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Ring artefacts are the most disturbing artefacts when reconstructed volumes are

segmented. A lot of effort has already been put into better X-ray optics,

scintillators and detectors in order to minimize the appearance of these

artefacts. However, additional processing is often required after standard flat-

field correction. Several methods exist to suppress artefacts. One group of

methods is based on minimization of the Tikhonov functional. An analytical

formula for processing of a single sinogram was developed. In this paper

a similar approach is used and a formula for processing two-dimensional

projections is found. Thus suppression of ring artefacts is organized as a two-

dimensional convolution of ‘averaged’ projections with a given filter. Several

approaches are discussed in order to find elements of the filter in a faster and

accurate way. Examples of experimental datasets processed by the proposed

method are considered.

1. Introduction

A standard data acquisition procedure in X-ray tomography

for synchrotron- or laboratory-based machines consists of

recording three groups of images: dark-field images (when an

X-ray beam is switched off), white/flat-field images (the beam

is on but there is no sample in the beam) and projections (the

beam is on and passes through a rotating sample). Several

main scanning geometries are in use these days: parallel

for synchrotron radiation facilities and nano-tomography

laboratory machines, cone-beam for most medical and indus-

trial applications, and helical/spiral cone-beam with moving

and static gantries for medical and security applications

(Natterer & Wübbeling, 2001; Kak & Slaney, 2001; Kalender,

2006; Warnett et al., 2016). To perform a reconstruction of a

specimen one needs to find optical paths by the formula

P ¼ ln
Iflat � Idark

I � Idark

� �
; ð1Þ

where Iflat, Idark and I are flat-field, dark-field images and a

projection, respectively. Note that the flat- and dark-field

images should theoretically be taken at the same moment of

time when the projection is recorded. Obviously, it is not

possible in practical applications, so dark- and flat-field images

are usually taken before and after all projections are acquired.

For many beamlines an X-ray beam may slightly move

during an experiment. For instance, beam oscillations and

linear movement in the vertical direction on beamline 05B1-1

at the Canadian Light Source are discussed by Hinebaugh et

al. (2012). For tomography beamlines these fluctuations often

lead to the flat-field image being changed during data acqui-

sition. This effect can be explained in the following way.
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X-rays travel in a high-vacuum tube protected by a beryllium

window just before entering an optical hutch where experi-

ments are performed. Any small variation of the beam posi-

tion and thermal instabilities at a monochromator force the

intensity profile of the beam to move and stretch/shrink in the

vertical direction. As a result, projection of the Be window

onto a recording device [usually CCD (charge-coupled device)

or CMOS (complementary metal-oxide semiconductor)

cameras] behaves in a similar way. On the other hand, a

scintillator, optical lenses and detector also have some dust/

dirt and defects on their surfaces. All these lead to the fact that

a background image has (at least) two components/profiles:

one is stable and the other is slightly moving/stretching during

data acquisition. Therefore the standard flat-field correction

procedure defined by (1) leaves some artefacts on projections

which in turn lead to so-called ring artefacts on reconstructed

slices, i.e. concentric circles or arches. Some attempts to

compensate intensity variations due to beam/monochromator

instabilities have been given by Titarenko et al. (2010a).

Unfortunately, defects on optical components behave

differently. If there is an X-ray absorbing feature on a scin-

tillator, then it usually affects those areas on recorded images

which are projections of the feature onto the detector. Thus

after the standard flat-field correction has been performed, the

corresponding ring artefacts seen after reconstruction are

regular, i.e. the circles/arches have the same intensity along the

whole curve. However, if a scintillator has scratches or dust on

its surface (see Fig. 1), then an additional visible light comes

from these defects and depends on the total flux of X-rays

incident on a wider area around these defects. One can change

the position of slits in order to use a smaller shape of the X-ray

beam and still be able to see these bright defects in areas with

no X-rays (see Fig. 2). As a result, for dense materials or

anisotropically attenuated specimens one can see the intensity

of ring artefacts dependent on the angle of rotation. Some

examples can be found in the paper by Titarenko et al. (2011).

Of course, if defects on a scintillator are too strong and/or the

exposure time to record an image is too long, then some pixels

of the detector may become saturated, so we do not have any

information from them.

Several methods for ring artefact suppression have already

been developed. In principle they can be placed into three

main groups. The first group of methods uses a ‘hardware’

solution by usually moving a detector with respect to the

projections. Thus if there is a defect on a scintillator or Be

window then it is either randomly moved to different pixels or

blurred (Davis & Elliott, 1997; Davis et al., 2013). In this case

no high-intensity rings can be seen on a reconstructed image.

However, if a defect is strong, then one should expect to see a

‘wave’ rather than a ring on slices. The second group is related

to preprocessing sinograms before reconstruction is

performed by applying various linear or non-linear filters.

Methods from the third group process data after reconstruc-

tion and usually remap a slice in polar coordinates, so rings are

transformed into stripes. Basically methods from these two

groups are similar. A detailed description of some of these

methods and their comparison for various data sets can be

found in the literature (Sijbers & Postnov, 2004; Prell et al.,

2009; Münch et al., 2009; Titarenko et al., 2010b,c; Sadi et al.,

2010; Rashid et al., 2012; Brun et al., 2013; Wei et al., 2013;

Altunbas et al., 2014; Miqueles et al., 2014; Paleo & Mirone,

2015; Wolkowski et al., 2015; Baek et al., 2015).

In this paper a new method for preprocessing sinograms/

projections is presented. This method is a generalization of a

method from Titarenko et al. (2010b), which has already been

modified to be used for irregular ring artefacts (Titarenko et

al., 2010c, 2011) and is a part of reconstruction software used

at beamlines I12 and I13 of Diamond Light Source (Drako-

poulos et al., 2015; Pešić et al., 2013). The original method was

designed to process each sinogram independently, i.e. to be

applied for one-dimensional (1D) projections, and assumes
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Figure 1
A 620� 360 region of a flat-field image acquired at beamline I12 of
Diamond Light Source. Random high-intensity pixels and bright
structures from defects on a scintillator are seen.

Figure 2
A flat-field image (a) and its dark part with increased contrast (b)
acquired at beamline I12 of Diamond Light Source.



that ‘averaged’ projections should not have sharp peaks. The

same idea of smoothness is used in the proposed algorithm but

applied to two-dimensional (2D) projections. Modern recon-

struction algorithms usually exploit parallelization provided

by graphics processing units (GPUs) and tend to process

several slices at the same time. Thus it is more effective to

process chunks of projections rather than individual rows. In

the case of cone-beam geometry this approach is already used.

Therefore, processing 2D projections may speed up other

reconstruction steps by avoiding unnecessary movement or

remapping of data. At the same time, additional prior infor-

mation from neighbouring rows of projections should lead to

better suppression of artefacts. Note that the solution

provided by the original method of Titarenko et al. (2010b) is a

vector obtained by multiplying a given matrix by an input

vector. In the proposed method a solution (matrix) is a

convolution of an input matrix with a 2D filter (matrix), so can

be implemented in a more efficient way if a fast Fourier

transform is used. The proposed 2D version of the method is

a generalization of the 1D method published by the author

(Titarenko, 2016). In the paper, performance advantages of

the filtering approach versus the standard approach based on

the inverse matrix from Titarenko et al. (2010b) are shown.

In the next section a brief mathematical description of steps

to obtain the main formula is provided. Then examples of

implementation of the proposed filter are presented followed

by discussion. All proofs and strict mathematical formulas can

be found in Appendices A, B and C.

