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The cumulant expansion is one of the most powerful and useful methods for

EXAFS data analysis, in which the higher-order cumulants allow to consider

deviations from a simple Gaussian distribution. In this work, analytical

expressions have been derived to show the effects of neglecting higher-order

cumulants in EXAFS analysis by the ratio method. The errors in the best-fitting

procedure owing to the omission of the higher-order cumulants, as well as of the

coordination number, can be determined.
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1. Introduction

The cumulant method is a model-independent technique

based on the expansion of extended X-ray absorption fine-

structure (EXAFS) amplitudes and phases as a series of

cumulants of the interatomic distance distribution (Teo, 1986).

In the EXAFS analysis, the contributions of the different

coordination shells are singled out by Fourier filtering and

separately analyzed. The Fourier filtering process allows the

phase �(k) and amplitude A(k) of the single shell to be

separated. The difference between the EXAFS phases and the

logarithm of the amplitude ratio can be written through the

ratio method as (Bunker, 1983; Fornasini et al., 2001)
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where k is the photoelectron wavevector, N = Ns /Nr is the

coordination number ratio, �Cn indicates the cumulant

difference C s
n � C r

n, and the subscripts s and r refer to the

sample and reference, respectively. The cumulant method

allows the characterization of the first coordination shell in

terms of parameters which describe the distance distributions:

the first cumulant C1 is the mean value, C2 is the variance, C3

measures the distribution asymmetry and C4 measures its

flatness. For a Gaussian distribution the cumulants Cn are zero

for n > 2.

Anharmonicity effects on EXAFS were detected quite early

(Eisenberger & Brown, 1979). After the first pioneering

studies on AgI (Boyce et al., 1981) and CuBr (Tranquada &

Ingalls, 1983), it has been shown that anharmonicity cannot be

neglected even in systems like germanium (Dalba et al., 1995)

or copper (a Beccara et al., 2003), where the third cumulant

has been taken into account in the analysis to obtain accurate

values of the first cumulant; even more so in the case of

systems affected by structural disorder, such as liquids, glasses,

molten salts and alloys, where the higher-order cumulants

must be taken into account when fitting the EXAFS data (Wei

et al., 2000; Sanson et al., 2008; Swilem et al., 2005). In strongly

disordered systems, where the convergence of the cumulant

series is in principle questionable (Filipponi, 2001), the

cumulants can sometimes be considered to parameterize only

the short-range component of the whole distance distribution,

as tested in �-AgI (Boyce et al., 1977, 1981) and more recently

in silver molybdate glasses (Sanson, Rocca, Dalba et al., 2007).

The importance of including higher-order cumulants in

EXAFS analysis has been recognized in many works

(Yokoyama et al., 1997; Soldo et al., 1998; Bus et al., 2006;

Vaccari et al., 2007; Ahmed et al., 2009). Other groups recog-

nized the asymmetry in the distance distribution, but did not

use the cumulants beyond the second order (Diaz-Moreno et

al., 1997; Berlier et al., 2002; Katsikini et al., 2008; Chu et al.,

2009), with the consequence that the resulting errors in the fit

parameters may have drastic effects on the EXAFS structural

parameters. In some specific cases, the errors owing to the use

of a Gaussian pair distribution have been estimated (Mobilio

& Incoccia, 1984; Wei et al., 2000), with the result that it

produces a significant error for the distance and coordination

number. At present, a general treatment of this problem is still

lacking.

In this work, for the first time, analytical expressions have

been derived to determine the errors in the best-fitting

procedure owing to the neglect of the higher-order cumulants

(up to the sixth order). The paper is organized as follows: the

procedure to derive these expressions is briefly described in

x2; the results are reported in x3 and discussed in x4; x5 is

dedicated to conclusions.



2. Procedure

Let us consider the best fit of the phases difference, assuming

that it is sufficient to truncate equation (1) at the third order

(�C3) to have a good fit. In order to evaluate the resulting

error on the relative first cumulant (i.e. on the bond distance

variation) owing to the neglect of the third cumulant, we can

solve the following equation with respect to �C 01,
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which corresponds to minimize the fitting difference between

2k�C1� (4/3)k3�C3 and 2k�C 01; km and kM are the minimum

and maximum values of the fitting interval, respectively.

