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Analysis of tomographic datasets at synchrotron light sources (including X-ray

transmission tomography, X-ray fluorescence microscopy and X-ray diffraction

tomography) is becoming progressively more challenging due to the increasing

data acquisition rates that new technologies in X-ray sources and detectors

enable. The next generation of synchrotron facilities that are currently under

design or construction throughout the world will provide diffraction-limited

X-ray sources and are expected to boost the current data rates by several orders

of magnitude, stressing the need for the development and integration of efficient

analysis tools. Here an attempt to provide a collaborative framework for the

analysis of synchrotron tomographic data that has the potential to unify the

effort of different facilities and beamlines performing similar tasks is described

in detail. The proposed Python-based framework is open-source, platform- and

data-format-independent, has multiprocessing capability and supports proce-

dural programming that many researchers prefer. This collaborative platform

could affect all major synchrotron facilities where new effort is now dedicated

to developing new tools that can be deployed at the facility for real-time

processing, as well as distributed to users for off-site data processing.
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1. Introduction

Analysis of tomographic datasets at synchrotron light sources

including X-ray transmission tomography (XTT), X-ray

fluorescence microscopy (XFM) and X-ray diffraction tomo-

graphy (XDT) (Banhart, 2008) is becoming progressively

more challenging due to the increasing data acquisition rates

that new technologies in X-ray sources and detectors enable.

The next generation of synchrotron facilities that are currently

under design or construction throughout the world will

provide diffraction-limited X-ray sources and are expected to

boost the current data rates by several orders of magnitude,

thereby stressing the need for the development and integra-

tion of automated and efficient analysis tools more than ever.

It is often the case that researchers collect data at different

facilities to take advantage of specific instrument character-

istics and specifications; however, they can then face difficul-

ties in integrating this data using the various tools that

different facilities provide. Because there are strong simila-

rities amongst the instruments at various facilities, we have

developed a software framework in which each facility and

user group can utilize and contribute to, ultimately saving on-

site resources by sharing the computing tasks with the user

community.

Here we describe in detail our framework. The basic prin-

ciples of this Python-based open-source framework, called

TomoPy (http://www.aps.anl.gov/tomopy/), include ease of

collaborative development of scripts, platform and data

format independence, modularity, and support for a functional

programming style that many researchers prefer. Python is

used as an interface for an easy integration of codes written in

different languages. In the following sections we will provide

a brief background on the analysis of tomographic data at

synchrotrons, and then shortly introduce the framework by

describing the model structure together with the currently

available methods.

2. Background

When it comes to the digital storage of tomographic experi-

mental data and the development of analysis tools at

synchrotron light sources around the world, the situation is

very heterogeneous. As different research teams and instru-

ments have grown at various facilities, they have often

developed local data and analysis models based on the

instrument hardware specificity and often drawing upon the

particular preferences of a scientist writing software.

Many tomographic analysis tools utilize licensed (and often

expensive) software packages like Matlab (The MathWorks

Inc.) and IDL (Exelis VIS), while others rely on specific

(and often complex to maintain) computing infrastructure
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like MPI-based CPU or GPU clusters. This diversity and

specialization hampers widespread delivery of an integrated

development environment and limits its long-term use. On the

other hand, modern chip design shows a clear trend toward

integration of multiple processor cores, thus permitting

concurrency without a need for a dedicated cluster. The

availability of inexpensive multi-core CPU workstations and

the reduced cost of computer memory allow one to consid-

erably simplify the computing infrastructure required to

process tomographic data (Rivers, 2012), so that single

workstation tools are able to perform most computing tasks in

reasonable times. Tools of this type also allow the analysis to

be performed on an off-site location, freeing on-site compu-

tational resources for other tasks.

This transition is affecting all major synchrotron facilities

where new effort is now dedicated into developing tools that

can be deployed at the facility for real-time processing as well

as distributed to users for off-site data processing. We believe

this will pave the way for an efficient use of the existing

knowledge and methods base, thereby fostering collaborations

and development of novel methods.

