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The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The

stiffness and compliance coefficient matrix depend on crystal orientation and,

consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well.

Computer codes (in Matlab and Python) have been developed to calculate these

anisotropic elasticity parameters for a silicon crystal in any orientation. These

codes facilitate the evaluation of these anisotropy effects in silicon for

applications such as microelectronics, microelectromechanical systems and

X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon

crystal orientation is an important factor which may significantly influence the

optics design and manufacturing phase. Choosing the appropriate crystal

orientation can both lead to improved performance whilst lowering mechanical

bending stresses. The thermal deformation of the crystal depends on Poisson’s

ratio. For an isotropic constant Poisson’s ratio, �, the thermal deformation (RMS

slope) is proportional to (1 + �). For a cubic anisotropic material, the thermal

deformation of the X-ray optics can be approximately simulated by using the

average of �12 and �13 as an effective isotropic Poisson’s ratio, where the

direction 1 is normal to the optic surface, and the directions 2 and 3 are two

normal orthogonal directions parallel to the optical surface. This average is

independent of the direction in the optical surface (the crystal plane) for Si(100),

Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these

orientations leads to an error in thermal deformation smaller than 5.5%.

Keywords: anisotropic elasticity of silicon; crystal orientation; thermal deformation;
bent mirror; cryogenic cooled monochromator; anisotropic Poisson’s ratio.

1. Introduction

Single-crystal silicon is a perfect crystal which, owing to its

interesting mechanical and physical properties, is widely used

for X-ray optics at synchrotron light sources. Example appli-

cations include silicon crystal monochromators in both Bragg

and Laue configurations, silicon substrates for high-heat-load

white-beam mirrors, bent Kirkpatrick–Baez focusing mirrors

and multilayer optics. It is well known that silicon is an

anisotropic material whose mechanical properties, such as

elastic modulus E, Poisson’s ratio � and shear modulus G,

depend on the orientation of the crystal lattice. The aniso-

tropic stiffness coefficients for the (100) crystal plane of silicon

have been initially determined by experiments (Mason, 1958;

Wortman & Evans, 1965; Hall, 1967). Determination of the

stiffness constants from these values for an arbitrary crystal

orientation (hkl) therefore requires the use of the direction

cosines referred to the crystal axis of the Si(100) orientation.

Parameters such as Poisson’s ratio and shear modulus depend

on two directions, and it is important to correctly take into

account these crystallographic directions in the calculation of

anisotropic elastic properties. Most previous modelling work

on silicon-based X-ray optics has been performed using the

simplifying assumption of isotropic material properties. A few

studies have, however, taken into account the anisotropic

material properties for bent diffracting crystals and reflecting

mirrors. The anisotropic elasticity has been applied to study

the X-ray reflectivity of doubly curved Bragg diffracting

crystals (Chukhovskii et al., 1994) and Laue crystals meri-

dional (Schulze & Chapman, 1995) or sagittal (Zhong et al.,

2002) bending. Li & Khounsary (2004) considered the aniso-

tropic Poisson’s ratio varying with direction in the silicon (100)

crystal plane for the calculation of the anticlastic bending

radius in bendable optics. Zhang (2010) presented matrix-

based Matlab code for the calculation of the anisotropic elastic

properties of silicon, and application to bendable mirror width

profile optimization. This study showed the influence of the

crystal orientation on the bending force and stress in the

mirror. The anisotropic mechanical properties of silicon were

also considered in thermal deformation analysis of liquid-
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nitrogen-cooled silicon crystals under high heat load (Zhang

et al., 2013).

Many existing synchrotron light sources (ESRF, APS,

SPring-8, . . . ) are planning and implementing significant

facility upgrades, and some low-emittance synchrotron light

sources (NSLS II, MAX IV, . . . ) are under construction. The

improved source characteristics of these light sources can only

be fully utilized if the beamline performance and consequent

specifications of optical components are pushed to higher

levels than the current stage. Photon flux preservation, beam

collimation, focusing and preservation of coherence are

required for optical elements in the beamline. In the design

and optimization of the beamline optics it is essential to have

accurate and reliable predictions of the shape of the optical

elements under high heat load or bending forces. For these

purposes, the anisotropic elasticity should be considered in the

modelling of the silicon-based optics.

For the high-heat-load X-ray optics, the anisotropic elasti-

city intervenes in the thermal stress through both Young’s

modulus and Poisson’s ratio, but in the thermal deformation

mainly through Poisson’s ratio.

In this paper we first report the anisotropic elasticity of

single-crystal silicon and compare our results with some

literature values. Then we apply these properties to a bent

mirror substrate, and discuss the influence of crystal orienta-

tion on the bending forces, stress and on the mirror shape

profile. Finally, we focus upon the thermal deformation

modelling of silicon-based optics with anisotropic elasticity,

and investigate the influence of Poisson’s ratio on the thermal

deformation.

2. Anisotropic mechanical properties of the silicon

The generalized Hooke’s law to express the relation between

the stress and strain in a continuous elastic material can be

written as (Nye, 1957; Hearmon, 1961)

�ij ¼ Cijkl "kl or "ij ¼ Sijkl �kl; ð1Þ

where Cijkl and Sijkl are, respectively, the stiffness and

compliance fourth-rank tensors, and �ij and "kl are second-

rank stress and strain tensors. Generally, the stiffness or

compliance tensor has 81 elements. However, owing to the

symmetry of the stress and strain tensors, and also the stiffness

(or compliance) tensor, there are only 21 independent elastic

coefficients in the stiffness (or compliance) tensor for a

general anisotropic linear elastic solid. This reduction in

number of independent coefficients makes it possible to

simplify the notation and calculations by expressing the

compliance and stiffness tensors in the form of 6 � 6

symmetric matrices, and the stress and strain tensors in the

form of six-element vectors. Any pair of tensor indices ij (or

equivalently ji) collapse into a single index. The most used

notation in bibliography makes the assignment: 11! 1, 22!

