
research papers

244 http://dx.doi.org/10.1107/S1600577515018603 J. Synchrotron Rad. (2016). 23, 244–252

Received 19 May 2015

Accepted 5 October 2015

Edited by A. F. Craievich, University of

São Paulo, Brazil

Keywords: photon transport; multiple scattering;

Monte Carlo; Compton spectroscopy; simulation

algorithm.

A Monte Carlo study of high-energy photon trans-
port in matter: application for multiple scattering
investigation in Compton spectroscopy

Marek Brancewicz,* Masayoshi Itou and Yoshiharu Sakurai

Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.

*Correspondence e-mail: brancew@spring8.or.jp

The first results of multiple scattering simulations of polarized high-energy

X-rays for Compton experiments using a new Monte Carlo program, MUSCAT,

are presented. The program is developed to follow the restrictions of real

experimental geometries. The new simulation algorithm uses not only well

known photon splitting and interaction forcing methods but it is also upgraded

with the new propagation separation method and highly vectorized. In this

paper, a detailed description of the new simulation algorithm is given. The code

is verified by comparison with the previous experimental and simulation results

by the ESRF group and new restricted geometry experiments carried out at

SPring-8.

1. Introduction

Compton scattering is a well established experimental method

for investigating the electronic properties of matter (Williams,

1977; Cooper et al., 2004). It measures the intensity of radia-

tion scattered on a sample in the solid angle d� in energy

intervals dh- ! (double differential cross section):

d2�

d� dh- !
¼ C h- !0;h

- !; �; pz

� �
J pz

� �
; ð1Þ

where C is a certain function depending on the following

scattering parameters: incident photon energy (h- !0), scattered

photon energy (h- !), scattering angle (�), electron momentum

along the scattering vector (pz). J(pz) is the one-dimensional

projection of the three-dimensional electron momentum

density [�(p)] onto the scattering vector and is called the

Compton profile:

J pz

� �
¼

ZZ
� pð Þ dpx dpy: ð2Þ

Extraction of the Compton profile from experimental spectra

is a standard procedure including a series of energy- and

geometry-dependent corrections. However, there are still

small but significant discrepancies observed between theore-

tical and experimental Compton profiles even in high-

momentum regions, where theoretical description of core

electrons should work well (Brancewicz et al., 2013). There are

two possible sources of this discrepancy: one is the uncertainty

associated with the experimental background measurements

and the other is the influence of multiple-scattered photons

(MSC) in experimental spectra. Experimental backgrounds

can be reduced, for example, by using a special sample holder,

vacuum chamber, transmitted beam absorbers, collimators

and additional absorbing shields. The effect of MSC can be
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reduced only by using thinner samples, but this leads to a

significant reduction of single Compton scattering intensities.

The spectral shape of MSC distorts the obtained electron

momentum density distribution. The influence of multiple

scattering can be cancelled if the difference in Compton

profiles are considered, for example the difference between

directional profiles measured on two samples of the same size.

Apart from the case where the difference profiles are

measured on one sample but under different conditions

(temperature, pressure), the effect of MSC does not comple-

tely vanish, and the accurate simulation of the MSC spectrum

can be crucial to obtain the high-quality Compton profiles as

well as the difference profiles. Therefore, the simulation of

MSC spectra is crucial in Compton scattering experiments.

2. Monte Carlo procedures

The problem of finding the spectral distribution of multiple-

scattered X-rays by analytical calculations has been consid-

ered many times (Dumond, 1930; Williams et al., 1974; Tanner

& Epstein, 1976a,b,c; Braun-Keller & Epstein, 1977a,b; Das et

al., 1988). However, analytical approaches are very difficult to

adopt for the real experimental geometry (beam size, sample

shape, collimators) and are limited only to double scattering.

Therefore, the Monte Carlo (MC) simulation is the most

appropriate method of finding the MSC contribution to the

measured Compton profile and has been used in Compton

spectroscopy.