3. TomoPy: a Python-based framework

Choosing a coding language is critical to the integration of

analysis methods but it is usually difficult to balance the cost

and development efforts. For example, Matlab and IDL use

coding practices which are based on matrix and linear algebra

operations that many researchers find useful, but different

laboratories choose to purchase one package over another so

that inevitably some researchers are left out when a choice

to support one of these packages is made. The statistical

programming language R (http://www.r-project.org) is an

open-source alternative, but it is generally considered as

having a steep learning curve and is usually difficult to

maintain for large projects. Low-level programming languages

like C or Fortran provide the desired computational efficiency

but lack in readability and may hinder a collaborative code

development. Python plus standard packages like NumPy and

SciPy offer a free, open-source, modular, readable and

manageable framework that researchers can use and contri-

bute to easily. Python also offers easy integration to C or

Fortran codes through shared libraries in situations where

computation speed is critical. In addition, the native control

software running at several synchrotron facilities, EPICS

(http://www.aps.anl.gov/epics/), is accessible via Python,

allowing simultaneous data analysis and real-time feedback on

the instrumentation status. These features make Python the

tool of scripting language for development framework.

Digestion of synchrotron tomographic data is essentially

modular in nature such that the processes can be divided into

a number of independent, and in many situations serialized,

steps. A natural way of modularizing these processes is to

group tasks according to the similarities in transformations

applied on data, that is, distributing tasks into modules

like pre-processing (sinogram-to-sinogram transformations),

reconstruction (sinogram-to-image transformations) and post-

processing (image-to-image transformations). Each module

can have a number of different sub-modules specific to

targeted application (e.g. XTT, XFM, XDT). This modular

tree design of data pipeline enables a degree of control for the

entire process by checking the quality of individual steps,

allows inheritance of common methods available to different

tomographic techniques, and at the same time improves the

readability of the code. Besides, the data-driven pipeline of

tomographic reconstruction allows for an easy kind of

concurrency which is simply based on data parallelism. The

tasks can be distributed through a queue into available

processors and executed in parallel, and in many cases there is

either zero or minimal cross-talk between the distributed tasks

which simplifies the implementation and exploitation of

parallelism. In the following section we will focus on the XTT

scenario but the scope that will be covered by TomoPy is not

limited to XTT. We will come back to this point in the

discussion section.

4. Case study: XTT

This section describes the journey of XTT data through

multiple transformations, from acquisition to image display.

The chain of data processing steps that are highlighted in the

following subsections are summarized in Fig. 1.

4.1. Pre-processing modules

In synchrotron tomography, the imaging sample is placed in

the beam path and the X-ray intensity profiles on the detector

(also called projections) are acquired by rotating the sample

during X-ray exposure. Almost all data acquisition protocols

require another set of data taken in the absence of the sample

which is usually referred to as the white-field measurements

(Iwhite) and in the absence of X-ray exposure which is called

the dark-field measurements (Idark). These three sets of
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Figure 1
The TomoPy framework. The analysis chain is divided into pre-
processing, reconstruction and post-processing modules. Any method
or a collection of methods in any language can be hooked to one of these
modules without compromising the modularity. A Python front-end is
used to interface these modules and interact with the user. A
customizable Python-based multiprocessing interface is provided for
time-consuming computations.



measurements together with the rotation angle information

are the entry point of the analysis pipeline.

Once the data and the corresponding projection angles are

imported, a set of default methods is available under the pre-

processing module simply to prepare data for reconstruction.

Generally the pipeline of transformations start with data

normalization which include dark-field (offset) and white-field

(gain) corrections to the raw intensity data (Iraw),

Inormalized ¼
Iraw � Idark

Iwhite � Idark

: ð1Þ

This step is essential not only to compensate different sensi-

tivities and responses in each detector pixel but also to scale

the images between 0 and 1 to obtain reliable attenuation

information about the sample according to the Beer–Lambert

law.