Expanding (3) we obtain
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As a result, from (5) it can be observed that for �C3 > 0 the

neglect of the third cumulant gives an underestimation of the

relative first cumulant. On the contrary, for �C3 < 0 the

relative first cumulant is overestimated. More important,

equation (5) allows the error on �C1 to be quantitatively

estimated. For example, by (5), the neglect of a third cumulant

�C3 ’ 0.0005 Å3 in the fitting interval k = 2–10 Å�1 (i.e. km =

2 and kM = 10 Å�1) gives an underestimation of �C1 of about

0.020 Å.

As a second example, let us consider the best fit of the

amplitudes ratio, assuming that it is sufficient to truncate (2) at

the fourth order (�C4) to have a good fit. To evaluate the

resulting error on the coordination number and on the second

cumulant owing to the neglecting of the fourth cumulant, we

can solve the following system of equations with respect to N 0

and �C 02,
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whose solutions are
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As a result, from (8)–(9) it can be seen that the neglect of the

fourth cumulant gives an underestimation/overestimation of

the relative second cumulant and of the coordination number

ratio, according to the sign of �C4 . These errors, which

depend on the fitting interval (km–kM), can be quantitatively

estimated by (8) and (9). For example, the neglect of the

fourth cumulant �C4 ’ 0.0001 Å4 in the fitting interval

2–10 Å�1 gives an underestimation of �C2 of about 0.0032 Å2

and on the logarithm of N of about 0.096.

3. Results

Following the procedure described in the previous section, the

errors on the cumulants analysis have been derived for

different cases. The results are listed below.

3.1. Phases difference

3.1.1. Neglect of the third and fifth cumulant. Neglecting

both the third and fifth cumulant, the relative first cumulant

results as follows,
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�
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When the fifth cumulant is negligible (�C5 = 0), (10) reduces

to (5).

3.1.2. Neglect of the fifth cumulant. With the neglect of the

fifth cumulant, the first and third cumulant become
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�
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respectively. As a result, both the relative first and third

cumulant are underestimated when �C5 > 0 and over-

estimated when �C5 < 0.

3.2. Amplitudes ratio

3.2.1. Neglect of the coordination number, fourth and
sixth cumulant. In the case that the coordination number,

fourth and sixth cumulant are neglected, the second cumulant

becomes
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3.2.2. Neglect of the fourth and sixth cumulant. Neglecting

both the fourth and sixth cumulant, the coordination number

and the second cumulant become

ln N 0 ¼ ln N �
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When the sixth cumulant is negligible (�C6 = 0), equations

(14) and (15) reduce to (8) and (9), respectively.

3.2.3. Neglect of the sixth cumulant. When the sixth

cumulant is neglected, the coordination number, the second

and the fourth cumulant change as
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Accordingly, they are underestimated when �C6 > 0 and

overestimated when �C6 < 0.

3.2.4. Neglect of the coordination number. Let us consider

the case that (2) truncated at the fourth order (�C4) gives a

good fit. If the variation of the coordination number is

neglected, the second and the fourth cumulant result as

follows,
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Equation (19) shows the correlation between coordination

number and EXAFS Debye–Waller factor. As expected, a

decrease (or increase) of the coordination number, if

neglected, leads to an increase (or decrease) of the second

cumulant, according to the amplitude of the EXAFS signal.

This is particularly important in EXAFS studies of glasses or

disordered systems, where coordination number and Debye–

Waller factor play a key role (Kuzmin et al., 2006; Sanson,
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Rocca, Dalba et al., 2007; Sanson, Rocca, Fornasini et al.,

2007).

4. Discussion

Let us test the equations calculated in the previous sections

through an experimental example. To this aim, let us consider

the phases difference and the logarithm of the amplitudes

ratio of the EXAFS signals measured in silver molybdate

glasses at room temperature against the same glass at 25 K

used as reference (Sanson, Rocca, Dalba et al., 2007).

Fig. 1 shows the difference of the phases and the corre-

sponding best fits in the range k = 2.5–12 Å�1. The fits were

performed (a) using only the first cumulant (�C1), (b)

including the third cumulant (�C1 + �C3) and (c) including

the fifth cumulant (�C1 + �C3 + �C5). The corresponding

fitting results are reported in the first part of Table 1. It can be

observed that the third cumulant is essential to obtain accu-

rate relative values of the first cumulant. In this example, the

discrepancy on �C1 between fit (a) and fit (b) [or fit (c)] is

about 0.02 Å. The discrepancy on �C3 between fit (b) and fit

(c) (although less important) is about 10�4 Å3. These discre-

pancies can be directly estimated by (5), (10) and (11)–(12)

(depending on the fit case) with km = 2.5 and kM = 12 Å�1. The

results are listed in the second part of Table 1. It can be seen

that the agreement between predicted values (i.e. second part

of Table 1) and best-fit values (i.e. first part of Table 1) is

excellent.