The first Monte Carlo procedure for multiple scattering

simulations of unpolarized �-rays in Compton scattering

experiments was described (Felsteiner et al., 1974) and

experimentally tested (Felsteiner & Pattison, 1975) 40 years

ago. It uses solutions proposed by Cashwell & Everett (1959)

in order to improve the simulation efficiency by applying the

idea of forcing the respective processes and the corresponding

photon weight reduction (photon splitting). This procedure

does not take into account the incident beam size nor the

collimation of scattered beam; all photons scattered into a

specific direction are considered as registered. This approx-

imation is called a relaxed geometry (see Fig. 1a). There are

also attempts to adapt this code to the individual experimental

setup, taking into account the size and divergence of the

incident beam as well as collimation of scattered beam

(restricted geometry, Fig. 1b), and the simulation results are

significantly different from the relaxed geometry (Itoh et al.,

1979).

The Monte Carlo procedure mentioned above has not been

tested experimentally in a direct way. The only criterion for its

accuracy used so far is the degree of agreement between

obtained Compton profiles and theoretical predictions

(Felsteiner & Pattison, 1975). Despite the noticeable

improvement of final experimental Compton profiles after the

MSC correction, the authors have suggested that the results

are still insufficient and one should always strive to minimize

multiple scattering by performing measurements on samples

as thin as possible (Felsteiner et al., 1974; Felsteiner &

Pattison, 1975). The first attempt for the direct experimental

verification of Felsteiner’s procedure was made by Pitkanen et

al. (1986). The experimental results are consistent with the

simulation results, although the simulation statistics are poor.

The first improvement of the Monte Carlo procedure

(scattering forcing and photon splitting) for linearly polarized

photons of a synchrotron beam was made by Chomilier et al.

(1985). Implementation of circular beam polarization and

magnetic inelastic scattering have been carried out by Sakai

(1987) using the formulas derived by Lipps & Tolhoek (1954).

Despite the good reproduction of magnetic Compton profiles

(Kakutani & Sakai, 2004), this program has not been tested in

a direct way for the reproduction of the multiple scattering

part of the simulated spectrum.

The same method (scattering forcing and photon splitting)

has been used in the Monte Carlo procedure developed at

ESRF (Fajardo et al., 1998). The procedure was experimen-

tally tested for near relaxed geometry. The comprehensive and

successful verification by the authors makes this procedure the

most accurate for multiple scattering simulations. We will use

their results to verify our new program MUSCAT in the

relaxed geometry approximation.

3. MUSCAT – the new Monte Carlo algorithm

The main task of the newly developed procedure is to deal

with the highly restrictive geometry and large samples like Li-

ion batteries in Compton scattering imaging experiments (Itou

et al., 2015), where the relaxed geometry of MSC simulation

does not work. The layered structure of such samples should

be implemented after the successful verification of the code

for a homogeneous material sample, which is presented in this

paper. One of the main program objectives is to deal with

variations of experimental geometries for future flexible

modifications. An example of highly restricted geometry

presenting the program possibilities is shown in Fig. 2. Other

experimental geometries can be realised through the series

of transformations: translations, rotations, resizing and posi-

tioning of every element (beam, sample, collimator). In its

present state, the program is only limited to cuboid sample
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Figure 1
Difference between relaxed (a) and restricted (b) geometries used in
Monte Carlo simulations for multiple X-ray scattering. Orange arrows are
the incident beam, black arrows show the directions of the scattered
beam. The detection area (seen by detector) is marked by the transparent
green colour. The detector (red) is placed after the collimator (grey).



shapes, but other shapes (e.g. cylindrical, spherical) could also

be introduced.

In the MUSCAT code the method of scattering forcing and

photon splitting has been highly extended. Together with a

new way of treating scattered photons separately for detection

and next scattering we have improved the simulation effi-

ciency. This means the number of registered events (weighted

parts of photons) is the same as the number of incident

photons at the sample (if the detector is not collimated) for

every order of scattering considered. The new improved

Monte Carlo algorithm is shown in Fig. 3 and described in

detail below.