2, 33! 3, 23! 4, 31! 5 and 12! 6. We can, for instance,

contract terms C1132 to C14, "31 to "5, and �12 to �6. Silicon and

germanium have the same cubic diamond crystal structure.

The cubic lattice system consists of a set of three axes

described by three lattice vectors orthogonal and of equal

length. The conventional crystal-axis coordinate system for

crystal plane (100) is defined by the normal vector e1 = [100]

and two other orthogonal vectors in the crystal plane, e2 =

[010] and e3 = [001], as shown in Fig. 1. In this conventional

coordinate system, the stiffness coefficient matrix reduces to

the following structure with only three independent elastic

coefficients,

C100 ¼

c11 c12 c12

c12 c11 c12

c12 c12 c11

c44

c44

c44

2
6666664

3
7777775
; ð2Þ

for Si(100), where c11 = 165.7, c12 = 63.9, c44 = 79.6 GPa

(Mason, 1958). These coefficients are commonly used in the

literature although Hall (1967) proposed data with slightly

better accuracy (c11 = 165.6, c12 = 63.9, c44 = 79.5 GPa), but the

difference between the two are not significant. In this paper,

we use the data from Mason (1958) in order to make the

comparison with some other studies.

The compliance matrix is the inverse of the stiffness matrix,

Shkl ¼ C �1
hkl : ð3Þ

For Si(100), the compliance matrix S100 has the same structure

as the stiffness matrix (2). The three independent coefficients

are s11 = (c11 + c12)/[(c11 � c12)(c11 + 2c12)] = 7.68, s12 = �c12 /

[(c11 � c12)(c11 + 2c12)] = �2.14, s44 = 1/c44 = 12.56 �

10�12 Pa�1. For an arbitrary orientation of the cubic crystal

with optical surface parallel to the (h k l) plane, a convenient

coordinate system is to use the crystallographic orientations

that are defined by how the crystal has been cut. This new

coordinate system (e 01, e 02, e 03) is defined by the surface normal

[h k l] and two additional orthogonal vectors in the crystal

surface. This choice is also valid for any asymmetrical crystal

cutting which can be expressed via fractional h k l indices.

Therefore, the vector e 01 is along the surface normal direction

[h k l], and vectors e 02 and e 03 are parallel to the crystal surface

(h k l). To determine the compliance matrix for this particular

orientation, one can rotate the crystal-axis coordinate system

(e1, e2, e3) to the new coordinate system (e 01, e 02, e 03). For

instance, the normal vector is [h k l] and the two other

orthogonal vectors in the plane could be [0 l �k], [(k2 + l 2) �

h*k� h*l] for (k*l 6¼ 0). Therefore the normalized vectors are
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Figure 1
Conventional crystal-axis coordinate system for crystal plane (100).



e 01 ¼ ½h k l�= h2
þ k2
þ l 2

� �1=2
;

e 02 ¼ ½0 l � k�= k2 þ l 2
� �1=2

;

e 03 ¼ ½ðk
2
þ l 2
Þ � h � k� h � l�

= ðk2
þ l 2
Þ � ðh2

þ k2
þ l 2
Þ

� �1=2
:

ð4Þ

The formalism of Wortman & Evans (1965) can be used to

calculate the stiffness coefficient matrix Chkl and compliance

matrix Shkl for any silicon crystal orientation. For all classes of

cubic crystals, Young’s modulus Ehkl in any crystallographic

direction [h k l] can be calculated by the following equations

(Nye, 1957; Wortman & Evans, 1965; Brantley, 1973),

1

Ehkl

¼ s11 þ s11 � s12 �
1
2 s44

� �
m4
þ n4
þ p4
� 1

� �
; ð5aÞ

or, equivalently,

1

Ehkl

¼ s11 � 2 s11 � s12 �
1
2 s44

� �
m2n2

þ n2pþ p2m2
� �

; ð5bÞ

where m, n, p are the direction cosines for the direction along

which E is calculated, and sij are the three independent elastic

compliances referred to the crystal axes (Fig. 1), as defined

by equation (3). Knowing the relation m2 + n2 + p2 = 1, the

transformation between (5a) and (5b) is straightforward. Here

the direction cosines can be calculated by

m ¼ h= h2
þ k2
þ l 2

� �1=2
;

n ¼ k= h2
þ k2
þ l 2

� �1=2
;

p ¼ l= h2 þ k2 þ l 2
� �1=2

:

ð6Þ

Young’s modulus Ehkl in the crystallographic direction [h k l] is

independent of the choice of the coordinate system. For the

particular directions [100], [110], [111] and [311], the above

equations can be simplified as follows,

1

E100

¼ s11; ð7aÞ

1

E110

¼ s11 �
1
2 s11 � s12 �

1
2 s44

� �
; ð7bÞ

1

E111

¼ s11 �
2
3 s11 � s12 �

1
2 s44

� �
; ð7cÞ

1

E311

¼ s11 �
38

121 s11 � s12 �
1
2 s44

� �
: ð7dÞ

These equations give the results E100 = 130, E110 = 169, E111 =

188, E311 = 152 GPa. Note that the Young’s modulus along

(111) is almost 45% larger than along (100). Poisson’s ratio

and the shear modulus for an anisotropic crystal are given in

general by (Nye, 1957, Wortman & Evans, 1965)

�ij ¼ �s 0ij=s 0ii i; j ¼ 1; 2; 3; ð8Þ

Gr ¼ 1=s 0rr r ¼ 4; 5; 6; ð9Þ

where s 0ii and s 0ij are the elastic compliance coefficients in the

new coordinate system and vary with crystal orientation. The

Poisson’s ratio �ij corresponds to the ratio of the strain

variation (contraction) in the direction e 0j when a strain

variation (extension) is applied in the direction e 0i . The shear

modulus Gr = 4 = G23 (Gr = 5 = G31 and Gr = 6 = G12) represents

the ratio of shear stress to the shear strain involving directions

23: e 02 and e 03 (31 and 12). For cubic crystals, equations (8) and

(9) can be written as (Wortman & Evans, 1965; Brantley, 1973)