Analogously, Fig. 2 shows the logarithm of the amplitude

ratios and the corresponding best fits in the same interval k =

2.5–12 Å�1. The fits were performed (a) using only the second

cumulant (�C2), (b) including the fourth cumulant (�C2 +

�C4), (c) only including the coordination number and the

second cumulant (N + �C2) and (d) including coordination

number, second and fourth cumulants (N + �C2 + �C4). For

simplicity, the best fits that include the sixth cumulant are not

reported, but the reliability of the corresponding equations

(14)–(18) is assured anyway.

The best-fitting results are listed in the first part of Table 2.

It can be seen, for example, that the changes of the coordi-

nation number, when neglected, drastically affect the values of

the second cumulant, as well as of the fourth cumulant. The
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Figure 1
Example of phases difference (black solid line) fitted with �C1 (dashed
line), �C1 + �C3 (solid line) and �C1 + �C3 + �C5 (dash-dotted line).
The results are listed in the first part of Table 1 and compared with the
values predicted from equations of x2 and x3.

Table 1
Fit of the phases difference.

First part: relative cumulants obtained from the fits. Second part: relative
cumulants predicted from the equations calculated in x2 and x3.

�C1 (Å) �C3 (Å3) �C5 (Å5)

Resulting cumulants by fit
(a) �C1 �0.0397 – –
(b) �C1 + �C3 �0.0201 3.37 � 10�4 –
(c) �C1 + �C3 + �C5 �0.0179 4.42 � 10�4 3.24 � 10�6

Estimated cumulants of fit
(a) by (5) with values of fit (b) �0.0397 – –
(a) by (10) with values of fit (c) �0.0397 – –
(b) by (11)–(12) with values of fit (c) �0.0201 3.37 � 10�4 –

Figure 2
Example of logarithm of amplitudes ratio (black solid line) fitted with
�C2 (dotted line), �C2 + �C4 (dashed line), N + �C2 (dash-dotted line)
and N + �C2 + �C4 (solid line). The results are listed in the first part of
Table 2 and compared with the values predicted from equations of x2
and x3.

Table 2
Fit of the logarithm of amplitude ratio.

First part: relative cumulants obtained from the fits. Second part: relative
cumulants predicted from the equations calculated in x2 and x3.

N �C2(Å2) �C4 (Å4)

Resulting cumulants by fit
(a) �C2 – 4.98 � 10�3 –
(b) �C2 + �C4 – 7.20 � 10�3 6.48 � 10�5

(c) ln N + �C2 0.795 3.66 � 10�3 –
(d) ln N + �C2 + �C4 0.787 3.45 � 10�3

�4.76 � 10�6

Estimated cumulants of fit
(a) by (13) with values of fit (b) – 4.98 � 10�3 –
(a) by (13) with values of fit (c) – 4.98 � 10�3 –
(a) by (13) with values of fit (d) – 4.99 � 10�3 –
(b) by (19)–(20) with values of fit (d) – 7.20 � 10�3 6.45 � 10�5

(b) by (19)–(20) with values of fit (c) – 7.25 � 10�3 6.63 � 10�5

(c) by (8)–(9) with values of fit (d) 0.795 3.67 � 10�3 –



discrepancy on �C2 between fit (b) and fit (d) is almost

0.004 Å2, and about 7 � 10�5 Å4 on �C4 . The cumulant

differences among the fits can be directly estimated from the

equations of x2 and x3. The results are listed in the second part

of Table 2. The agreement with the best-fit values (i.e. with the

first part of Table 2) confirms the goodness of the analytical

expressions derived in this paper.

Before the conclusions, let us make a final observation. The

experimental data cannot be fitted using an unrestricted

number of fitting parameters, otherwise the fit becomes better

but the essential parameters (i.e. distance, Debye–Waller

factor, coordination number) can give worse results. However,

on the other side, the main higher-order cumulants cannot be

neglected in many cases, but it is necessary to find a good

balance.

5. Conclusions

In this work, analytical expressions have been derived to

determine the errors in the EXAFS analysis, by the ratio

method, owing to the neglect of the higher-order cumulants.

The reliability of the present results has been tested on

experimental data. The importance of the higher-order

cumulants to obtain accurate values of the lower-order

cumulants, i.e. bond distance, coordination number and

Debye–Waller factor, is demonstrated.
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