2. Brief mathematical formulation

2.1. Tikhonov functional

Let there be an m� n matrix A, a known m-vector u and an

unknown n-vector z. We want to solve the following system of

linear equations,

Az ¼ u; or
Pn
j¼ 1

Aijzj ¼ ui: ð2Þ

Instead of an exact matrix A and the right-hand side u we are

given approximate Ah and u�, where h and � are errors. For

instance,
Pm

i¼ 1

Pn
j¼ 1 jA

h
ij � Aijj

2
� h2 ,

Pm
i¼ 1 ju

�
i � uij

2
� �2. A

solution of Ahz = u� is defined as zh�. We aim to find an exact

solution of (2) knowing Ah, u�, h and �. Thus we have a clas-

sical inverse problem. The simplest way to estimate solution z

is to find an approximate solution zh�. One may hope that, if

errors h and � tend to zero, then the corresponding solution zh�

becomes closer to z. Unfortunately, for most inverse problems

this is not the case as they are usually so-called ill-posed

problems. This means that solutions z or zh� may not

(i) exist for the pairs ðA; uÞ and/or ðAh; u�Þ,

(ii) be unique,

(iii) be stable with respect to small variations.

To overcome these issues, Tikhonov proposed an approach

based on minimization of the following smoothing functional,

M �
½z� ¼

Pm
i¼ 1

Pn
j¼ 1

Ah
ijzj � u�i

 !2

þ �
Pn
j¼ 1

z2
j ; ð3Þ

for a given parameter � > 0. Now M �½z� is often called the

Tikhonov functional. It was shown that the corresponding

minimizers z� of (3) tend to the exact solution z when errors h

and � approach zero. Several methods of how to choose � as a

function of h and � have been proposed. More details on how

to solve ill-posed problems can be found in the literature

(Tikhonov & Arsenin, 1977; Tikhonov et al., 1995; Engl et al.,

1996).

2.2. Optimization problem

In order to better understand how the theory of inverse and

ill-posed problems can be applied to correct ring artefacts, we

consider the following continuous problem. Suppose there is a

2D rectangular sensor, so we are able to record an intensity of

X-rays incident onto this sensor, i.e. for � 2 ½0;L1� and

� 2 ½0;L2�, where � and � are the horizontal and vertical

coordinates, respectively. As a sample is rotated around its

vertical axis we may also record intensities as a function of

angle � (or time t). For a parallel beam we usually assume that

� is from 0 to 180� (or � radians). After the standard flat-field

correction procedure (1) we obtain a continuous function

~ppð�; �; �Þ. If there are no errors in our data acquisition system

the flat-field correction procedure should provide us with

an exact function pð�; �; �Þ. In the real world a function

qð�; �; �Þ = pð�; �; �Þ � ~ppð�; �; �Þ may not be zero. Of course,

we try to organize data acquisition in such way that possible

imperfections of our system do not affect the quality of data.

Therefore we may always assume that function qð�; �; �Þ
is small with respect to pð�; �; �Þ. So we want the following

integral Z �

0

Z L2

0

Z L1

0

q2ð�; �; �Þ d� d� d� ð4Þ

to tend to a small value (ideally zero). In the simplest case we

may think that the error does not depend on the angle of

rotation, i.e. we have a 2D function qð�; �Þ and for a given

recorded value ~ppð�; �; �Þ we should find an unknown value

pð�; �; �Þ such thatZ L2

0

Z L1

0

q2
ð�; �; �Þ d� d� ð5Þ

or equivalentlyZ L2

0

Z L1

0

�
~ppð�; �; �Þ � pð�; �; �Þ

�2
d� d� ð6Þ

are small. At the same time we have additional, so-called

a priori, information that the unknown function pð�; �; �Þ is

smooth at least along the � and � coordinates (Titarenko et al.,

2010d). Thus we aim to find such a pð�; �; �Þ thatZ L2

0

Z L1

0

@p

@�
ð�; �; �Þ

� �2

þ
@p

@�
ð�; �; �Þ

� �2
( )

d� d� ð7Þ

has a minimal value.
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2.3. Original 1D problem

In the original method (see Titarenko et al., 2010b), a

sinogram ~ppkj is given, 1 � k � m, 1 � j � n, where m and n are

the number of rows (projections) and columns (pixels in one

row). It is assumed that the same unknown value qj should

be added to each element of the jth column in order to find

the exact sinogram. For a regularization parameter �, the

Tikhonov functional can be written as

M � ¼
Pm

k¼ 1

Pn�1

j¼ 1

~ppkj � ~ppk;jþ1 þ qj � qjþ1

� 	2
þ �m

Pn
j¼ 1

q2
j : ð8Þ

Note that the Tikhonov functional can be written in several

equivalent forms; for each of them different regularization

parameters can be used. In order to separate results obtained

for the 1D and 2D cases we use � for 1D and � for 2D

problems. If we average the sinogram along columns, i.e. use

pj = ð1=mÞ
Pm

k¼ 1 ~ppkj, then the above problem leads to mini-

mization of

Xn�1

j¼ 1

pj � pjþ1 þ qj � qjþ1

� 	2
þ �

Xn

j¼ 1

q2
j ; ð9Þ

and an analytical formula to find qj is presented. Titarenko et

al. (2011) used weights wk to find ‘averaged’ values pj =Pm
k¼ 1 wk ~ppkj, so problems to correct for ring artifacts due to

non-uniform stripes in sinograms can be solved.

2.4. Mathematical formulation of 2D problem

In the case of 2D projections we can write the Tikhonov

functional in a similar way. Suppose we are given an ‘averaged’

projection by adding up projections with some weights. Let

this ‘averaged’ projection be a rectangular matrix P with

elements pij, i = 1; . . . ;m, j = 1; . . . ; n. This matrix contains

some noisy data and we want to find an unknown exact matrix

Z with elements zij such that the respective values of zij are

close to pij. This approach is similar to the 1D case if we use

qij = pij � zij; however, the choice to use zij instead of qij is

more convenient for the 2D case due to the simpler descrip-

tion for matrices defined below. Our goal is to find matrix Z

such that its values zij are close to values pij of the given

averaged projection and use some additional information

about Z. We suppose the neighbouring values of Z have

similar values; it is a natural assumption (see Titarenko et al.,

2010d). Then, for a regularization parameter � > 0, the

Tikhonov functional can be written as

M � ¼
1

2

Pn
k¼ 1

Pm
l¼ 1

pkl � zklð Þ
2
þ
�

2

( Pn�1

k¼ 1

Pm
l¼ 1

zkl � zkþ1l

� 	2

þ
Pn

k¼ 1

Pm�1

l¼ 1

zkl � zklþ1

� 	2

)
: ð10Þ

To distinguish regularization parameters used in the original

and proposed methods we use different symbols, � and �.

Comparing formulas (8) and (10) one can see � � 1=�. The

necessary condition to attain the minimum is that all first

derivatives of M � equal zero, i.e.

@M �

@zkl

¼
Xn

k̂k¼ 1

Xm

l̂l¼ 1

Akl;k̂kl̂lzk̂kl̂l � pkl ¼ 0; ð11Þ

where matrix A is defined below.

For convenience, instead of ðn�mÞ matrices P and Z we

use nm vectors p and z by stitching rows. If we define i =

ðk� 1Þmþ l, j = ðk̂k� 1Þmþ l̂l, N = nm, then

@M �

@zi

¼
XN

j¼ 1

Aijzj � pi ¼ 0: ð12Þ

The elements of matrix A can be found in Appendix A. For

example, we obtain ð12� 12Þ matrix A as

1þ 2� �� 0 0 �� 0 0 0 0 0 0 0

�� 1þ 3� �� 0 0 �� 0 0 0 0 0 0

0 �� 1þ 3� �� 0 0 �� 0 0 0 0 0

0 0 �� 1þ 2� 0 0 0 �� 0 0 0 0

�� 0 0 0 1þ 3� �� 0 0 �� 0 0 0

0 �� 0 0 �� 1þ 4� �� 0 0 �� 0 0

0 0 �� 0 0 �� 1þ 4� �� 0 0 �� 0

0 0 0 �� 0 0 �� 1þ 3� 0 0 0 ��

0 0 0 0 �� 0 0 0 1þ 2� �� 0 0

0 0 0 0 0 �� 0 0 �� 1þ 3� �� 0

0 0 0 0 0 0 �� 0 0 �� 1þ 3� ��

0 0 0 0 0 0 0 �� 0 0 �� 1þ 2�

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

for n = 3 and m = 4. To find the solution of (12) we want to

invert matrix A, so z = A�1p. These days images from X-ray

tomography usually have a size of about 2000� 2000 pixels.