�ij ¼ �
s12 þ s11 � s12 �

1
2 s44

� �
m2

i m2
j þ n2

i n2
j þ p2

i p2
j

� �

s11 � 2 s11 � s12 �
1
2 s44

� �
m2

i n2
i þ n2

i p2
i þ p2

i m2
i

� � i 6¼ j;

ð10Þ

1

Gij

¼ s44 þ 4 s11 � s12 �
1
2 s44

� �
m2

i m2
j þ n2

i n2
j þ p2

i p2
j

� �
i 6¼ j;

ð11Þ

where (mi, ni, pi) and (mj, nj, pj) are the direction cosines for

the e 0i direction and e 0j direction with respect to the crystal axes

defined by Fig. 1.

It is very convenient to calculate the stiffness matrix C,

compliance matrix S, Young’s modulus E, shear modulus G

and Poisson’s ratio � by using computer code. We wrote

matrix-based Matlab code (Zhang, 2010) and also imple-

mented in Python using NumPy; these codes are summarized

in the supporting information.1 Using these codes we have

performed calculations of Young’s modulus E, the shear

modulus G and Poisson’s ratio � for some commonly used

silicon crystal orientations Si(100), (110), (111), (311). The

new coordinate system (e 01, e 02, e 03) is defined as explained

previously. As an example for Si(100): the vector e 01 = e1 is in

the surface normal direction [1 0 0], and the vectors e 02 and e 03
are in the crystal plane obtained by rotating an angle � of the

initial crystal axes e2 and e3 as shown in Fig. 2.

In order to compare our results with data in the literature

(Wortman & Evans, 1965; Kim et al., 2001; Hopcroft et al.,

2010), we plot Young’s modulus E in the direction e 01 normal to

the crystal plane (E?) and in the direction e 02 parallel to the

crystal surface (Ek) versus angle � in Figs. 3(a)–6(a), the shear

modulus G12(?) and G23(k) in Figs. 3(b)–6(b), and Poisson’s

ratio �12(?) and �23(k) in Figs. 3(c)–6(c). The values of E, G and
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Figure 2
The crystal-axis coordinate system (e1, e2, e3) and the new coordinate
system (e 01, e 02, e 03) for crystal plane (100). The vector e 01 is fixed in the
normal direction [100], and the vectors e 02 and e 03 are in the crystal plane
(100). The angle � is between the vectors e 02 and e2.

1 Supporting information for this paper is available from the IUCr electronic
archives (Reference: VE5027).
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Figure 3
(a) Elastic modulus in the directions e 01 and e 02. (b) Shear modulus and (c) Poisson’s ratio in the directions 12 and 23 for Si(100). The coordinate system is
defined as shown in Fig. 2. The angle � is between the vectors e 02 and [0 1 0] in the crystal plane: e 02(� = 0�) = [0 1 0], e 02(� = 90�) = [0 0 1].

Figure 6
(a) Elastic modulus in the directions e 01 and e 02. (b) Shear modulus and (c) Poisson’s ratio in the directions 12 and 23 for silicon (311). The vector e 01 is fixed
in the normal direction [311], and the vectors e 02 and e 03 are in the crystal plane (311). The angle � is between the vectors e 02 and [0 1�1]/21/2 in the crystal
plane: e 02(�=0�) = [0 1 �1]/21/2, e 02(�=90�) = [2 �3 �3]/(22)1/2.

Figure 5
(a) Elastic modulus in the directions e 01 and e 02. (b) Shear modulus and (c) Poisson’s ratio in the directions 12 and 23 for silicon (111). The vector e 01 is fixed
in the normal direction [111], and the vectors e 02 and e 03 are in the crystal plane (111). The angle � is between the vectors e 02 and [0 1�1]/21/2 in the crystal
plane: e 02(� = 0�) = [0 1 �1]/21/2, e 02(� = 90�) = [2 �1 �1]/61/2.

Figure 4
(a) Elastic modulus in the directions e 01 and e 02. (b) Shear modulus and (c) Poisson’s ratio in the directions 12 and 23 for silicon (110). The vector e 01 is fixed
in the normal direction [110], and the vectors e 02 and e 03 are in the crystal plane (110). The angle � is between the vectors e 02 and [0 0 1] in the crystal plane:
e 02(� = 0�) = [0 0 1], e 02(� = 90�) = [1 �1 0]/21/2.



� are in the new coordinate system; the prime symbol (0) is

omitted. The parallel symbol (k) and perpendicular symbol

(?) are used to indicate, respectively, the two orthogonal

directions both parallel to the crystal plane, and the two

orthogonal directions of which one is normal and the other is

parallel to the crystal plane. When the angle � varies from 0�

to 90�, the directions of the vector e 02 rotated 90� in the crystal

plane are as shown in Figs. 3–6 by the vectors below the

horizontal axis.

For Young’s modulus, results are given in the [h k l] direc-

tion e 01 normal to the crystal (h k l) plane (?), and in directions

e 02 within the (h k l) crystal plane (k). In the direction normal

to the crystal plane, it is natural that Young’s modulus E1(?) is

independent of the direction in the plane (angle �) for all four

cases as shown in Figs. 3–6. The values of E1(?) shown in these

figures are in agreement with those calculated using equation

(7). In the crystal plane, Young’s modulus varies with direc-

tion, except in the Si(111) plane where it has a constant value

of 169 GPa. The shear modulus and Poisson’s ratio involve

two directions (e 0i , e 0j ). Results are shown in Figs. 3–6 for ‘in

plane (k)’ where e 02 and e 03 are in the (h k l) plane, and for

‘normal to plane (?)’ where e 01 is fixed in the [h k l] direction

and e 02 is in the (h k l) plane. Both shear modulus and Poisson’s

ratio for Si(111) orientation are constant for the components

in the plane or normal to the plane.