3.1. Incident beam simulation

Information about the incident beam is stored in a table of

photon data (beam matrix), with initial weights W0 = 1. The

shape of the initial beam is defined by the given size of the

source and the slit between the source and sample. The

direction of photon propagation (wavevector) is defined by

two randomly chosen points, one in the source and one in the

slit. The components of the initial electric vectors in a plane

perpendicular to the wavevectors are calculated from:

Ea ¼ a cos !t þ ’ð Þ; Eb ¼ b sin !t þ ’ð Þ; ð3Þ

at the time t = 0, and phase ’ chosen by uniform random

sampling (incoherent beam). The semi-major (a) and semi-

minor (b) axes lengths of the polarization ellipse are calcu-

lated from the linear polarization Stokes parameter P1 as an

input:

a ¼
1� P1

2

� �1=2

; b ¼
1þ P1

2

� �1=2

: ð4Þ

The simulated beam propagates from the source to the sample

surface along the wavevectors.

3.2. Force first collision

A photon that hits the sample surface is forced to interact

with matter in the sample volume by avoiding the transmission

process. In this case the photon is propagated by distance l

(penetration depth) given by:

l ¼ �
1

�
ln 1� r 1� expð��LÞ½ �
� �

; ð5Þ

where � is the total attenuation coefficient, L is the distance

from the current photon position on the sample surface to the

exit point from the sample (optical thickness), and r is a

random number between 0 and 1. Due to the probability Pt of

the transmission process, the photon weight is reduced from

W0 = 1 to W:

W ¼ 1� Ptð ÞW0 ¼ 1� expð��LÞ½ �W0: ð6Þ

After the weight reduction from W0 to W, to avoid multi-

plication of variables, weight W become W0 again before the

next considered process that also involves the weight reduc-

tion.

3.3. Select the process

In the case of Compton scattering experiments, the typical

incident photon energy is from 59.54 keV (214Am isotope

source) to 662 keV (137Cs isotope source). Three types of

interaction with matter dominate over the energy range:

photoelectric absorption, elastic scattering and inelastic scat-

tering. As long as we are dealing with light elements, whose

emission lines are below the energy scale of the considered

spectra, we can force only elastic and inelastic scattering by a

corresponding weight reduction due to the probability Pp of

the photoelectric absorption process:
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Figure 3
Block algorithm for multiple scattering simulations used by the MUSCAT
program. Loop 4 ! 4.2 ! 5 ! 6 ! 6.2 ! 3 can be repeated for the
second, third and more orders of scatterings.

Figure 2
Sample geometry realised in the MUSCAT program. The incident beam
(yellow) propagates along the Y-axis. The sample is drawn in blue. The
green colour shows the detection area formed by the collimator shape.
Each photon that passes through the collimator is treated as detected.



W ¼ 1� Pp

� �
W0 ¼ 1�

�p

�

� �
W0: ð7Þ

The probability of photoelectric absorption is defined as the

ratio between the photoelectric (�p) and total (�) attenuation

coefficients. Elastic or inelastic process selection is then

carried out through the random sampling with probability

proportional to the appropriate attenuation coefficients; �e

for elastic and �i for inelastic scattering.

3.4. New wavevector direction

From this point the simulation process differs from the old

procedures. The beam matrix is dealt with in two independent

ways. One is the scattering direction towards the detector

(algorithm step 4.1 in Fig. 3) where the new wavevectors are

selected by pointing the detector direction (collimator exit)

randomly into the solid angle of the detector �d. The other is

random scattering into the sample volume (algorithm step 4.2

in Fig. 3) where the new wavevectors directions are selected by

random sampling into the full solid angle 4�. We called this

method propagation separation and it is crucial for improving

the simulation efficiency, because it allows the preservation of

the total number of photons (their weighted parts) regardless

of the considered propagation direction (to the detector or

random) and scattering order. New electric vectors are

obtained by rotation of initial electric vectors around the

normal to the scattering plane by an angle � equal to the angle

between the normals to the incident and scattering planes.