For most datasets, a simple normalization cannot satisfac-

torily correct for the detection artifacts, which are usually

caused by the drift of the inhomogeneous X-ray beam or

imperfection of the imaging detector system. Such artifacts

appear as stripes in the sinogram domain and as rings in the

image domain when the non-ideal normalization persists on

some specific pixels in the projection images within an angle

range. This is particularly an issue when defects are present on

the scintillator screen or on the detector (bad pixel or non-

linearity of the pixel response). To correct for these ring

artifacts, a combined wavelet-Fourier filtering (Münch et al.,

2009) is implemented in TomoPy. The filtering is essentially

based on a set of transformations to condense the artifacts into

a tiny region so that removal of them would not cause

significant deformations to actual features in the sample and

is superior to many other filtering approaches in terms of

robustness and conservation of image features (see Fig. 2).

For some samples that are either beam sensitive or have

weak absorption contrast (such as biological specimens), an

in-line phase-contrast imaging (PCI) mode, which is related

to Fresnel diffraction, can be applied (Davis et al., 1999). For

experiments requiring high temporal resolution, a single-

distance PCI is of primary importance because it allows much

faster scanning speed without the need to alter the detector

position multiple times during data acquisition (Burvall et al.,

2011). PCI also may be utilized to separate the phase and the

attenuation contrast, and ultimately to reconstruct the distri-

bution of the real and imaginary part of the refractive index

separately. TomoPy currently implements Paganin-type

(Paganin et al., 2002) and Bronnikov-type (Bronnikov, 1999)

filters for single-distance phase retrieval. Fig. 3 shows the

phase-contrast data and the corresponding retrieved phase

using the Paganin approach.

Another factor limiting the tomographic reconstruction

quality that is addressed by TomoPy is when the sample is

larger than the detector’s field of view and the structure of the

sample cannot be reconstructed accurately. The artifacts in the

reconstruction tend to be stronger when the ratio between the

sample size and the detector’s field of view is larger. One way

to extend the detector’s field of view is to set the rotation axis

at one side of the detector and scan the sample in 360�. The

field of view in such an approach is almost double the detec-

tor’s native field of view. To reconstruct the sample structure,

the measured data are converted to a 0–180� dataset by first

pairing 0–180 and 180–360� sinograms and exploiting phase
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Figure 2
Reconstructed images of a bird feather (a–c) and a shale rock samples (b–
d) before (a–b) and after (c–d) the combined wavelet-Fourier method for
stripe removal has been applied on data.

Figure 3
Phase-contrast projection data of an ant placed in a capillary (a) lead to a
recovered phase image obtained with the single-step phase-retrieval
method using a Pagannin filter (b). The corresponding reconstructed
images of a single slice without and with phase retrieval are shown in (c)
and (d), respectively.



correlation to complete the registration in an automated

fashion (see Fig. 4).

4.2. Reconstruction modules

The next module in the pipeline is the reconstruction

module which contains functions that map data from data

space into image space. There are numerous methods suitable

for this task, each having different strengths and weaknesses

depending on the applied data and timing constraints (Mirone

et al., 2014; Rivers, 2012). As a default method, TomoPy

provides Gridrec (Dowd et al., 1999), which is a direct Fourier-

based method that relies on discrete Fourier transforms

of data similar to the filtered-back-

projection method (Kak & Slaney,

2001). The main difference is that

Gridrec samples a slice in the Fourier

domain on a Cartesian grid before

transforming back to the spatial

domain. The utilization of fast Fourier

transforms on a Cartesian grid outper-

forms other methods in terms of

computational speed and is usually

desired for quick reconstructions.

The success of the reconstructions

usually requires a good estimate of

several geometrical parameters such

as the location of the rotation center.