Attention should be paid to the order of the index in the

Poisson’s ratio as, in general, �ij 6¼ �ji. This is the case when

s 0ii 6¼ s 0jj, which can be easily checked by equations (8) or (10)

and also numerical results. For instance, the Poisson’s ratio �12

for Si(100) can be calculated by substituting the direction

cosines of the vector e 01 [100] and e 02 [0 cos(�) sin(�)] (see

Fig. 2) in equation (10) as

�12 ¼ �
s12

s11

: ð12Þ

Poisson’s ratio �21 is given by

�21 ¼
s12

s11 � 2 s11 � s12 �
1
2 s44

� �
sin � � cos�ð Þ

2
: ð13Þ

These two components of Poisson’s ratio are equal only at � =

0� or 90�. The Poisson’s ratio �12 and �21 for Si(100) are plotted

versus angle � in Fig. 7. It is clear that for Si(100) Poisson’s

ratio �12 is, in general, not equal to �21. For the shear modulus,

the index i, j can be permuted as Gij = Gji ; this is clear from

equation (11). Therefore, for the anisotropic elasticity of a

silicon crystal, there are three independent components of

Young’s modulus and the shear modulus, and six independent

components of Poisson’s ratio.

As in the literature (Wortman & Evans, 1965; Kim et al.,

2001; Hopcroft et al., 2010), we evaluate Young’s modulus, the

shear modulus and Poisson’s ratio versus the angle � in the

crystal plane at a reduced range of 0 to 90�. By symmetry, it is

possible to deduce the results at any angle � larger than 90�

from the results shown in Figs. 3–6. For instance, the results

shown in Fig. 6 for Si(311) can be extended to the range 0–360�

by using symmetry as depicted in Fig. 8, which was calculated

for the angle � varying from 0 to 360�.

Results shown in Figs. 3–5 and Fig. 7 for silicon crystal

planes (100), (110), (111) have been compared with previously

reported values (Wortman & Evans, 1965; Kim et al., 2001;

Hopcroft et al., 2010) and summarized in Table 1. The present

results are mostly in agreement with the literature; however,

some discrepancies should be noted: for Si(100), the ‘normal

to plane (?)’ component of Poisson’s ratio shown in Fig. 3(c)

and by Wortman & Evans (1965) is �12 where e 01 is fixed in the

direction [100] and e 02 is varying in the plane (100) from

direction [010] to [001]. But this ‘normal to plane (?)’

component of Poisson’s ratio �? for Si(100) shown by Kim et al.

(2001) should be �21 which is different from �12 but in agree-

ment with our results shown in Fig. 7. For Poisson’s ratio in the

Si(111) plane (k), the present work shows a value of �23(k) =

0.262, in agreement with Kim et al. (2001) (�k), but Wortman &

Evans (1965) presented a higher value of �k = 0.358. For the
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Figure 7
Poisson’s ratio �12 and �21 versus angle � between the vectors e 02 and
[0 1 0]/21/2 in the crystal plane for Si(100). See Fig. 2 for the definition of
the coordinate system.

Figure 8
(a) Elastic modulus, (b) shear modulus, (c) Poisson’s ratio for silicon (311) versus the angle � varying from 0 to 360�.



shear modulus ‘normal to plane (?)’ for the Si(111) orienta-

tion, the present work gives a value of G12(?) = 57.8 GPa, in

agreement with Kim et al. (2001) (G?), but Wortman & Evans

(1965) showed a smaller value of G? = 47.0 GPa.

3. Mechanically bent X-ray optics

Single-crystal silicon is the most commonly used material

for the substrates of X-ray mirrors due to its interesting

mechanical properties, and especially its excellent optical

polishing quality. Dynamically bent mirrors in the Kirk-

patrick–Baez (KB) configuration (Zhang et al., 2010) offer

a versatile approach for nano-focusing applications at the

ESRF. Similarly, silicon Bragg polychromator crystals can be

dynamically bent to elliptical shape to cover a wide photon

energy range. In these two examples, the silicon crystal is bent

to an ideal elliptical shape with an accuracy in the range of

10�5 for the ratio of slope error relative to the slope of the

ideally bent shape. To achieve such a performance, the

anisotropic elasticity must be taken into account in the

simulation and shape optimization of the optics.

3.1. KB mirror profile optimization

Nanofocusing of synchrotron X-ray beams using mirrors in

the KB configuration can be achieved using reflective surfaces

with an elliptical figure. For instance, the horizontal focusing

mirror (HFM) of a multilayer-coated KB mirror device for the

nano-imaging endstation ID22NI at the ESRF should have a

radius of curvature in the range 11–30 m (p = 36 m, q = 83 mm,

� = 8 mrad). The use of dynamic bending technologies for this

application allows the system to be optimized for operation

over a large energy range (13–25 keV). One approach to

achieve this highly aspheric shape is to use mechanical bender

technology (Zhang et al., 1998) based on elastic flexure hinges

and variable-width mirrors (Zhang et al., 2010).