Angle � between the incident and scattered electric vectors is

calculated.

3.5. Scattering

The energy of elastically scattered photons does not change.

In the case of inelastic scattering, the scattered photon energy

h- ! is calculated based on the scattering angle � and incident

energy h- !0:

h- ! ¼ h- !0 A 1þ 1þ A2
� 2A cos �

� �1=2
pz�

h i
;

A ¼ 1þ
h- !0

m0c2
1� cos �ð Þ

� 	�1

;
ð8Þ

where � is the fine structure constant and m0c2 is the electron

rest mass (in keV). The z-component of electron momentum

pz [in atomic units (a.u.)] is selected by random sampling with

frequency proportional to the given Compton profile distri-

bution J(pz).

Weight reduction resulting from the differential scattering

cross section is then made:

W ¼
�i

�
W0 ¼

1

�

d�i

d�
d� W0; ð9Þ

where �i is the individual photon scattering cross section, � is

the total cross section, d�i /d� is the individual differential

cross section for inelastic (Compton) scattering on an atom

[d�C /d�, equation (10)] or elastic (Thomson) scattering [d�R/

d�, equation (12)]. The solid angle d� depends on the

considered type of propagation and equals �d (detector solid

angle) in the case of scattering towards the detector or 4� if

random scattering into the whole solid angle is considered.

The differential cross section for inelastic scattering on an

atom is calculated using a combination of the Klein–Nishina

formula for a single electron (Tanner & Epstein, 1976a) and

non-relativistic Hartree–Fock atomic incoherent scattering

functions S(x 0, Z) (Hubbell et al., 1975):

d�C

d�
¼

d�KN

d�
S x 0;Zð Þ;

d�KN

d�
¼

r 2
e

4

!

!0

� �2
!0

!
þ
!

!0

� 2þ 4 cos2 �

� �
:

ð10Þ

In the case of energy transfer lower than the electron’s binding

energy, inelastic scattering does not occur. Additional

correction for this effect can be made by a weight reduction

resulting from the probability of inelastic scattering on elec-

trons from a corresponding shell (X):

W ¼ 1�
JX pz

� �
J pz

� �
" #

W0; ð11Þ

where JX(pz) is a value of the X shell Compton profile and

J(pz) is a value of the total Compton profile for selected

momentum component pz.

The differential cross section for elastic scattering on an

atom (Rayleigh scattering), d�R/d�, is calculated using a

combination of the Thomson formula d�T/d� (Tanner &

Epstein, 1976c) and relativistic Hartree–Fock atomic form

factors F(x, Z) (Hubbell & Overbo, 1979):

d�R

d�
¼

d�T

d�
F x;Zð Þ½ �

2;

d�T

d�
¼ r 2

e cos2 �:

ð12Þ

In equations (10) and (12), � is the angle between the incident

and final (after scattering) polarization states, re is the classical

electron radius, x and x 0 are the momentum transfer para-

meters for coherent and incoherent scattering, respectively

(Hubbell et al., 1975).

3.6. Force the next process

After the scattering, the next process is forced depending

on the previous history of the photons. Photons scattered into

the detector direction (algorithm step 4.1) are forced to be

detected (algorithm step 6.1). Photons scattered into the

sample volume (algorithm step 4.2) are forced to the next

collision within the sample volume (algorithm step 6.2).

3.6.1. Detection. Photons scattered towards the detector

are forced to leave the sample (transmission process).

Appropriate weight reduction due to the rejection of any

interaction processes inside the sample is applied:

W ¼ PtW0 ¼ W0 expð��LÞ; ð13Þ

where Pt is the probability of the transmission process and

L is the photon distance to the exit point from the sample.
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A photon propagating to the detector and passing through the

collimator is considered as a detected event.

3.6.2. Next collision. After the scattering all photons are

forced into a second interaction within the sample volume

exactly like in algorithm step 2, with appropriate weight

reduction due to the transmission process rejection [equation

(6)]. In order to simulate the next scattering process one

should go to algorithm step 3.