So N = 4000000 and it is very difficult to invert ðN � NÞmatrix

A even if it is a sparse matrix. It is shown in Appendix A that

for n = m > 3 the matrix has (at least) two eigenvalues 	 = 1

and 1þ 4�. Therefore the condition number 
ðAÞ = 	max=	min

	 1+ 4�, so for large values � the condition number is large

and numerical matrix inversion becomes unstable with respect

to small errors in data. Storing the inverse matrix may also

be an issue due to its size. Therefore we try the following

approximate approach. We find the analytical solution only for

the central element of the matrix Z which will be the product

of an ðnm� nmÞ matrix G by the nm vector p. This matrix G

may be considered as a 2D filter, which can be used to find

matrices Z from given images P when their sizes are greater

than the size of G. As shown in the following sections,

elements of filter G decay very fast as we go from the central

element to the outer ones (several orders of magnitude).

Therefore we may set them to zero from some distance or

alternatively we may use a smaller filter G. For many practical

datasets, ð64� 64Þ filters work very well. So for all elements of

matrix Z inside a 32-element boundary we may always select a

corresponding ð64� 64Þ part of matrix P and convolve it with

the ð64� 64Þ filter G. Or, in an alternative approach, we just

keep G and P the same power-of-two size, so a fast Fourier

transform can be used.

We intend to find the values of the central element of the

matrix Z; therefore we suppose n and m to be odd numbers.

Let us define � = 2 + 1/�, so � = 1=ð�� 2Þ, and define ðm�mÞ

matrix X as
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X ¼

� �1 0 
 
 
 0 0

�1 �þ 1 �1 
 
 
 0 0

0 �1 �þ 1 
 
 
 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 
 
 
 �þ 1 �1

0 0 0 
 
 
 �1 �

0
BBBBBBB@

1
CCCCCCCA
; ð14Þ

and denote the ðm�mÞ identity matrix by I. Then the matrix

A can be written as the following ðn� n) block matrix,

A ¼
1

�� 2

X �I 0 
 
 
 0 0

�I X þ I �I 
 
 
 0 0

0 �I X þ I 
 
 
 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 
 
 
 X þ I �I

0 0 0 
 
 
 �I X

0
BBBBBB@

1
CCCCCCA
: ð15Þ

Let us introduce a function WnðxÞ, where the input parameter

is a scalar x and the output is the following ðn� nÞ matrix,

WnðxÞ ¼

x �1 0 
 
 
 0 0

�1 xþ 1 �1 
 
 
 0 0

0 �1 xþ 1 
 
 
 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 
 
 
 xþ 1 �1

0 0 0 
 
 
 �1 x

0
BBBBBB@

1
CCCCCCA
: ð16Þ

Note that WmðxÞ is an ðm�mÞ matrix. Then matrix A can be

written as

A ¼
1

�� 2

� �
Wn Wmð�Þ
� �

; ð17Þ

where Wmð�Þ is a matrix and Wn½Wmð�Þ� is a matrix function.

Therefore the inverse of matrix A is

A�1
¼ ð�� 2ÞW�1

n Wmð�Þ
� �

; ð18Þ

where W �1
n ðxÞ is the inverse of matrix WnðxÞ (see Higham,

2008).

Symmetric matrix WnðxÞ can be written in the form YDY T ,

where D is a diagonal matrix and Y is an orthogonal matrix,

i.e. Y �1 = Y T , where T stands for the transpose (Higham,

2008). Therefore the inverse matrix W �1ðxÞ can be written as

YD�1Y T . In the Appendices we find explicit formulas for Y, D

and consequently W �1ðxÞ and W �1½Wnð�Þ�. As we only need

to find the value of the central element of matrix Z, then all

matrices (Z, P and filter G) can be rewritten with respect

to their central elements, so instead of m� n matrix Z we

denote such a matrix as �ZZ with elements zij, i =

�ðm� 1Þ=2; . . . ; ðm� 1Þ=2, j = �ðn� 1Þ=2; . . . ; ðn� 1Þ=2.

Note that n and m are odd numbers. If these numbers are

large, then the elements of the filter (matrix) �GG can be written

as

�GGjk ¼
�� 2

4�2

Z �

��

Z �

��

cos j� cos k�

�þ 2 1� cos � � cos �ð Þ
d� d�

[see formula (59) in Appendix B]. If C k
n � n!=½k!ðn� kÞ!� is a

binomial coefficient, then the elements of the filter �GG can be

written as the infinite sum

�GGjk ¼ ð1� 4�Þ� kþj
P1

q¼ 0

C
q
2qþjþk C

qþj
2qþjþk �

2q; ð19Þ

where � = �=ð1þ 4�Þ. The above formula [or formula (61)] is

derived in Appendix B. In Appendix C it is shown how to find

the infinite sum numerically with high precision. Some useful

properties of matrix �GG are derived in Appendix B. Examples

of matrices �GG are shown in Fig. 3. Matrix �GG is symmetrical with

respect to central horizontal, vertical and diagonal lines. All

elements of the matrix are positive and for each row they

monotonically decrease with the column index (see Fig. 4).

The sum of all elements of matrix �GG (of infinite width/height)

is 1.

Elements of matrix �GG seem to be radial symmetric;

however, there is a small error between the real values and
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Figure 3
The central 51� 51 section of matrix �GG for (a) � = 1000, (b) � = 10000.

Figure 4
Values of matrix �GG found for � = 300 and rows 0, 5, 10, 15, 20, 25 (blue,
red, green, orange, black, violet, respectively).



those found from elements of the central row. If ði; jÞ is the

index of an element of matrix �GG and i; j > 0, then its distance

from the central element is r = ði 2 þ j 2Þ
1=2, so we may find an

index k such that k � r < kþ 1 and use elements �GGk�1;0, �GGk0,
�GGkþ1;0 and �GGkþ2;0 to approximate value �GGij by cubic inter-

polation. Relative errors of such interpolation with respect to

the exact element �GGij are shown in Fig. 5.

If � = 0 then filtering should not change the input matrix, so

all elements of �GG are zeros except the central element, which

is 1. The central element �GG00 decreases when � increases; the

other elements equal zero for � = 0, increase, have one

maximum and decrease as in Fig. 6.

3. Example problems

The method proposed in this paper is applied to several

datasets acquired at station 16.3 of the Synchrotron Radiation

Source (SRS), Daresbury Laboratory (second-generation

synchrotron source, now decommissioned) and beamline I12

of Diamond Light Source (DLS; third-generation synchrotron

source) in 2008/2009. The choice to use these datasets is

dictated by imperfections of an experimental setup in those

days as these datasets were one of the first test datasets. For

instance, in some cases the rotation axis was not perfectly

vertical; a lot of high-intensity peaks were also present on

projections as those shown in Fig. 1. A lot of work has been

done at I12 to obtain images of sufficiently better quality

(Drakopoulos et al., 2015). However, these datasets are still

useful as similar issues can be seen at other beamlines

worldwide. For all datasets a PCO 4000 14-bit CCD camera,

monochromatic beam and CdWO4 scintillator were used;

reconstruction was performed using software developed by

the author for beamline I12.

3.1. Graphite

A 5.0 mm � 2.5 mm piece of graphite with some metal

particles was scanned at SRS (see Figs. 7 and 8). This specimen

had produced almost ideal regular ring artefacts, even in the

presence of these dense metal particles. The graphite was
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Figure 5
Relative error of cubic interpolation for (a) � = 100, (b) � = 2000.

Figure 6
Values of elements ð0; 0Þ, ð0; 1Þ and ð0; 2Þ of matrix �GG as a function of �.

Figure 7
A piece of graphite: (a) the whole section, (b) the central part. No artefact
suppression.



slightly tilted and as a result the outer regions of the sample

are slightly blurred while the central part is sharp. The ring

suppression method is applied for regularization parameter

� = 1000.