The application of two independent bending moments to

the ends of the mirror substrate as in the ESRF bender design

develops a linear variation of the moment along the mirror

length. For the aspherical (elliptical) profile required, the

radius of curvature R(x) of the bent substrate varies strongly

with position x along the mirror length. The required variation

over the useful mirror length for the ID22NI system is 58–

32 m for the vertical focusing mirror (VFM) and 30–11 m for

the HFM. The local slope of the bent substrate varies along

the substrate length in the range of several mrad. Using the

mechanical beam theory approximation, the local curvature,

1/R(x), can be calculated by

1

RðxÞ
¼

d2u

dx2
¼

MðxÞ

EIðxÞ
; ð14Þ

with

IðxÞ ¼
WðxÞ t 3ðxÞ

12

where u is the vertical displacement of the mirror, x is the

mirror coordinate, M(x) is the local bending moments, and

E and I(x) are, respectively, the elastic modulus and local

moment of inertia of the mirror. W(x) and t(x) are the local

width and thickness of the substrate, respectively. For a

rectangular mirror, I(x) is constant and allows a third-order

polynomial approximation to the ideal elliptical cylinder

surface figure. For the mirror lengths and bending radius

required for the ID22NI system, the figure/slope errors for this

substrate geometry would be incompatible with the target

performance. To overcome this limitation, a commonly

applied approach at the ESRF is to use a trapezoidal profile

for the mirrors, i.e. a linear variation in the substrate width,

W(x), along the mirror. This allows correction of higher-order

terms in the elliptical figure expansion. For improved correc-

tion of the figure errors it is necessary to use more complex

width profiles (quadratic and beyond). For manufacturing

simplicity the substrate thickness t(x) remains constant along

the mirror length. By using equation (14), it is possible to

define a variable profile as

WðxÞ ¼
12MðxÞ

Et 3
RðxÞ: ð15Þ

For the ID22NI HFM mirror it can be shown using finite-

element modelling (FEM) that the slope error (differential

slope between bent shape and ideal shape) with the profile

defined analytically by equation (14) reaches 31 mrad RMS,

which is much larger than the target requirement

(<0.15 mrad). There are significant differences between FEM

results on the mirror with the profile defined by equation (15)
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Table 1
Comparison between the present work and previously reported values (Wortman & Evans, 1965; Kim et al., 2001; Hopcroft et al., 2010).

All results are mostly in agreement except three cases as indicated in footnotes †, { and ††.

Young’s modulus Shear modulus Poisson’s ratio

Si(100) In-plane (k) Present, Wortman, Kim Present, Wortman, Kim Present, Wortman, Kim
Normal to plane (?) Present, Hopcroft, Equation (7a) Present, Wortman, Kim Present, Wortman, Kim†

Si(110) In-plane (k) Present, Wortman, Kim‡ Present, Wortman, Kim‡ Present, Wortman, Kim‡
Normal to plane (?) Present, Hopcroft, Equation (7b) Present, Wortman, Kim‡ Present, Wortman, Kim‡

Si(111) In-plane (k) Present, Wortman, Kim§ Present, Wortman, Kim§ Present, Kim, Wortman}
Normal to plane (?) Present, Hopcroft, Equation (7c) Present, Kim, Wortman†† Present, Wortman, Kim§

† Poisson’s ratio �12 for e 01 fixed in the direction [100] and e 02 varying in the (100) plane, but �21 is presented in Kim instead of �12. ‡ Variation of direction (angle �) in plane: Kim
from [0 0 1] to [�1 1 0], Present and Wortman from [0 0 1] to [1 �1 0]. § Variation of direction (angle �) in plane: Kim from [1 �1 0] to [�1 �1 2], Present from [0 1 �1 ] to
[2 �1 �1]. } Poisson’s ratio �k in Si(111) plane: Present = Kim = 0.262, Wortman = 0.358. †† Shear modulus G? normal to plane for Si(111): Present = Kim = 57.8 GPa, Wortman =
47.0 GPa.



and the ideal ellipse. These are mainly due to the beam theory

approximation in equation (14) which, unlike the FEM, does

not take into account: (i) bender stiffness, (ii) anticlastic

effects, and (iii) geometrical non-linear effects. The complete

mirror and flexure bender assembly has been modelled in

three-dimensions with FEM using ANSYS (Fig. 9). The silicon

substrates were oriented such that the reflecting faces were

parallel to crystal plane (110) with the [001] axis aligned along

the mirror. This allows maximizing the ratio of the fracture

toughness over the elastic modulus (Barrett et al., 2011).

An iterative algorithm based on a fully parametrical finite-

element model in ANSYS was used for the mirror width

profile optimization (Zhang et al., 2010), and reached the

target requirement in performance for both horizontal and

vertical focusing mirrors (HFM and VFM), as shown in

Table 2. The mirror profiles were optimized for operation at

8 mrad of glancing angle (or photon energy at 17 keV). Using

the optimized width profiles for 8 mrad as input to the FEM, it

was also possible to calculate the expected slope errors over

the full operating range of incidence angles (see Table 2). In

the mirror width profile optimization by FEM, in addition to

the above-mentioned three effects, we have also considered

the influence of the adhesive bonding of the mirror to the

flexure bender, the chamfer around the mirror, pre-loading

springs and, of course, the anisotropic elasticity and crystal

orientation.

From the optimized mirror width profiles, both HFM and

VFM have been manufactured including the substrate

machining and polishing, multilayer deposition, then assem-

bled, and tested at the ESRF optical metrology laboratory.

Measured results obtained are presented in Table 2. The

measured slope error values are very close to the optimal

theoretical values (Barrett et al., 2011).

3.2. Crystal orientation and mirror axis

The mirror width profile optimization was performed taking

into account the anisotropic mechanical properties of the

silicon crystal in the (110) crystallographic orientation for the

mirror surface and axis [001] for the mirror meridional axis.

This crystal orientation was chosen taking into account the

anisotropy of the fracture behaviour of Si (Ebrahimi &

Kalwani, 1999). By maximizing the fracture toughness along

the planes perpendicular to the meridional direction and

minimizing Young’s modulus along this same direction, the

risk of brittle fracture during bending of the substrate can be

reduced. For the convenience of FEM with ANSYS, the

corresponding Cartesian coordinate system is oriented as:

x-axis for the mirror meridional direction e 02 = [0 0 1], y-axis for

the mirror sagittal direction e 03 = [1 �1 0]/21/2, and z-axis for

the mirror normal direction e 01 = [1 1 0]/21/2. The stiffness

matrix is given in the supporting information: C a
110, which is

directly usable in ANSYS.

