Supporting Materials

Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations

Hongxin Wang^{1,2,*}, Yoshitaka Yoda³, Weibing Dong¹, and Songping D. Huang⁴

- 1 Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616
- 2 Lawrence Berkeley National Laboratory, 1 Cyclotron Road., Berkeley, CA 94720
- 3 JASRI, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- 4 Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242

S1 [Fe₄S₄Cl₄](Ph4P)₂ Sample Preparation

10%-57Fe / 90%-54Fe labeled [Fe₄S₄Cl₄](Ph4P)₂ samples was prepared by literature methods. Briefly metallic powder of 95 mg ⁵⁴Fe and 5 mg ⁵⁷Fe was weighted, mixed and reacted with HCl in methanol to prepare ⁵⁷Fe/⁵⁴Fe mix-labeled [Fe(MeOH)_x]Cl₂ as white crystals. Although the 5%-57Fe / 95%-54Fe were used in the initial reactants, the isotopic analysis for the final products were 10%-57Fe / 90%-54Fe, so we define it as 10%-57Fe / 90%-54Fe labeled [Fe₄S₄Cl₄](Ph4P)₂. The crystals were heated at 180 °C in vacuo for several hours to a constant weight. A Schlenk flask was prepared with a mixture of anhydrous ⁵⁷Fe/⁵⁴Fe mix-labeled FeCl₂ (65 mg, 0.51 mmol), KSPh (112 mg, 0.76 mmol), (PPh₄)Cl (95 mg, 0.25 mmol), and elemental sulfur (20 mg, 0.63 mmol). Acetonitrile (5 mL) was then added with continuous stirring. After 45 min, the solution was filtered to remove KCl and the un-reacted sulfur, and to crystallize from ether. After several days, the solution exhibited deposition of a black crystalline solid. The product, 55 mg of ⁵⁷Fe/⁵⁴Fe mix-labeled (PPh₄)₂[Fe₄S₄Cl₄], was isolated by filtration, washed twice with ether, and dried in vacuo. Isotope analysis of ⁵⁴Fe and ⁵⁷Fe was done in plasma mass spectrometry in UC Davis Interdisciplinary Center and final ratio of ⁵⁷Fe vs ⁵⁴Fe in (PPh₄)₂[Fe₄S₄Cl₄] is 1:9 although the initial ⁵⁷Fe vs ⁵⁴Fe ratio is 5:95. Pure (Ph₄P)₂(⁵⁷Fe₄S₄Cl₄) was prepared in a similar way.

S2 Energy Shift Estimation: [Fe₄S₄Cl₄](Ph4P)₂

A simple estimation assuming a single diatomic Fe-S stretching predicted a 1% (0.477 meV or 3.85 cm⁻¹) shifts between ⁵⁷Fe-³²S and ⁵⁴Fe-³²S stretching peaks. The isotopic shift in Fe4S4 was estimated as 3.85 cm-1 adjusted with the ⁵⁷Fe/⁵⁴Fe ratio.

Assuming x 54 Fe and y 57 Fe (note: (x+y)=1)are inside the final products, then the 54 Fe/ 57 Fe labeled for iron sites inside the [Fe₄S₄Cl₄](Ph4P)₂ can have the following five combinations and

their probabilities are listed as in Table S1. The isotope analysis indicate a 1:9 (also consistent with total NRVS cts/s of a 250:2350). If y is small (10%) and x is large (90%), most samples will be at 1, 2, and 3 while 1 has no NRVS signal. Therefore most NRVS signal will come from 2 and 3 with a signal ratio of 3:1, means 25% NRVS signal is from a 2^{-57} Fe, and $\sim 75\%$ is from 1- 57 Fe. With a simple estimation, the energy shift between the fully enriched and (x vs. y) partially enriched (PPh₄)₂[Fe₄S₄Cl₄] could be (3*2.89+1*1.96)/4=2.65 cm-1 or 0.329 meV.

Table S1 Five combinations and their corresponding probabilities for the ⁵⁴Fe and y ⁵⁷Fe labeled [Fe₄S₄Cl₄](Ph4P)₂

Combination	⁵⁴ Fe	⁵⁷ Fe	Amount	NRVS ∝	NRVS (x=0.1)	NRVS Ratio	Shifts * (cm ⁻¹)
1	4	0	\mathbf{x}^4	0	0	0	3.85
2	3	1	$4x^3y$	$4x^3y$	0.292	3	2.89
3	2	2	$6x^2y^2$	$12x^2y^2$	0.096	1	1.93
4	1	3	$4xy^3$	$12xy^3$	0.011	0.33	0.96
5	0	4	y^4	$4y^4$	-	-	0

S3 Additional Figures

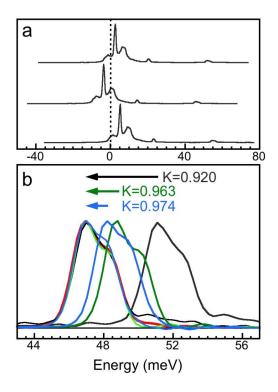


Figure S1

A conventional energy calibration procedure: (a) aligning spectral resonance peaks to E=0; (b) scaling the 47.0 meV peaks in $[Et_4N][^{57}FeCl_4]$ to match the published spectrum (thick red line). The energy scale factors (K) were thus obtained.

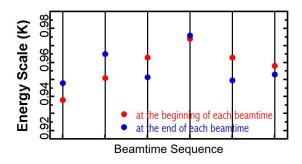


Figure S2

Energy scales (K values) obtained with [Et₄N][FeCl₄] using conventional calibration procedures at the beginning (red) and the end (blue) of several beamtimes.