3.7. Multichannel analyser

Multichannel analyser (MCA) is a group of procedures that

are designed to calculate the final partial spectra of single,

double, triple and more scattering orders from the matrix of

detected photons. It also contains the procedure for final

spectra convolution to the desired experimental resolution

and calculation of some final simulation parameters.

All of the total cross sections (�) and mass attenuation

coefficients (�) for inelastic scattering, elastic scattering and

photoelectric absorption used in the MUSCAT simulation

program were calculated using the XCOM program (version

3.1; 23 June 1999) from NIST (Berger & Hubbel, 1987), also

available as an on-line interactive database (Berger et al.,

2010).

4. Experimental verification

First simulation results using MUSCAT have been performed

for the Compton experiment geometry widely used at

SPring-8 (beamline BL08W) with an incident energy of

115.6 keV, a scattering angle of 165� and a sample of 2 mm-

thick Al. The double to single scattering spectra intensity ratio

within the range of a Compton profile from �10 to 10 a.u.

(double scattering level) is estimated, based on the simulated

spectra, to be around 10%. The value obtained completely

disagrees with the simulation results by the codes of Sakai

or Felsteiner (about 3%). Therefore a robust experimental

verification of the simulation results is needed.

We think that the best and most comprehensive method for

experimental verification of the MSC simulation procedure is

the one presented by the group from ESRF (Fajardo et al.,

1998). It consists of three different experiments with the use of

highly linearly polarized (in the scattering plane) 57.8 keV

synchrotron X-rays and a set of different Al samples. All

experiments are described in detail in the cited work. Together

with the experimental data they show the corresponding

Monte Carlo simulation results made by their own procedure.

An excellent agreement between the simulation results and

experiment makes it a source of data to test our new

MUSCAT procedure under the conditions of relaxed

geometry.

Despite the new simulation algorithm there are some

differences between the codes which are to be compared.

Firstly, Fajardo et al. (1998) have represented the polarization

state of the photon using Stokes parameters formalism with

respective equations for elastic and inelastic cross sections. In

MUSCAT, every electric vector of the photon after the scat-

tering is determined by the appropriate geometrical transfor-

mations. The cross sections for inelastic and elastic scattering

are then described by equations (10) and (12). The two

methods should be equivalent because they describe the same

effect but using different coordinate systems. Secondly, the

approach to the scattering process is also different. Fajardo et

al. (1998) have chosen the scattered photons directions by

sampling angular probability distributions derived from the

cross sections and random sampling of the scattered photon

energy after that. In MUSCAT, the scattered photon direction

is chosen by random sampling. The energy of the scattered

photon is then derived using equation (8) and electron

momentum sampled with the probability proportional to the

given Compton profile.

Because the photon detection method has not been

described in Fajardo’s article (detector size or detection angle

range) we decided to use a 2 cm-diameter detector without

collimation for our corresponding MUSCAT simulations. Also

in the case of the first simulation (presented in Fig. 1) we use

a free atom theoretical Compton profile of Al (Biggs et al.,

1975), while for the rest of the simulations, compared with

experimental data, theoretical FLAPW (full-potential linear-

ized-augmented plane-wave) Compton profiles are used.

The first simulations have been performed for comparison

with Fajardo et al.’s results shown in Fig. 1 in their article

(Fajardo et al., 1998). It is a multiple scattering simulation for

60 keV linearly polarized X-rays scattered at 90� in the

polarization plane (Stokes parameter P1 = �1) on a 3 mm-

thick and 20 mm-diameter Al sample (incidence angle 45�).