To show the importance of the correct consideration of the

anisotropy of the silicon crystal, we consider two cases: (i)

misaligned crystal orientation during mirror manufacturing,

and (ii) mirror width profile optimization with constant

isotropic mechanical properties.

3.2.1. Misaligned crystal orientation during mirror manu-
facturing. For the optical configuration of the HFM at photon

energy 17 keV, the mirror width profile was optimized with the

silicon crystal (110) aligned as described above. The calculated

slope error (bent slope – ideal elliptical slope) is 0.09 mrad

RMS. With this mirror width profile, we have simulated the

cases where the silicon crystal is oriented in the following way:

(1) Crystal plane (110) and mirror axis in the direction

[001]: as optimized.

(2) Crystal plane (110) and mirror axis in the crystal plane

but � = 55� from the direction [001].

(3) Crystal plane (110) and mirror axis in the crystal plane

but � = 90� from the direction [001].

(4) Crystal plane (100) and mirror axis in the direction

[001].

(5) Crystal plane (111) and mirror axis in the direction

[1 �1 0].

Results in RMS slope error, maximum bending stress and

bending forces are given in Table 3. If two bending forces are

fixed to 16 N as for the optimized case, the misaligned crystal

orientation would lead to very significant performance

degradation from 0.09 mrad to 162 mrad for case (2), i.e. crystal

plane (110) and mirror axis in the crystal plane but 55� from

direction [001]. By optimizing the bending forces for the

misaligned cases, the slope error can be reduced but is still
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Table 2
Calculated by FEM and measured slope errors in RMS.

The mirror width profiles were optimized for operation at 8 mrad. The silicon
substrates were oriented such that the reflecting faces were parallel to crystal
plane (110) with the [001] axis aligned along the mirror.

Glancing angle
RMS slope error (mrad)

� (mrad) eph (keV) KB mirror FEA Measured

5.6 25 VFM 0.06 0.06
HFM 0.11 0.11

8 17 VFM 0.08 0.09
HFM 0.13 0.15

10.7 13 VFM 0.12
HFM 0.17

Figure 9
Finite-element model of the HFM mirror substrate and flexure bender
assembly.



significantly higher than in the case of the correctly aligned

crystal orientation. For example, in case (2), the slope error is

0.5 mrad instead of 0.09 mrad for the correctly aligned crystal.

The bending forces are 21.4 N, 34% higher than the initially

estimated 16 N for the correctly aligned crystal. To reach the

same optical configuration, the bending forces and bending

stress for a specified KB mirror are nearly proportional to

Young’s modulus in the mirror axis (Ex). To minimize the

bending stress, the Si crystal orientation should be aligned in

such a way that Young’s modulus is minimum (130 GPa) in the

direction of the mirror meridional axis. Dynamical bending

clearly offers the possibility to optimize the bending forces

and greatly correct slope errors induced through any mis-

alignment in the KB mirror.

3.2.2. Mirror width profile optimization with constant
isotropic mechanical properties. For the same optical

configuration of the HFM at photon energy 17 keV, if we use

isotropic mechanical properties (for instance, E = 112.4 GPa,

� = 0.28, from Matweb) but the same bending forces (16 N),

the optimized mirror width profile differs from the profile

determined using anisotropic mechanical properties as defined

in x3.2.1. Similarly, with this new mirror width profile, we have

investigated the five cases listed in x3.2.1 and the results are

summarized in Table 4. If the bending forces are fixed at 16 N,

the slope error is very much higher than 0.09 mrad. By opti-

mizing the bending forces for each case, the slope error can be

reduced in the range 0.12–0.54 mrad, but is still significantly

higher than in the case when the mirror width profile was

optimized.

4. Thermal deformation of X-ray optics

The thermal deformation modelling of silicon-based optics

with anisotropic elasticity that we have initially performed

concerns the liquid-nitrogen (LN2) cooled monochromator

of the ESRF beamline ID06 (Zhang et al., 2013). In this

monochromator the silicon crystal (111) reflecting plane is

used with the meridional axis aligned along the direction

[1 �1 0]. For the convenience of FEM with ANSYS, the

corresponding Cartesian coordinate system is oriented as: x-

axis for the monochromator–crystal meridional direction e 02 =

[1 �1 0]/21/2, y-axis for the mirror sagittal direction e 03 =

[1 1 �2] /61/2, and z-axis for the mirror normal direction e 01 =

[1 1 1] /31/2. The stiffness matrix is given in the supporting

information: C 111
a , which is directly usable in ANSYS.

For a given absorbed power, the most influential material

properties in the thermal deformation of X-ray optics are the

thermal expansion coefficient � and the thermal conductivity

k. For constant material properties, the thermal deformation is

proportional to the ratio of these two parameters, �/k, and

should be independent of the isotropic Young’s modulus. It is

appropriate to note that both thermal expansion coefficient

and thermal conductivity are second rank tensor properties

which demonstrate isotropic behaviour in cubic crystals such

as silicon. The influence of Poisson’s ratio on the thermal

deformation was investigated. The value of Poisson’s ratio of

silicon shown in Figs. 3–6 varies with crystal orientation in the

range 0.0622–0.3617. We have performed a finite-element

analysis of the LN2-cooled silicon crystal (Zhang et al., 2013)
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Table 3
Calculated slope errors in RMS with different crystal plane and orientation using the mirror width profile optimized for the Si(110) plane and mirror axis
[001].