3.2. TRISO particles

A cylindrical container with 1 mm tristructural-isotropic

(TRISO) test particles was also scanned at SRS. A similar

specimen was used by Titarenko et al. (2009) in order to show

how a priori information (a known structure of these particles)

can be used to remove rings. However, this prior information

was applied in a manual way when corresponding areas of the

same materials were selected. In this paper an automatic

procedure is used.

Beamlines produce almost parallel X-rays, so reconstruc-

tion of a sample can be parallelized as all horizontal slices can

be found independently of other slices. Therefore many ring

artefact suppression algorithms can be used as they usually

process 2D slices. However, if one has a cone-beam geometry

or a sample is tilted then several neighbouring sinograms

should be used to find one slice. In Fig. 9 the specimen is tilted

(0.1� along the beam and 0.8� perpendicular to the beam).

Therefore it is more efficient to process projections first and

then reconstruct slices with a modified filtered backprojection

algorithm for tilted samples.

3.3. Mouse skull

A mouse skull was scanned at beamline I12, DLS. Due

to scattering, a lot of high-intensity photons reached the

detector. Identification of the corresponding pixels is easier to

perform on neighbouring projections as three-dimensional

neighbouring pixels are used rather than 2D in the case of

individual sinograms. A simple correction, e.g. based on linear

interpolation of unaffected pixels, can be used (see Fig. 10).

However, due to scratches on the scintillator (similar to those

shown in Fig. 2), ring artefact suppression still leaves some

rings present after correction.

4. Practical implementation

The main formula (19) is a series, i.e. a sum of infinite terms.

Effective numerical implementation is discussed in Appendix

C. A practical approach is to find the central row of matrix �GG
by the formula (64). Then the row above the central one can

be found from

�GG1k ¼
1

2

�GG0k

�
� �GG0k�1 �

�GG0kþ1

 !
ð20Þ

for k > 0, and elements of other rows
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Figure 8
Central part of the graphite sample after the ring suppression algorithm is
applied, � = 1000.

Figure 9
Cylindrical container with TRISO particles, tilted axis of rotation. (a), (b)
No ring artefact suppression or tilt correction have been applied, (c) only
ring artefacts have been suppressed for � = 10, (d) both corrections have
been performed.



�GGjk ¼
�GGj�1;k

�
� �GGj�1;k�1 �

�GGj�1;kþ1 �
�GGj�2;k ð21Þ

for k 	 j. Suppose we want to find matrix �GGjk for jjj; jkj � N.

Then we find the values as shown in Fig. 11, i.e.

(i) For k = 0; . . . ; 2N, we use (64) to find the central row.

(ii) For k = 1; . . . ; 2N � 1, we use (20).

(iii) For j = 2; . . . ;N and k = j; . . . ; 2N � j, we apply (21).

(iv) For j = 1; . . . ;N, k = 0; . . . ; j: �GGj;�k = �GG�j;k = �GG�j;�k =
�GGk;j = �GGk;�j = �GG�k;j = �GG�k;�j = �GGj;k.

5. Discussion

The 2D method presented in this paper is in some sense

equivalent to the original 1D method presented in x2.3 or by

Titarenko et al. (2010b). Thus they both should provide similar

results in the case of regular ring artefacts when the rings’

strength does not depend on the angle of rotation. For the data

sets used as examples the author was able to find values of

regularization parameter � for the original 1D method which

gives almost identical images as the proposed method. Of

course, in the case of irregular rings the result of suppression

may depend on a sample. The 1D method designed for irre-

gular rings (Titarenko et al., 2011) can also be used with the 2D

method as the original minimization problem leads to a set of

independent problems, which can be solved with the new

method.

The main advantage of the 2D method is that it can be

considered as an image filtering procedure. This filtering

operation is applied to an ‘averaged’ optical path image and

can be used after all projections have been collected.

However, this ‘averaged’ image is just a weighted sum of

individual optical path images. Therefore this filtering opera-

tion can be applied to individual images just after they have

been acquired. Taking into account that standard (non-itera-

tive) reconstruction algorithms apply a 1D filter to each

projection, then these 1D and 2D filters can be combined in

one 2D filter, i.e. ring suppression can be embedded into a

standard reconstruction procedure but with a modified filter.

Implementation of 2D filtering can be performed with fast

Fourier transform operations, and high-performance libraries

exist for both CPUs and GPUs.

APPENDIX A
A1. Two eigenvalues for matrix A

The matrix A is symmetric and all its non-zero elements are

on five diagonals: Aii, Ai;i�1, Ai;iþ1, Ai;i�m, Ai;iþm. Consider

each row of matrix A.

(1) Three non-zero elements:

(a) i ¼ 1, Aii ¼ 1þ 2�, Ai;iþ1 ¼ ��, Ai;iþm ¼ ��;

(b) i ¼ n, Ai;i�1 ¼ ��, Aii ¼ 1þ 2�, Ai;iþm ¼ ��;

(c) i ¼ nðm� 1Þ þ 1, Ai;i�m ¼ ��, Aii ¼ 1þ 2�, Ai;iþ1 =

��;

(d) i ¼ nm, Ai;i�m ¼ ��, Ai;i�1 ¼ ��, Aii ¼ 1þ 2�.

(2) Four non-zero elements:

(a) 1 < i < n, Ai;i�1 ¼ ��, Aii ¼ 1þ 3�, Ai;iþ1 ¼ ��,

Ai;iþm ¼ ��;

(b) i ¼ nþ 1; nþmþ 1; . . . ;mðn� 2Þ þ 1, Ai;i�m ¼ ��,

Aii ¼ 1þ 3�, Ai;iþ1 ¼ ��, Ai;iþm ¼ ��;
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Figure 11
Use of the central row of matrix �GG to find all other elements of the matrix.

Figure 10
Part of a mouse skull, with a lot of high-intensity pixels on the projections.
(a) No correction for high-intensity pixels or ring artefacts, (b) high-
intensity pixels are suppressed, (c) both corrections have been
performed, � = 10.



(c) i ¼ nþm; nþ 2m; . . . ;mðn� 1Þ, Ai;i�m ¼ ��, Ai;i�1 =

��, Aii = 1þ 3�, Ai;iþm ¼ ��;

(d) nðm� 1Þ þ 1 < i < nm, Ai;i�m ¼ ��, Ai;i�1 ¼ ��,

Aii ¼ 1þ 3�, Ai;iþ1 ¼ ��.

(3) Five non-zero elements (the rest): Ai;i�m ¼ ��,

Ai;i�1 ¼ ��, Aii ¼ 1þ 4�, Ai;iþ1 ¼ ��, Ai;iþm ¼ ��.

It is clear that the sum of all elements of matrix A for each

row is 1. So if ðnmÞ vector v ¼ f1; 1; . . . ; 1g, then ðA� IÞv = 0

and thus 	 = 1 is the corresponding eigenvalue.

Now we consider case n = m > 3 and check that 	 = 1 + 4�
is another eigenvalue, and non-zero elements of one of the

corresponding eigenvectors can be written as viðn�1Þ =

vðiþ1Þðn�1Þþ2 = ð�1Þi, i = 1; . . . ; n� 1 and vn = 1, vnðn�1Þþ1 =

ð�1Þn. For convenience this vector can be represented as an

ðn� nÞ matrix by copying each n consequent elements to a

row of the matrix, then it is an anti three-diagonal matrix,

e.g. for n = m = 5,

v ¼

0 0 0 �1 1

0 0 1 0 �1

0 �1 0 1 0

1 0 �1 0 0

�1 1 0 0 0

0
BBBB@

1
CCCCA: ð22Þ

Denote Q ¼ ðA� 	IÞ=�, then

(1) Three non-zero elements:

(a) i ¼ 1, Qii ¼ �2, Qi;iþ1 ¼ �1, Qi;iþn ¼ �1 and vi ¼ 0,

viþ1 ¼ 0, viþn ¼ 0;

(b) i ¼ n, Qi;i�1 ¼ �1, Qii ¼ �2, Qi;iþn ¼ �1 and

vi�1 ¼ �1, vi ¼ 1, viþn ¼ �1;

(c) i ¼ nðn� 1Þ þ 1, Qi;i�n ¼ �1, Qii ¼ �2, Qi;iþ1 ¼ �1

and vi�n ¼ �ð�1Þn, vi ¼ ð�1Þn, viþ1 ¼ �ð�1Þn;

(d) i ¼ nn, Qi;i�n ¼ �1, Qi;i�1 ¼ �1, Qii ¼ �2 and vi�n ¼ 0,

vi�1 ¼ 0, vi ¼ 0.