In the case of ‘perfect’ experimental conditions (no diver-

gency of the incident beam, 100% polarization, thin sample

and point detector) the single scattering intensity should

disappear. Fajardo et al. used the real experimental para-

meters for this simulation, but not all of them are given

directly in the description. In our simulation we used the given

parameters (totally polarized beam, 90� scattering angle,

sample thickness 3 mm, sample diameter 20 mm). We also

assumed that the detector of diameter 2 cm is placed 1 m from

the sample and the point radiation source is a distance of 50 m

from the sample and is collimated to a size of 0.5 mm �

0.5 mm. The free atom Compton profile was used as an input.

In this particular case, the single scattering intensity is not

vanishing, it is significantly reduced, but the dominant multiple

scattering can be easily observed. Simulation results by

MUSCAT are presented in Fig. 4. The relative intensities of

partial spectra are: 13% for single, 67.2% for double, 16.7%

for triple and 3% for quadruple scattering, while the corre-

sponding values obtained from Fajardo et al.’s simulations are:

13.1%, 66.4%, 17.2% and 3.2%. The total spectrum shape and

edge around 58.5 keV resulting from the binding effect of Al

K-shell electrons are also reproduced well.

The first experimental test of the simulation procedure

presented by Fajardo et al. (1998) is a comparison of the

spectra measured at different scattering angles: 90� and 144.5�.

Corresponding MUSCAT simulations for the same experi-

mental parameters are shown in Fig. 5. The multiple scattering

contribution to the total spectra intensity is 63% for 90�
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geometry and 10% for 144.5� geometry (11% in Fajardo’s

simulations). The shape of spectra simulated by MUSCAT

qualitatively agrees with those presented by the ESRF group.

The second test is the observation of a difference between

two spectra measured at 90� with a beam size of 0.5 mm �

0.5 mm, for samples with the same thickness (0.5 mm) but

different diameters (5 and 19 mm), where the single scattering

contribution cancels and only the difference between two

multiple scattering spectra can be observed (Fig. 6). The

difference spectrum shape agrees with the corresponding

simulations and experimental data presented by Fajardo et al.

(1998) (Fig. 5).

The third experimental test is also an observation of a

difference in spectra measured at high scattering angle

(146.5�) on samples with the same diameter but different

thickness (3 and 0.5 mm).

In order to observe only the difference IM(h- !) between

multiple scattering signals, single scattering intensities must

cancel. In the case of experiments where the X-ray incidence

and emission angles are fixed (like in relaxed geometry), the

single scattering intensity is proportional to the effective

thickness of the sample. Therefore, by multiplying the thin

(0.5 mm) sample spectra I 0(h- !) by the scaling function S(h- !),

the spectra can be normalized such that the single scattering

intensity is the same as that of the thick (3 mm) sample spectra

I(h- !). Here, the S(h- !) function is calculated analytically as

the ratio teff /t
0
eff , where teff and t 0eff are the effective thicknesses

of the thick and thin samples, respectively, and they can be

calculated using equation (13) of Fajardo et al. (1998). The

final difference between the multiple scattering signals is:

IM h- !ð Þ ¼ I h- !ð Þ � S h- !ð Þ I 0 h- !ð Þ: ð14Þ

Both spectra simulated by MUSCAT (without scaling) and

their difference (after 0.5 mm spectrum scaling) are shown in

Fig. 7. The MUSCAT results show a good agreement with data

presented by Fajardo et al. (1998) (Fig. 6).
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Figure 5
Simulated (by MUSCAT) spectra of 57.8 keV polarized X-rays (P1 =
�0.989) scattered by a 1.5 mm-thick Al sample and registered by two
detectors (resolution 0.375 keV) at different scattering angles. Total
spectra intensities are shown by solid lines, multiple (up to quadruple)
scattering contributions are plotted by dotted lines.

Figure 6
Difference between two spectra simulated by MUSCAT for a 57.8 keV
polarized beam (P1 = �0.989), registered for 90� scattering angle by
a detector of resolution 0.375 keV, for samples of the same thickness
(0.5 mm) and different diameters (5 and 19 mm).

Figure 4
Multiple scattering simulations by MUSCAT for totally polarized 60 keV
X-rays scattered by a 3 mm-thick Al sample at 90�. The spectrum
components corresponding to different scattering levels are shown by
different line colours shown in the legend together with relative
intensities.