Si_hkl Angle (�) F1 (N) F2 (N) Ex (GPa) RMS (mrad) Smax (MPa)

Profile optimized for
Si(110) plane, axis [001],
fixed bending forces
F1 and F2

110 0 16.00 16.00 130 0.09 42.5
110 55 16.00 16.00 188 162 43.0
110 90 16.00 16.00 169 123 45.1
100 0 16.00 16.00 130 0.37 41.6
111 0 16.00 16.00 169 121 41.8

Profile optimized for
Si (110) plane, axis [001],
optimized forces

F1 and F2

110 0 16.00 16.00 130 0.09 42.5
110 55 21.39 21.40 188 0.50 59.2
110 90 19.97 19.54 169 0.18 56.2
100 0 16.00 16.02 130 0.22 41.6
111 0 19.72 19.64 169 0.24 52.5

Table 4
Calculated slope errors in RMS with different crystal plane and orientation using the mirror width profile optimized with isotropic material properties.

Si_hkl Angle (�) F1 (N) F2 (N) Ex (GPa) RMS (mrad) Smax (MPa)

Profile optimized for
E = 112.4, � = 0.28,
fixed bending forces
F1 and F2

110 0 16.00 16.00 130 75 34.0
110 55 16.00 16.00 188 217 40.5
110 90 16.00 16.00 169 184 37.5
100 0 16.00 16.00 130 75 33.8
111 0 16.00 16.00 169 181 39.0

Profile optimized for
E = 112.4, � = 0.28,
optimized forces
F1 and F2

10 0 18.17 17.97 130 0.12 38.7
110 55 24.37 24.21 188 0.54 63.7
110 90 22.84 22.06 169 0.24 53.5
100 0 18.15 18.01 130 0.26 38.6
111 0 22.48 22.16 169 0.23 55.8



with isotropic elastic properties and different Poisson’s ratio at

first, and then with anisotropic elastic properties. The thermal

deformation in terms of RMS slope error over the whole

footprint along the central axis on the crystal surface is plotted

versus absorbed power for Poisson’s ratio � = 0.0622, 0.2120,

0.2783, 0.3617 in Fig. 10(a). These results show that the

thermal deformation increases with Poisson’s ratio.

Taking the thermal deformation results at Poisson’s ratio

�0 = 0.0622 as reference, we have calculated the ratio of the

RMS thermal slope at any Poisson’s ratio � over that at

Poisson’s ratio �0 = 0.0622. This ratio of the RMS slope is

almost constant for different absorbed power. The average of

these ratios for different powers is plotted versus Poisson’s

ratio (Fig. 10b). The ratio (1 + �)/(1 + �0) is also plotted in

Fig. 10(b). Results show that the thermal deformation of the

monochromator crystal is a linear function of Poisson’s ratio,

and the RMS slope error is proportional to the factor of 1 + �.

We can extend the relationship between the thermal defor-

mation of X-ray optics and constant isotropic material prop-

erties as follows,

Thermal slope ’ ð1þ �Þð�=kÞ: ð16Þ

For a stable isotropic linear elastic material, Poisson’s ratio is

in the range (�1, 0.5). Most materials have Poisson’s ratio

values ranging between 0.0 and 0.5; �0.33 for many metals

and nearly 0.5 for rubbers. Auxetic materials are those having

a negative Poisson’s ratio, such as many polymer foams, cork,

or magnetostrictive materials (such as Galfenol) in certain

orientations. Some anisotropic materials have one or more

Poisson’s ratios above 0.5 in some directions. The values for

the materials used in X-ray optics (mirror substrates or

monochromator crystals) are mostly in the range (0, 0.5).

Therefore, the influence of Poisson’s ratio on the thermal

deformation is less strong than the thermal conductivity and

thermal expansion coefficient. This explains why the influ-

ences of Poisson’s ratio are commonly ignored in the evalua-

tion of thermal deformation of X-ray optics.

We have made similar simulations to those shown in

Fig. 10(a) but incorporating the anisotropic elastic properties

of silicon for various crystal orientations. Results of thermal

deformation in terms of RMS slope error versus absorbed

power are depicted in Fig. 11. These results show that the

thermal deformation depends slightly on the crystal orienta-

tion. As the meridional and sagittal directions are different

crystal axes, the thermal deformation along these directions

differs slightly, except in the case of Si(100) where the meri-

dional and sagittal axes are equivalent. Among all these

crystal orientations, the maximum thermal slope error versus

absorbed power is for Si(100)_�=0� and Si(100)_�=45�, and

the minimum is for Si(110)_�=0�. The difference between

them is about 8.9%. Poisson’s ratio plotted in Figs. 3–6 varies

from 0.0622 for Si(100) at the �=45� ‘in plane’ component

�23(k) and for Si(110) at the �=90� ‘normal to plane’ compo-

nent �12(?) to 0.3617 for Si(110) at the �=0� ‘normal to plane’

component �12(?) and at the � = 90� ‘in plane’ component

�23(k). This leads to a ratio of (1 + 0.3617)/(1 + 0.0622) = 1.28,

or possible difference in RMS slope of 28%.

For the anisotropic silicon crystal, there are six components

of Poisson’s ratio (�ij with i, j = 1, 2, 3, i 6¼ j). Fig. 12(a) shows

the six components of Poisson’s ratio versus angle � as defined

in Fig. 2 for Si(100). The ‘in plane’ components �23 and �32 are

symmetrical and identical, but depend on the angle �. The

‘normal to plane’ components are not symmetrical, �13 6¼ �31

and �12 6¼ �21 as shown in x2. But we have �13 = �12 = 0.2783

independent of the angle �, and �31 = �21 varying with the

angle �. The thermal deformation in terms of RMS slope error

versus absorbed power for Si(100)_�=0�, Si(100)_�=45� and

isotropic and constant Poisson’s ratio � = 0.2783 is plotted in

Fig. 12(a) and shows identical results. For Si(100)_�=0�, all six
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Figure 10
(a) RMS slope error over the whole footprint along the central axis on the
crystal surface versus absorbed power. FEM was performed with isotropic
mechanical properties and different Poisson’s ratio. (b) The average ratio
of RMS slope (red points) and the ratio of (1 + �)/(1 + �0) (black line)
versus Poisson’s ratio.