This problem is unique to synchrotron

radiation set-ups, where the X-ray beam

and detector are fixed and the sample is

rotated. One common way to estimate

rotational center positions is to calcu-

late the distance of the sinogram’s

center of mass to the mid-point

(Azevedo et al., 1990). Although this

method is computationally cheaper than the alternatives, its

applicability is only limited to uniformly sampled 360� datasets

which makes it less usable in most X-ray absorption tomo-

graphy applications. Another approach is to exploit the

systematic artifacts in reconstructed images due to shifts in the

rotation center (Donath et al., 2006) (see Fig. 5) as errors to be

reduced within an optimization framework. To this end, we

utilize Shannon entropy as a measure to evaluate the image

quality with the corresponding cost function,

arg min
c

P
i

P
j

Hij rðcÞ½ � log2 Hij rðcÞ½ �

( )
; ð2Þ

where c is the unknown rotation center, rðcÞ is the recon-

structed image which is a function of c, and H is the histogram

of rðcÞ. The optimization problem is usually well behaved and

can be rapidly solved using any suitable optimization method.

As an example, in Fig. 6 we show the cost function for different

rotation centers. A simplex search algorithm converges to the

correct rotation center usually in less than 20 iterations for a

wide range of initial points which makes it a method of choice

if robustness is desired. The central point of the image as an

initial guess is generally more than enough for many datasets

to find an accurate center in an automated fashion. This

reconstruction-based approach to correct for unknown

geometrical parameters can also be utilized for example to

determine the tilt angle of the rotation axis.

One key component in the TomoPy reconstruction module

is the integration and availability of iterative model-based

inversion methods. Such methods commonly pose higher

computational requirements but generally outperform direct

Fourier-based reconstruction methods, especially when the

data are under-sampled (few projections available) or suffer

from low signal-to-noise-ratio values (fast-scans) which are
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J. Synchrotron Rad. (2014). 21, 1188–1193 Doǧa Gürsoy et al. � A framework for the analysis of synchrotron tomographic data 1191

Figure 5
Reconstructed images of a shale rock sample obtained with different centers of rotations: (a)
correct center, (b) 16 pixels off-center horizontally, (c) 32 pixels off-center horizontally.

Figure 4
(a) Raw 0–360� sinogram of a large sample (porous yttriz-stabilized
zirconia) that is not fitting in the detector’s field-of-view. (b) Paired 0–180
and 180–360� sinograms. (c) Registered sinogram using phase correlation.
(d) Reconstructed image from the registered sinogram.



usually common for XFM and XDT data acquisitions. A

comparative demonstration between Gridrec and iterative

reconstruction methods is given in Fig. 7. Iterative model-

based methods try to utilize data fidelity based on a system

model, and in principle require an accurate forward model

which mainly relies on an efficient ray-tracing implementation

(i.e. computation of the transmission matrix coefficients). To

serve this purpose, we have developed a three-dimensional

ray-tracing algorithm and computation of the associated

transmission matrix coefficients that one can use to construct

any iterative reconstruction method. Currently, variants of

the algebraic reconstruction technique (ART) (Gordon et

al., 1970) and maximum-likelihood expectation maximization

(MLEM) (Dempster et al., 1977; Lange & Fessler, 1995)

methods for transmission and emission datasets are imple-

mented in TomoPy as alternatives to Gridrec. We also provide

models for various imaging components such as the stages,

detectors and source characteristics, to be available in case an

accurate forward model is required.

4.3. Post-processing modules

For some applications, further processing steps such as

segmentation of regions or a quantification analysis may be

desired. Several commercial software packages like Amira

or Avizo (FEI Visualization Sciences Group) can provide

comprehensive visualization and analysis tools, but for many

basic tasks simpler open-source tools are often sufficient. In

this framework, we provide integration of a number of post-

processing methods from Python’s Scikit-Image package

(http://scikit-image.org), like segmentation of regions and

quantitative analysis of the reconstructions and the sample.