Figure 7
MUSCAT simulation results for scattering of polarized X-rays (P1 =
�0.975) scattered at an angle of 146.5� on Al samples of 19 mm diameter
and different thickness (0.5 and 3 mm). The upper panel shows the real
simulated spectra. The lower panel shows the difference between
multiple scattering components, calculated after the scaling of the
spectrum simulated for the 0.5 mm sample (detailed description in
the text).



5. Restricted geometry test

An experimental test of MUSCAT results for the restricted

geometry has been performed based on the idea presented by

Fajardo et al. (1998), with the use of samples with different

thicknesses at a high scattering angle. In our experiment

performed at the BL08W beamline in SPring-8 we use a 100%

elliptically polarized 182.6 keV synchrotron X-ray beam size

of about 0.3 mm � 0.3 mm. The corresponding polarization

Stokes parameters are: P1 =�0.84, P2 = 0, P3 = 0.55. Scattered

X-rays were recorded by ten HPGe detectors (resolution

0.6 keV) equally spaced around the incident beam on a circle

of diameter 42 mm. The samples were placed in a vacuum

chamber at a distance of 254 mm from the detector’s plane.

There was a 14 mm-thick collimator and a 10 mm-diameter

collimator placed in front of each detector (plate with ten

holes). The scattering angle was about 175�. A sketch of the

experimental setup is shown in Fig. 8. Two Al and two Cu

samples with face dimensions of 20 mm � 20 mm and thick-

nesses of 10 mm and 1 mm were used to record four spectra

of scattered photons. Background spectra were measured

without a sample and subtracted from experimental data.

Measured spectra were also corrected for detector efficiency.

Corresponding MSC simulations for presented geometry

and all samples have been performed using MUSCAT up to

the sixth scattering level for 108 incident photons. Simulated

spectra were convoluted with a Gaussian of FWHM = 0.6 keV

to mimic the detector resolution. The partial spectra contri-

butions to the total simulated intensity are given in Table 1.

The analytically calculated scaling function S(h- !), like in

Fajardo et al. (1998), can be used only for a relaxed geometry,

where the X-ray incidence and emission angles are fixed. In

our restricted geometry experiment (Fig. 8), however, the

scattering angle has some width mainly due to the small

distance between the sample and detectors. Therefore, instead

of analytical calculations we employ the polynomial fit to the

Monte Carlo simulated values of SMC(h- !) in the considered

energy range. Scaling functions for both Al and Cu samples

(Fig. 9) were simulated for real restricted geometry (as shown

in Fig. 8) and for relaxed geometry approximation (by moving

the detector 100 m away from the sample).

Fig. 9 shows that the experimental geometry has a non-

negligible influence on the spectrum intensity ratio. The

average relative difference between the scaling function

values (simulated by the Monte Carlo method) for different

geometries (relaxed and restricted) is around 3% for Al and

1% for Cu within the presented energy range. The influence of

the experimental geometry seems to be clear in the Al case,

but in the Cu case is much smaller. This is due to the

absorption difference. Photoelectric absorption in the case of

Cu is still quite low at 182.6 keV energy, but the scaling

function S(h- !) is very sensitive even for the smallest

absorption changes.

In order to observe the difference in multiple scattering

contributions IM(h- !), measured on 10 mm- and 1 mm-thick

samples [I(h- !) and I 0ðh- !Þ, respectively] of Al and Cu, spectra

for thin samples have been scaled using SMC(h- !) as a second-

degree polynomial fit to the simulated Monte Carlo data for

the real restricted geometry as shown in Fig. 9:

IM h- !ð Þ ¼ I h- !ð Þ � SMC h- !ð Þ I 0 h- !ð Þ: ð15Þ

Experimental data and corresponding simulation results by

MUSCAT are shown in Fig. 10. There is a good agreement

between the simulated and experimental difference spectra

although some asymmetry is observed especially in the case of

Al. The most likely cause of this is the experimental back-

ground influence that cannot be measured precisely and is not
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Table 1
Partial spectra intensities (in % of total intensity) for the experiment
simulated by MUSCAT. All spectra intensities have been calculated in
the energy range 94.2–118.9 keV, which is equivalent to a Compton
profile momentum range from �10 to 10 a.u.