(2) Four non-zero elements:

(a) 1 < i < n, Qi;i�1 ¼ Qii ¼ Qi;iþ1 ¼ Qi;iþn ¼ �1; vi�1 =

vi ¼ 0, viþ1 ¼ �1, viþn ¼ 1 (for i ¼ n� 2), vi�1 ¼ 0, vi ¼ �1,

viþ1 ¼ 1, viþn ¼ 0 (for i ¼ n� 1) and vi�1 = vi ¼ viþ1 =

viþn ¼ 0 (otherwise);

(b) i ¼ nþ 1; 2nþ 1; . . . ; nðn� 2Þ þ 1, Qi;i�n = Qii =

Qi;iþ1 = Qi;iþn ¼ �1; vi�n ¼ vi ¼ 0, viþ1 ¼ ð�1Þn,

viþn ¼ �ð�1Þn [for i ¼ nðn� 3Þ þ 1], vi�n ¼ 0, vi ¼ �ð�1Þn,

viþ1 ¼ 0, viþn ¼ ð�1Þn [for i ¼ nðn� 2Þ þ 1], vi�n = vi =

viþ1 ¼ viþn ¼ 0 (otherwise);

(c) i ¼ 2n; 3n; . . . ; nðn� 1Þ, Qi;i�n = Qi;i�1 = Qii =

Qi;iþn ¼ �1; vi�n ¼ 1, vi�1 ¼ 0, vi ¼ �1, viþn ¼ 0 (for i ¼ 2n),

vi�n ¼ �1, vi�1 ¼ 1, vi ¼ viþn ¼ 0 (for i ¼ 3n),

vi�n ¼ vi�1 ¼ vi ¼ viþn ¼ 0 (otherwise);

(d) nðn� 1Þ þ 1 < i < nn, Qi;i�n =�1, Qi;i�1 = Qii = Qi;iþ1 =

�1; vi�n ¼ 0, vi�1 ¼ ð�1Þn, vi ¼ �ð�1Þn, viþ1 ¼ 0 [for

i ¼ nðn� 1Þ þ 2], vi�n ¼ ð�1Þn, vi�1 ¼ �ð�1Þn, vi ¼ viþ1 ¼ 0

[for i ¼ nðn� 1Þ þ 3], vi�n ¼ vi�1 ¼ vi ¼ viþ1 ¼ 0 (other-

wise);

(e) the rest: Qi;i�n ¼ Qi;i�1 ¼ Qi;iþ1 ¼ Qi;iþn ¼ �1;

vi�n ¼ ð�1Þ j, vi�1 ¼ �ð�1Þ j, viþ1 ¼ ð�1Þ j, viþn ¼ �ð�1Þ j (for

i ¼ jnþ n� j), vi�n ¼ vi�1 ¼ 0, viþ1 ¼ �ð�1Þ j, viþn ¼ ð�1Þ j

(for i ¼ jn� j� 1), vi�n ¼ ð�1Þ j, vi�1 ¼ �ð�1Þ j,

viþ1 ¼ viþn ¼ 0 (for i ¼ jnþ 2n� jþ 1), vi�n = vi�1 = viþ1 =

viþn ¼ 0 (otherwise).

Now it is easy to check that
Pn2

j¼ 1 Qijvj = 0.

APPENDIX B

B1. Formula for 2D filter

B1.1. Trigonometric formulas. From the formulas for the

sum of sines/cosines we find

sinðn!þ  Þ þ sin½ðn� 2Þ!þ  � ¼ 2 sin½ðn� 1Þ!þ  � cos!;

ð23Þ

cosðnþ 1Þxþ cosðn� 1Þx ¼ 2 cos nx cos x; ð24Þ

cosðn �1Þx cos myþ cosðnþ 1Þx cos myþ cos nx cosðm� 1Þy

þ cos nx cosðmþ 1Þy ¼ 2ðcos xþ cos yÞ cos nx cos my: ð25Þ

The following formula is true (Gradshteyn & Ryzhik, 2015),

Xn�1

k¼ 0

cosðaþ kbÞ ¼ cos aþ ½ðn� 1Þ=2�b

 � sinðnb=2Þ

sinðb=2Þ
: ð26Þ

In the case of a = 0, equation (26) gives us

Xn

k¼ 0

cosðkbÞ ¼
1

2
1þ

sin½ð2nþ 1Þb=2�

sinðb=2Þ

� 
:

Thus we find the Dirichlet sum

1þ 2
Xn

k¼ 1

cosðkbÞ ¼
sin½ð2nþ 1Þb=2�

sinðb=2Þ
: ð27Þ

Some limits for trigonometric functions:

lim
x!0

sin nx

sin x
¼ n; ð28Þ

lim
x!�

sin nx

sin x
¼ ð�1Þnþ1

n: ð29Þ

B1.2. Combinatorial formulas. A factorial n! of a positive

integer number n is defined as n! = n 
 ðn� 1Þ 
 
 
 2 
 1, 0! � 1,

a binomial coefficient C k
n can be defined as

C k
n �

n!

k!ðn� kÞ!
:

From the definition C k
n = C n�k

n , the following formulas are true

(Benjamin & Quinn, 2003):

1

1� x
¼
X1
n¼ 0

xn for jxj< 1; ð30Þ

ðxþ yÞ
n
¼
Pn

k¼ 0

C k
n xkyn�k; ð31Þ
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Pk
j¼ 0

C j
mC k�j

n ¼ C k
mþn ð32Þ

(Vandermonde convolution/identity).

B1.3. Simple integrals. If n and m are non-negative integer

numbers, then for n 	 m,Z �=2

0

sin2nþ1 x sinð2mþ 1Þx dx ¼
ð�1Þm�

22nþ2
C n�m

2nþ1; ð33Þ

Z �=2

0

sin2n x cos 2mx dx ¼
ð�1Þm�

22nþ1
C n�m

2n ; ð34Þ

and the above integrals equal zero for n < m (see Gradshteyn

& Ryzhik, 2015).

Let f ðxÞ and hðxÞ be odd and even functions, respectively,

i.e. f ð�xÞ ¼ �f ðxÞ and hð�xÞ ¼ hðxÞ, thenZ a

�a

f ðxÞ dx ¼ 0; ð35Þ

Z a

�a

hðxÞ dx ¼ 2

Z a

0

hðxÞ dx: ð36Þ

Taking into account that cos½xþ ð�=2Þ� ¼ � sin x, we find for

non-negative integer p,Z �

0

cos p y dy ¼ ð�1Þ p
Z �=2

��=2

sin p x dx:

If p is an odd number, then from (35)Z �

0

cos2nþ1 x dx ¼ 0: ð37Þ

In the case of an even p, equation (34) can be used andZ �

0

cos2n x dx ¼
�

22n
C n

2n: ð38Þ

In a similar way for n 	 m we obtainZ �

0

cos2n y cos 2my dy ¼ 2ð�1Þm
Z �=2

0

sin2n x cos 2mx dx

¼
�

22n
C n�m

2n ; ð39Þ

Z �

0

cos2nþ1 y cos 2my dy ¼ 0; ð40Þ

Z �

0

cos2n y cosð2mþ 1Þy dy ¼ 0; ð41Þ

Z �

0

cos2nþ1y cosð2mþ 1Þy dy

¼ 2ð�1Þm
Z �=2

0

sin2nþ1 x sinð2mþ 1Þx dx

¼
�

22nþ1
C n�m

2nþ1: ð42Þ

The above integrals are zeros in the case of n < m.

