry approaches the thick-lens

limit. We therefore predict that high-speed three-dimensional

X-ray microscopy may be possible without the use of a

monochromator.

6. Conclusions

This work describes a means of calculating and optimizing the

optical properties of CRLs and some of the most common

CRL-based imaging systems. Specifically:

(i) We developed a formalism with closed analytical

expressions for key optical parameters, such as focal length,

imaging distances, vignetting, spatial resolution and chromatic

aberration. The expressions are relevant to the vast majority

of X-ray microscopes, and pertain to both full-field imaging

and condensing systems as well as thin- and thick-lens

conditions.

(ii) We carried out an efficient global optimization on the

archetypal X-ray imaging system. While this example was

geometrically unconstrained, we note that practical limits to,

for example, imaging distances can be easily incorporated.

(iii) The optimization identified that the optimum spatial

resolution for any material and energy will occur at the thick-

lens limit of N’ = cos�1 ð�1=MÞ. Hence, manufacturing CRLs

at this thick-lens limit is an opportunity for resolution

enhancement.

(iv) This implies that the optimum resolution may be

reached with many different CRL geometries. This creates

a significant opportunity for tailoring CRL geometries for

specific manufacturing processes, e.g. lithography or indenta-

tion, etc.

(v) Chromatic aberration is reduced near this thick-lens

limit. This means that larger energy bandwidths can be used

with thick lenses, potentially increasing imaging flux and

providing a new opportunity for high-speed dynamic imaging

experiments.

Ultimately, we hope that the expressions and optimization

approach described here can be applied to improve the

performance and design of full-field X-ray microscopes. For

existing lens materials and manufacturing technology such as

the example given in Fig. 7, one can expect such optimizations

to yield improvements in numerical aperture and spatial

resolution by a factor of two or more, while simultaneously

allowing greater X-ray energy bandwidth and flux. With the

advent of many new instruments, both for the laboratory and

in synchrotrons, we believe this capability is of significant

contemporary relevance.
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