The success of an automated segmentation is highly sensitive

to the preceding transformations applied on the data. TomoPy

implements novel pre-processing methods like the combined

wavelet-Fourier filtering model-based inverse models, and

improved regularization methods, providing high-quality

reconstructed data which allows a relatively easier segmen-

tation step.

5. Discussions

In this paper we introduced methods associated with XTT but

the ultimate goal of TomoPy is to become a software frame-

work able to integrate and standardize the available data

analysis methods for all synchrotron tomography techniques.

Considering the strong similarities among the tomographic

techniques, we are designing TomoPy using a modular strategy

so that the common methods can be inherited making their

functionality available to other techniques (e.g. removal of

outliers, determination of geometrical parameters, tomo-

graphic reconstruction, etc.) and specific methods are added as

bound to the particular technique.

One common problem of XFM, XDT, Fresnel-zone-plate-

aided XTT and other nano-probing techniques is that the

imaging resolution is usually finer than the ‘motor resolution’.

This causes spatial blurring in the reconstructions and in many

cases has to be corrected in manual or semi-automated ways.

Our current effort is to develop robust methods to correct

for such geometrical aberrations before the reconstruction

process begins. One solution would be to incorporate fast

phase-correlation methods to roughly align the projections

taken from the same instrument initially and apply more

sophisticated intensity-based image registration schemes

(Maes et al., 1997) to adjust the geometry at a finer scale. We

believe that such entropy-based methods that perform very

well with datasets having different contrasts will also pave the

way for a comprehensive multi-modal analysis of datasets.

The use of GPU computing for the solution of large-scale

tomography problems is becoming increasingly the focus of

attention. However, their relatively small built-in memory

space and poor data transfer rates limit their use for large

datasets. Current implementations in

TomoPy are so far for CPU computing

but one can easily integrate any GPU-

based code using a thin Python wrapper.

This modularity allows one to access the

full range of capabilities and features of

the toolbox (e.g. pre-processing func-

tions) in addition to the integrated

algorithms using different computing

resources.

Many essential processing functions

are multi-threaded in TomoPy and

the computation speed scales almost

linearly with the increased number of
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Figure 6
Plot of Shannon entropy as a function of different rotation centers.

Figure 7
Reconstructed images of a shale rock sample obtained with Gridrec (a), ART (tenth iteration) (b)
and MLEM (50th iteration) (c) methods using 46 projections out of an available 1500 projections.



processing cores. For instance, obtaining reconstructed values

from a 1024 � 1024 � 1024 (float32) sized phase-contrast

dataset including data import and export takes about less than

4 min on a 24-core workstation (Intel Xeon CPU E5-2620).

The most time-consuming processes are: ring removal (84 s),

phase retrieval (95 s) and image reconstruction with Gridrec

(20 s).

One of the main obstacles of such integration is the lack of a

common data format, but recent efforts to adopt HDF5 files

with a defined schema (http://aps.anl.gov/DataExchange/) has

the potential to significantly ease the integration of data

analysis methods (De Carlo et al., 2014). Currently, TomoPy

with the Data Exchange module can import data from other

synchrotron facilities including the Advanced Light Source,

the Advanced Photon Source, Anka, the Australian

Synchrotron, Diamond Light Source, the European Synchro-

tron Radiation Facility, Elettra, the National Synchrotron

Light Source and Petra III.

6. Conclusion

This paper gives a brief glimpse of the methods currently

available in the TomoPy framework, but more importantly

it emphasizes the importance of unifying the efforts towards

the development of data analysis and reconstruction tools

targeting synchrotron tomography applications. The success of

such initiative, of course, depends on many factors, the most

critical of which is our ability to share data and more impor-

tantly software tools. We believe the advancements in desktop

computer performance, the faster than ever developments of

Python packages and the many initiatives bridging applied

mathematicians and experimental physicists create the right

set of ingredients to establish stronger collaboration and

provide ultimately faster deployment of innovative numerical

methods.
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