The Dirac �-function can be written as the following sum,

�ðxÞ ¼
1

�
lim

n!1

sin nx

x
: ð43Þ

B1.4. The first sequence. Suppose there is a number ,

jj < 1=4, and for integer n 	 0 we want to find

Tn ¼

Z �

0

Z �

0

cos nx

1� 2ðcos xþ cos yÞ
dx dy: ð44Þ

As cos x � 1, cos y � 1, then 1� 2ðcos xþ cos yÞ > 0, so Tn is

not a singular integral. From (30) we obtain

Tn ¼
X1
k¼ 0

ð2ÞkUnk; ð45Þ

Unk �

Z �

0

Z �

0

cos nxðcos xþ cos yÞ
k dx dy:

Taking into account the binomial theorem (31) we obtain

Unk ¼
Xk

m¼ 0

C
q
k

Z �

0

cosm x cos nx dx

Z �

0

cosk�m y dy:

From (37) and (38) it follows that, for even k = 2 ~kk, we should

consider only even m = 2s,

Unk ¼
X~kk

s¼ 0

�

22ð ~kk�sÞ
C 2s

2 ~kk
C

~kk�s
2ð ~kk�sÞ

Z �

0

cos2s x cos nx dx

and for odd k = 2 ~kkþ 1, we should consider only odd

m ¼ 2sþ 1,

Unk ¼
X~kk

s¼ 0

�

22ð ~kk�sÞ
C 2sþ1

2 ~kkþ1
C

~kk�s
2ð ~kk�sÞ

Z �

0

cos2sþ1 x cos nx dx:

Due to (38)–(42) we see that Ukn is not zero only when both

k and n are either even or odd numbers and 2s 	 n or

2sþ 1 	 n, respectively. So for even k and n, i.e. k = 2 ~kk, n = 2 ~nn,

we find

Unk ¼
�2

2k

X~kk

s¼ ~nn

C 2s
2 ~kk

C
~kk�s

2ð ~kk�sÞ
C s� ~nn

2s ¼
�2

2k
C

~kk� ~nn
2 ~kk

X~kk

s¼ ~nn

C
~kk�s
~kk� ~nn

C
~kk�s
~kkþ ~nn

¼
�2

2k
C

~kk� ~nn
2 ~kk

X~kk� ~nn

j¼ 0

C
j
~kk� ~nn

C
~kk� ~nn�j
~kkþ ~nn

¼
�2

2k
C

~kk� ~nn
2 ~kk

� �2

; ð46Þ

where the Vandermode identity (32) is used, and for odd k and

n, i.e. k = 2 ~kkþ 1, n = 2 ~nnþ 1,

Unk ¼
�2

2k

X~kk

s¼ ~nn

C 2sþ1

2 ~kkþ1
C

~kk�s
2ð ~kk�sÞ

C s� ~nn
2sþ1 ¼

�2

2k
C

~kk� ~nn
2 ~kkþ1

� �2

: ð47Þ
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So instead of (46) and (47) we obtain one formula when n and

k are both even or odd,

Unk ¼
�2

2k
C
ðk�nÞ=2
k

h i2

:

Unk = 0 for n < k or odd ðk� nÞ. We replace k = nþ 2q in (45),

Tn ¼ �
2n

X1
q¼ 0

qC
q
nþ2q

� �2
:

B1.5. The second sequence. The integral (44) depends only

on one integer parameter n. Now we consider

Snm ¼

Z �

0

Z �

0

cos nx cos my

1� 2ðcos xþ cos yÞ
dx dy; ð48Þ

which depends on two integer parameters n and m. Due to

properties of the cosine function and symmetry of Snm it is

enough to consider only the case of 0 � m � n as Snm = Smn =

S�nm = Sn;�m. Note that

ðcos xþ cos yÞ

1� 2ðcos xþ cos yÞ
¼

1

2

1

1� 2ðcos xþ cos yÞ
� 1

� �
:

Let n, m 6¼ 0 at the same time, thenZ �

0

Z �

0

cos nx cos my dx dy ¼ 0;

Z �

0

Z �

0

ðcos xþ cos yÞ cos nx cos my

1� 2ðcos xþ cos yÞ
dx dy ¼

1

2
Snm:

Therefore if we use identity (25) then

Sn�1;m þ Snþ1;m þ Sn;m�1 þ Sn;mþ1 ¼
Snm


: ð49Þ

For n = m = 0 we obtain

S10 ¼
1

4
S�10 þ S10 þ S0;�1 þ S01

� 	
¼

S00 � �
2

4
: ð50Þ

Taking into account (49) and Sn;�1 = Sn;1, we obtain

2Sn1 ¼
Sn;0


� Sn�1;0 � Snþ1;0 ¼

Tn


� Tn�1 � Tnþ1:

As ðC q
nþ2qÞ

2
� ðC

q
n�1þ2qÞ

2 = 0 for q = 0, we may write

Tn


� Tn�1 ¼ �

2n�1
X1
q¼ 0

2q
ðC

q
nþ2qÞ

2
� ðC

q
n�1þ2qÞ

2
� �

¼ �2nþ1
X1
s¼ 0

2s ðC sþ1
nþ2sþ2Þ

2
� ðC sþ1

nþ2sþ1Þ
2

� �
;

Sn1

�2nþ1
¼
X1
q¼ 0

2q

2
ðC

qþ1
nþ2qþ2Þ

2
� ðC

qþ1
nþ2qþ1Þ

2
� ðC

q
nþ2qþ1Þ

2
� �

¼
X1
q¼ 0

2qC
q
nþ2qþ1C

qþ1
nþ2qþ1:

Now check that the following formula is true for 0 � m � n,

Snm ¼ �
2nþm

X1
q¼ 0

2qC
q
2qþnþm C

qþm
2qþnþm: ð51Þ

We use mathematical induction. Above we have checked the

formula for m = 0 and m = 1. Assume the formula is true for

0 � m < k. Then

Sn�1;k=� Sn�1;k�1 � Sn�2;k

�2nþk�2

can be rewritten as a Taylor series of 2 with coefficients

C
q
2qþnþk�1C

qþk
2qþnþk�1 � C

q
2qþnþk�2C

qþk�1
2qþnþk�2

� C
q
2qþnþk�2C

qþk
2qþnþk�2 ¼ C

q�1
2qþnþk�2C

qþk
2qþnþk�1

for q > 0 and zero for q = 0. Therefore

Snk

�2nþk
¼

Sn�1;k=� Sn�1;k�1 � Sn�2;k � Sn�1;kþ1

�2nþk�2

¼
X1
s¼ 0

2s C s
2sþnþkC sþkþ1

2sþnþkþ1 � C s
2sþnþkC sþkþ1

2sþnþk

� �

¼
X1
s¼ 0

2sC s
2sþnþkC sþk

2sþnþk:

B1.6. The third sequence. Let there be ’ 2 ð0; �=2Þ and

Vn �

Z �

0

cos nx

1� cos x sin ’
dx:

Using formula (24) we obtain, for n > 0,

Vnþ1 þ Vn�1 ¼

Z �

0

2 cos x cos nx

1� cos x sin ’
dx

¼
2

sin ’

Z �

0

1

1� cos x sin ’
� 1

� �
cos nx dx

¼
2

sin ’
Vn;

since
R �

0 cos nx dx = 0. We may find that

V0 ¼
�

cos ’
; V1 ¼

�

cos ’

sin ’

1þ cos ’

and therefore use the recurrent formula

Vn ¼
2

sin ’
Vn�1 � Vn�2:

Since

2

sin ’

sin ’

1þ cos ’
� 1 ¼

1� cos ’

1þ cos ’
¼

sin2 ’

ð1þ cos ’Þ2
;

then Vn is a geometric sequence, i.e. Vnþ1 = �Vn, where

� ¼
sin ’

1þ cos ’
:

So the values of sequence Vn can be written as

Vn ¼
�

cos ’

sin ’

1þ cos ’

� �n

:
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B1.7. Eigenvalues/eigenvectors. Let us consider an ðn� nÞ

matrix Bn,

Bn ¼

2� � 1 �1 0 
 
 
 0 0

�1 2� �1 
 
 
 0 0

0 �1 2� 
 
 
 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 
 
 
 2� �1

0 0 0 
 
 
 �1 2� � 1

0
BBBBBB@

1
CCCCCCA
: ð52Þ

We aim to find its eigenvalues, therefore we want to solve

equation det Bn = 0. For this purpose we replace the element

ð1; 1Þ of Bn by 2� and denote the corresponding matrix as Fn.