Partial spectra intensity (%)

Sample
(thickness) 1st 2nd 3rd 4th 5th 6th

Al (10 mm) 73.89 22.90 2.93 0.26 0.02 0.00
Al (1 mm) 92.95 6.84 0.21 0.01 0.00 0.00
Cu (10 mm) 62.41 27.65 7.75 1.78 0.34 0.06
Cu (1 mm) 83.85 14.60 1.43 0.12 0.01 0.00

Figure 9
Intensity scaling functions S(h- !) for Al and Cu samples of thickness
10 mm and 1 mm calculated as the effective thickness ratio teff /t 0eff (blue
solid line) and simulated by the Monte Carlo (MC) method in relaxed
geometry approximation (red circles) and for real restricted geometry
(green squares). The selected energy scale corresponds to the spectral
range of a Compton peak in the presented experiment.

Figure 8
Sketch of the experimental setup cross section. Incident beam (yellow
arrow) hits the sample (blue) placed in the vacuum chamber (grey).
Scattered photons are registered by the HPGe detectors (red) placed
after the collimation plate (green).



completely cancelled in the difference spectrum. A small shift

in the simulated and experimental peak positions may be due

to the inaccuracy of the scattering angle determination in the

real experimental setup.

6. Summary and conclusions

The final goal of our study is to develop an efficient Monte

Carlo code for high-energy photon transport in layered

structure samples and build it into the procedure for multiple

scattering simulations for Compton experiments with highly

restricted geometry. Algorithm efficiency is crucial here

because of the need to calculate photon propagation through

multiple layers (say about 100). In this paper we present the

first stage of our work: development of an efficient algorithm

for multiple-scattered photon transport in a single material.

This algorithm is built into the MUSCAT program which can

simulate a wide range of experimental geometries that are

typically used in Compton experiments, including highly

restricted ones.

The idea of multiple scattering simulations by the Monte

Carlo method in Compton spectroscopy is not new, but it has

been sufficiently developed and experimentally verified only

in 1998 by the group from ESRF (Fajardo et al., 1998). Details

of the algorithm are not described herein, but we found some

significant differences compared with the MUSCAT program.

In order to check the MUSCAT program under the

restricted geometry, we have performed a new experiment

with the use of elliptically polarized high-energy (182.6 keV)

synchrotron radiation. In the case of a high scattering angle

(175�), polarization of the beam has no noticeable effect on

registered spectra, but it has been shown that some geometric

restrictions due to the short distance between the sample and

detector are significant. The intensity ratio of single-scattered

photons spectra for thin (1 mm) and thick (10 mm) samples of

Al and Cu represented by the scaling function SMC(h- !) differ

from analytically calculated values in relaxed geometry

approximation by about 3% for Al and 1% for Cu. In the case

of stronger restrictions, this effect will be much more signifi-

cant. The MUSCAT simulation results proved to be in good

agreement with the experimental data for both materials.

It has been shown that the new program MUSCAT for high-

energy photon transport in matter and multiple scattering

simulations gives results which are consistent with various

experimental data and another independently developed

program. Therefore, the MUSCAT code can be used for

further research and implementation of photon transport

through multilayered structure samples.

In its current shape the MUSCAT program is available for

use by other researchers after contact with the corresponding

author (Marek Brancewicz) at brancew@spring8.or.jp. Since

the full manual has not been prepared yet, the author will

provide all necessary support to run the simulation procedure

properly.
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Figure 10
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measured on thick (10 mm) and thin (1 mm) samples of Al and Cu.
Experimental data are shown by points while the solid line represents the
corresponding simulation results using MUSCAT.
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