Figure 11
RMS slope error over the whole footprint along the central axis on the
crystal surface versus absorbed power. FEM was performed with
anisotropic mechanical properties and for different silicon crystal
orientations.



components of Poisson’s ratio are equal to 0.2783. However,

for Si(100)_�=45�, �13 = �12 = 0.2783, �31 = �21 = 0.3617 and

�23 = �32 = 0.0622. These suggest that thermal deformation

depends mostly on the components of Poisson’s ratio �12, �13

or their average �av = (�13 + �12)/2, at least for Si(100). Note

that the silicon crystal monochromator is oriented in such a

way that the vector e 01 is normal to the crystal surface and e 01 is

along the meridional axis. The RMS thermal slope error is

calculated from the derivative of the displacement normal to

the crystal surface (e 01) over the axis along the meridional

direction (e 01). As an extension of the observations made for

Si(100) described above, we have plotted the six components

of Poisson’s ratio for Si(110) and Si(111) versus the angle � in

Figs. 13(a) and 13(b). All six components of Poisson’s ratio for

Si(110) vary strongly with �, including �12 and �13. However,

the average �av = (�13 + �12)/2 is constant, 0.212. For all three

crystal orientations Si(100), Si(110), Si(111), the average �av

(Fig. 13c) is independent of the angle � and equal to 0.212,

0.278 and 0.180, respectively. Then we plot the thermal

deformation in terms of RMS slope error versus absorbed

power for anisotropic silicon Si(111) and for isotropic constant

Poisson’s ratio 0.180 (�av) in Fig. 14(a), and for anisotropic

silicon Si(110) at three angles in the crystal plane (� = 0�, 45�,

90�) and for isotropic constant Poisson’s ratio 0.212 (�av)

in Fig. 14(b). These results show that the thermal deformation

of the LN2-cooled silicon crystal monochromator can be

approximately simulated by using the isotropic constant

Poisson’s ratio equal to the average of �12 and �13. The accu-

racy of this approximation is better than 1.2% for Si(100),

4.1% for Si(110) and 5.5% for Si(111). This approximation can

be slightly improved by modifying the constant Poisson’s ratio
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Figure 12
(a) The six components of Poisson’s ratio. (b) Thermal deformation in
terms of RMS slope versus absorbed power for silicon (100)_�= 0�,
Si(100)_�= 45� and isotropic and constant Poisson’s ratio � = 0.2783.

Figure 13
All six components of Poisson’s ratio for Si(110) (a) and Si(111) (b) versus the angle varying in the crystal plane. (c) The average �12 and �13 for Si(100),
Si(110), Si(111).

Figure 14
RMS slope error versus absorbed power (a) for anisotropic silicon Si(111)
and for isotropic constant Poisson’s ratio 0.180 (�av), and (b) for
anisotropic silicon Si(110) at three angles in the crystal plane (� = 0�, 45�,
90�) and for isotropic constant Poisson’s ratio 0.212 (�av).



according to the relation between the RMS slope and Pois-

son’s ratio in equation (15). For Si(111), for example, the

average difference between the RMS slope calculated with

anisotropic elasticity of Si(111) and an isotropic Poisson’s ratio

�av = 0.18 is 3.08%. If we use a corrected Poisson’s ratio

defined as follows,

�av-cor ’ 1þ �avð Þð1þ 3:08%Þ � 1 ¼ 0:216; ð17Þ

then this difference is reduced to 2.4%.

5. Summary

The anisotropic elasticity of single-crystal silicon has been

fully reviewed for arbitrary orientation of the crystal. A

matrix-based computer algorithm is proposed for the calcu-

lation of the stiffness coefficient matrix, compliant coefficient

matrix, Young’s modulus, shear modulus and Poisson’s ratio.

It can be easily implemented in any numerical computing

environment and programming language that include matrix

analysis (Matlab and NumPy-Python examples are given in

the supporting information). Analytical formulae to calculate

Young’s modulus, the shear modulus and Poisson’s ratio are

also summarized in this paper. Numerical values of Young’s

modulus, the shear modulus and Poisson’s ratio have been

compared with those in the literature, and have revealed

discrepancies in some papers.

The anisotropic elasticity of single-crystal silicon has been

used in the simulation of mechanical bent X-ray optics and

thermal deformation of X-ray optics. For the mechanically

bent X-ray optics, the silicon crystal orientation should be

carefully taken into account both in optical design and

manufacturing. Selection of the appropriate crystal orienta-

tion can lead to both an optimized performance and low

mechanical bending stresses. A dynamic bending device

allowing bending force optimization should be efficient in

partially correcting the effects of crystal orientation alignment

errors.

The thermal deformation of the crystal depends on Pois-

son’s ratio. For an isotropic constant Poisson’s ratio �, the

thermal deformation (RMS slope) is proportional to (1 + �).

For an anisotropic material with cubic crystal symmetry (such

as silicon), the thermal deformation can be approximately

simulated by using an isotropic constant Poisson’s ratio that is

the average �av = (�13 + �12)/2, where direction 1 is normal to

the crystal plane which is also the optic surface; the directions

2 and 3 are two normal orthogonal directions within the crystal

plane. The average �av is independent of the direction in the

crystal plane for Si(100), Si(110) and Si(111). Using this

average Poisson’s ratio in the finite-element modelling of the

thermal deformation of the X-ray optics leads to less than

5.5% of error in RMS slope in comparison with results from a

full anisotropic analysis for Si(100), Si(110) and Si(111).
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