If we use the first row of Bn to find its determinant, then

det Bn = ð2� � 1Þ det Fn�1 � det Fn�2. In a similar way we

obtain det Fn = 2� det Fn�1 � det Fn�2, thus det Bn =

det Fn � det Fn�1, det Fn þ det Fn�2 = 2� det Fn�1 and

det Bn � det Bn�2 ¼ 2� det Bn�1:

Therefore we need to find a sequence fbng such that

bn þ bn�2 ¼ 2�bn�1: ð53Þ

Of course if one sequence fbng is found, then f�bng is also a

solution of the above equation. We want to find � such that

det Bn = bn.

Let � 2 ½�1; 1�, then taking into account (23) a solution of

(53) is bn = � sinðn!þ  Þ, � = cos!. Note that matrices Bn are

formally defined for n 	 3. One can find their determinants

explicitly for n = 3 and 4: det B3 = 8�3 � 8�2 � 2� þ 2, det B4 =

16�4 � 16�3 � 8�2 þ 8�, so from (53) we obtain bn =

2�bnþ1 � bnþ2 and can extrapolate values bn for n < 3: b2 =

4�2 � 4�, b1 = 2� � 2, b0 = 0. Thus we obtain the following

system of equations,

b0 ¼ � sinð Þ ¼ 0;

b1 ¼ � sinð!þ  Þ ¼ 2� � 2:

The first equation is valid if either � = 0 or  = 0 or �. The case

of � = 0 is not possible, since the second equation would always

be zero. Since sinð� þ �Þ = � sin �, then we may only consider

the case of  = 0 and change the sign of � to obtain the

solution for  = �. Thus

� ¼
2� � 2

sin!
¼

2ðcos!� 1Þ

sin!
;

det Bn ¼ 2ðcos!� 1Þ
sin n!

sin!
:

Now we show that the above equation has n roots, so there is

no reason to consider the case of j�j > 1.

Taking into account (28) we find the first root, ! = 0. The

other roots can be found from sinðn!Þ = 0, so ! = k�=n and

k = 0; . . . ; n� 1. Note that, due to (29), k 6¼ n. As a result,

det Bn = 0 if � = cosðk�=nÞ, k = 0; . . . ; n� 1. All eigenvalues of

matrix Bn can be written as 	k = 2ð� þ kÞ, where k =

cosðk�=nÞ, k = 1; . . . ; n.

For a given eigenvalue 	k we find an eigenvector y =

fy1; . . . ; yng. In this paper we consider only the case of odd n.

We need to solve the system of n linear equations

ð1þ 2kÞy1 þ y2 ¼ 0;

yq�1 þ 2kyq þ yqþ1 ¼ 0; q ¼ 2; . . . ; n� 1;

yn�1 þ ð1þ 2kÞyn ¼ 0:

8><
>: ð54Þ

Let us denote � = k�=2n and check that for k = n, k = 1 and

yq ¼ 1 ð55Þ

is the solution of (54); for k < n,

yq ¼ ð�1Þq sinð2q� 1Þ�: ð56Þ

If k is odd, then ynþ1�q = yq, i.e. vector y is symmetric. If k is

even, then ynþ1�q = �yq, i.e. vector y is antisymmetric. Thus it

is enough to check the case of q < n=2. We obtain y1 = � sin �,

y2 = sin 3� = sin �ð3� 4 sin2 �Þ ¼ sin �ð2 cos 2� þ 1Þ, 2k þ 1 =

2 cos 2� þ 1, so the first equation of (54) is true. As

sinð2q� 3Þ� þ sinð2qþ 1Þ� ¼ 2 sinð2q� 1Þ� cos 2�;

then the second equation in (54) is also true.

Now we find the norm of vector y. For k = n, it is n, and, for

k < n,

Xn

q¼1

y2
q ¼

Xn

q¼1

sin2
ð2q� 1Þ� ¼

1

2

Xn

q¼1

1� cos 2ð2q� 1Þ�½ �:

Substituting a = 2� and b = 4� into (26) and taking into account

that sin 2n� = sin 2k� = 0, we find that the norm for k > 0 is n=2.

Finally, we obtain the normalized vector y with elements

yq ¼

ð�1Þq�1ffiffiffiffiffi
n=2
p sin ð2q�1Þk�

2n ; k ¼ 1; . . . ; n� 1;

1=
ffiffiffi
n
p
; k ¼ n:

8<
:

B1.8. Inverse matrix B�1. The original matrix B � Bn from

(52) can be written as

B ¼ YDY T;

where matrix Y is the orthogonal matrix, i.e. Y �1 = Y T , with

elements

Yij ¼

ð�1Þi�1ffiffiffiffiffi
n=2
p sin ð2i�1Þj�

2n ; j ¼ 1; . . . ; n� 1;

1=
ffiffiffi
n
p
; j ¼ n:

8<
:

and matrix D is the diagonal one with elements

Dii ¼ 2 � þ cosði�=nÞ½ �;

(see Higham, 2008). The inverse of matrix B can then be

written as

B�1 ¼ YD�1Y T;

where D�1 is a diagonal matrix with elements

D�1
ii ¼

1

2½� þ cosði�=nÞ�
:

Therefore the element ðk; jÞ of matrix D�1Y T ,

D�1Y T jkj ¼
Xn

q¼ 1

D�1
kq Y T

qj ¼ D�1
kk Y T

kj ¼ D�1
kk Yjk
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and the elements of B�1 can be written as

B�1
ij ¼

Xn

k¼ 1

YikD�1
kk Yjk:

Then

B�1
ij ¼

1

n

Xn�1

k¼ 1

ð�1Þiþj

� þ cosðk�=nÞ
sin
ð2i� 1Þk�

2n
sin
ð2j� 1Þk�

2n
þ

1

2ð� � 1Þ

" #
:

Taking into account that sin½ð2i� 1Þð2n� kÞ�=2n� =

sin½ð2i� 1Þk�=2n� and cosðn�=nÞ = �1, we find

B�1
ij ¼

1

2n

X2n�1

k¼ 1

ð�1Þiþj

� þ cosðk�=nÞ
sin
ð2i� 1Þk�

2n
sin
ð2j� 1Þk�

2n
:

All matrices mentioned above have indices starting from 1.

However, our aim is to find a filter to be applied to a matrix.

Therefore it may be more convenient to rewrite the same

matrices as ones centered with respect to the central element.

Since n and m are both odd, this central element always exists

and is unique. If a standard matrix Q is given, then by �QQ we

denote a matrix centered with respect to its central element.

So, instead of matrix B�1
ij defined for i = 1; . . . ; n, j = 1; . . . ; n,

we subtract n from k and ð �nnþ 1Þ from the other indices of the

above formula, where �nn � ðn� 1Þ=2, and obtain

�BB�1
ij ¼

1

2n

Xn�1

k¼�ðn�1Þ

ð�1Þiþj

� þ cos½ðkþ nÞ�=n�

� sin
½2ðiþ �nnÞ þ 1�ðkþ nÞ�

2n
sin
½2ðjþ �nnÞ þ 1�ðkþ nÞ�

2n
;

where i; j = � �nn; . . . ; �nn. We may rewrite

sin
½2ðiþ �nnÞ þ 1�ðkþ nÞ�

2n
¼ ð�1Þiþ �nn sin

ik�

n
þ

kþ 1

2
�

� �
;

cos
ðkþ nÞ�

n
¼ � cos

k�

n
;

�BB�1
ij ¼

1

2n
�

Xn�1

k¼�ðn�1Þ

sin ðik�=nÞ þ ½ðk� 1Þ=2��

 �

sin ð jk�=nÞ þ ½ðk� 1Þ=2��

 �

� � cosðk�=nÞ

¼
1

4n

Xn�1

k¼�ðn�1Þ

cos½ði� jÞk�=n� þ cos½ðiþ jþ nÞk�=n�

� � cosðk�=nÞ
:

For the central row of �BB�1 we obtain

�BB�1
0j ¼

1

4n

Xn�1

k¼�ðn�1Þ

cosð jk�=nÞ½1þ ð�1Þk�

� � cosðk�=nÞ
:

For odd k the value of ½1þ ð�1Þk� = 0, so we need to consider

only even k and use s = k=2,

�BB�1
0j ¼

1

2n

X�nn

s¼� �nn

cosð2js�=nÞ

� � cosð2s�=nÞ
: ð57Þ

B1.9. Inversion of the matrix function. The matrix WnðxÞ is

defined in (16). According to (57) the central row of the

function W �1
n ðxÞ can be written as

W �1
n j0j ¼

1

n

X�nn

s¼� �nn

cos
2js�

n
xþ 1� 2 cosð2s�=nÞ½ �

�1: ð58Þ

Now we need to find the matrix W �1
n ½Wmð�Þ�. If x and v are

two scalars, then WmðxÞ þ v = Wmðxþ vÞ. Therefore,

WmðxÞ þ 1� 2 cos ð2s�=nÞ
� ��1

¼ W �1
m xþ 1� 2 cos ð2s�=nÞ½ �:

In principle we only need the central row of ðnm� nmÞmatrix

W �1
n ½Wmð�Þ�. Formula (58) can be used to find n ðm�mÞ

matrices which form the central ðm� nmÞ block of

W �1
n ½Wmð�Þ�. So for the jth matrix �RR we may write

�RR0k ¼
1

nm

X�nn

s¼� �nn

X�mm

r¼� �mm

cosð2js�=nÞ cosð2kr�=mÞ

�þ 2 1� cos ð2s�=nÞ � cos ð2r�=mÞ½ �
;

where �mm = ðm� 1Þ=2. Therefore the ð jmþ kÞth element of the

central row of the matrix A�1 defined in (18) can be written as

�� 2

nm

X�nn

s¼� �nn

X�mm

r¼� �mm

cosð2js�=nÞ cosð2kr�=mÞ

�þ 2 1� cos ð2s�=nÞ � cos ð2r�=mÞ½ �
:

If values n and m are relatively large, then instead of the sum

we may consider a 2D integral. So define continuous variables

� and � such that �; � 2 ½��; �� and s = �n=2�, r = �m=2� and

introduce an integral

�GGjk ¼
�� 2

4�2

Z �

��

Z �

��

cos j� cos k�

�þ 2 1� cos � � cos �ð Þ
d� d�;

then the elements of the central row of matrix A�1 tend to �GGjk

for large n and m. We denote � = �=ð1þ 4�Þ and rewrite the

last formula as

�GGjk ¼
1� 4�

�2

Z �

0

Z �

0

cos j� cos k�

1� 2� cos � þ cos �ð Þ
d� d�: ð59Þ

Some useful properties of (59) can be found. As cosine is an

even function, then �GGjk is symmetrical with respect to hori-

zontal, vertical or diagonal flipping, i.e. �GGjk = �GG�jk = �GGj;�k =
�GGkj. Thus it is enough to consider k 	 j 	 0. Formulas (49) and

(50) give us

�GGjk ¼ �ð �GGj�1k þ
�GGjþ1k þ

�GGjk�1 þ
�GGjkþ1Þ; ð60Þ

�GG00 ¼ �ð4 �GG01 þ 1Þ:

In Appendic B1.5 it is shown how the integral in (59) can be

calculated, so

�GGjk ¼ ð1� 4�Þ� kþj
X1
q¼ 0

C
q
2qþjþkC

qþj
2qþjþk�

2q: ð61Þ

From the above formula we obtain other properties of �GGjk:

(i) �GGjk > 0, since � < 1/4 and binomial coefficients are non-

negative.

(ii) �GGj;kþ1 < �GGj;k, since
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C
q
2qþjþk

C
q
2qþjþkþ1

¼
qþ jþ kþ 1

2qþ jþ kþ 1
>

1

2
;

C
qþj
2qþjþk

C
qþj
2qþjþkþ1

¼
qþ kþ 1

2qþ jþ kþ 1
>

1

2

and therefore

�C
q
2qþjþkþ1C

qþj
2qþjþkþ1 < C

q
2qþjþkC

qþj
2qþjþk:

(iii) The sum Sj of all elements of the jth row of matrix �GG,

X1
k¼�1

�GGjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�
p 1� 2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�
p

2�

� �jjj
: ð62Þ

Taking into account formula (27) and the property (43), we

obtain

Sj ¼
1� 4�

�

Z �

0

cos j�

1� 2� cos � þ 1ð Þ
d�:

If we introduce ’ such that sin ’ = 2�=ð1� 2�Þ, cos’ =ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�
p

=ð1� 2�Þ, then ’ 2 ð0; �=2Þ, since 0<� < 1=4, and

the value of Sj follows from the results of Appendix B1.6.

(iv) The sum of all elements of matrix �GG is 1,

X1
j¼�1

Sj ¼ 1 or
X1

j¼�1

X1
k¼�1

�GGjk ¼ 1;

since (62) and (30) for � = ð1� 2� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�
p

Þ=2� give

X1
j¼�1

� jjj ¼
2

1� �
� 1 ¼

1þ �

1� �
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�
p :

APPENDIX C
Numerical implementation

C1. High-precision calculations

In order to find elements �GGjk one can use a finite sum in

(61). However, due to various rounding operations, there will

be some additional error even if double precision numbers are

used. Therefore it is better to try another approach. Formula

(61) can be rewritten as �GGjk = ð1� 4�Þ� jþk�,

� ¼
X1
q¼ 0

aq�
2q; aq ¼ C

q
2qþjþkC

qþj
2qþjþk: ð63Þ

or a sum � = �1 þ �2 of two terms

�1 ¼
Xq?�1

q¼ 0

aq�
2q; �2 ¼

X1
q¼ q?

aq�
2q;

where index q? can be chosen later. The first term can be

found using the recurrent formula

cq? ¼ 1;

cq ¼ 1þ
aq

aq�1

� 2cqþ1; q ¼ q? � 1; . . . ; 1

and since a0 = C 0
jþkC

j
jþk ¼ C

j
jþk, then �1 = a0c1 = C

j
jþkc1. Now

we estimate from above the value of �2. We obtain

aq

aq�1

¼
ð2qþ jþ kÞ

2
ð2qþ jþ k� 1Þ2

qðqþ jÞðqþ kÞðqþ jþ kÞ
:

Note that ðqþ jÞðqþ kÞ 	 qðqþ jþ kÞ, so if we denote s =

jþ k we can estimate

aq

aq�1

�
ð2qþ sÞð2qþ s� 1Þ

qðqþ sÞ

� �2

:

For q 	 sðs� 1Þ=2, we obatin

aq

aq�1

� 16

and ðaq=aq�1Þ�
2 < 1, so we can estimate from above the value

of �2,

�2 � aq? �
2q?
X1
s¼ 0

ð16� 2
Þ

s
¼

aq? �
2q?

1� 16�2
:

As a result the value �GGjk can be found by the following

formula,

dq? ¼
1

1� 16� 2
;

dq ¼ 1þ dqþ1

ð2qþ jþ kÞ
2
ð2qþ jþ k� 1Þ2

qðqþ jÞðqþ kÞðqþ jþ kÞ
;

for q ¼ q? � 1; . . . ; 1;

�GGjk ¼ ð1� 4�Þ� jþkC
j
jþkd1: ð64Þ

C2. Faster calculations

Due to the symmetry of �GGjk we have �GG�1k = �GG1k, so from

(60) we obtain

�GG1k ¼
1

2

�GG0k

�
� �GG0k�1 �

�GG0kþ1

 !
: ð65Þ

The other rows can be found as

�GGjk ¼
�GGj�1;k

�
� �GGj�1;k�1 �

�GGj�1;kþ1 �
�GGj�2;k: ð66Þ
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