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Aberration theory of plane-symmetric optical systems of mirror and grating

has been developed based on the wavefront aberration method. A toroidal

reference wavefront surface is used to define the wavefront aberration. Based

on the ray geometry, the coordinate mapping relationships of the ray between

the optical element and the incident and aberrated wavefronts are derived using

a polynomial-fit method; this enables the resultant coefficients of the wavefront

and the transverse aberration to be kept to the fourth-order accuracy of the

aperture-ray coordinates. By setting up the transfer equations of the field and

aperture rays, the contribution to wavefront aberrations from each mirror and

grating can be added to make the aberration calculation of multi-element

systems feasible. The theory is validated by the analytic formulae of the spot

diagram.
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1. Introduction

Recent developments in synchrotron radiation instrumenta-

tion are toward higher spectral and/or spatial resolution X-ray

and ultraviolet (XUV) optics. They usually consist of a series

of mirrors and gratings arranged with a plane of symmetry.

The initial determination and optimization of optical para-

meters of these instruments need aberration analysis of the

optical systems although ray tracing can provide a powerful

tool for evaluating XUV optics. The grating theory developed

by Beutler and Namioka has often been used to analyze these

optical systems, but it is essentially suitable for a single grating,

and its high-order aberration coefficients can correctly

describe the aberration of the grating only in the case where

the angle of diffraction is zero and the meridional and sagittal

focal curves cross on the grating normal (Beutler, 1945; Noda

et al., 1974). A number of attempts have been made on the

aberration analysis of multi-element systems. The analytic

formulae of the spot diagram can reproduce the ray-traced

spot diagram with a high degree of accuracy (Namioka et al.,

1994); its aberration expressions on the image plane are

correct; and recently the mathematical tool of Lie optics has

been applied to the grating imaging systems (Goto & Kuro-

saki, 1993). The aberration coefficients for double-element

systems from the two methods have been studied (Masui &

Namioka, 1999a,b; Namioka et al., 2001; Palmer et al.,

1998a,b), but they are very complex and difficult to be used to

optimize the optical parameters.

An important advance in the wavefront aberration (WFA)

theory for multi-element systems was made by Chrisp

(1983a,b). He defines the wavefront aberration with reference

to an astigmatic wavefront surface and an aperture stop

displaced from the grating center to make possible the aber-

ration calculation of the off-plane object. However, if we apply

the theory to calculate the image of mirror–grating systems,

we find that it can give a good agreement to ray-tracing results

only with a small acceptance angle of the ray pencil; besides,

the calculation of the transverse aberration is limited to the

case when the image plane is just on the focus position and the

wavefront of the exit ray pencil is almost stigmatic. These

limitations result from the following. (i) In finding the trans-

verse aberration with the wavefront aberration, the deviation

angle of the aberrated ray from the reference wavefront

surface normal in the meridional and sagittal directions, �x
0,

�y
0, are determined by

� 0x ¼
dW

dx00
; � 0y ¼

dW

dy00
; ð1Þ

where x0
0, y0

0 are the coordinates of the ray position on

the aberrated wavefront at the exit pupil, whereas Chrisp

(1983a,b) used those on the reference wavefront, and it will

lead to a significant error in the image when a large wavefront

aberration exists. This may be due to the difficulty in the

wavefront aberration method that the intermediate variables

x0
0, y0

0 depend on the ultimate variables, the image coordinates

x0, y0. (ii) In finding the wavefront aberration coefficients, a few

significant errors exist; for example, in finding the focal line of

the reference wavefront, the position of the aperture-stop

center and in dealing with wavefront aberration. Namioka et

al. (1994) have indicated that the aberrations from Chrisp

(1983a,b) significantly deviate from those of the analytic

formulae of the spot diagram or ray tracing calculations.
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In this study we have developed an accurate third-order

aberration theory of plane-symmetric mirror or grating

systems based on Chrisp’s work. The theory is applicable

to the aberration analysis of the optical figure of a plane,

cylindrical, spherical, toroidal, ellipsoidal and paraboloidal. It

circumvents the above limitations of Chrisp (1983a,b) by two

measures: (i) a toroidal reference wavefront surface is used to

define the wavefront aberration in x2.2; (ii) the mapping

relationships of the coordinates of the ray between the optical

element and the wavefront surfaces are obtained by solving

the complex ray equations using the polynomial-fit method.

Consequently, the wavefront and transverse aberration coef-

ficients are derived in x2.3 to x2.4 and x3. In x4, where the

transfer equations of the field and aperture rays between

optical elements are set up, the wavefront aberration of multi-

element systems is investigated. Finally the theory is validated

with respect to the analytic formulae of the spot diagram

(Namioka et al., 1994).

2. Wavefront aberrations

2.1. Definition of reference coordinate systems and rays

For convenience in the following discussions it is necessary

to make clear the reference coordinate systems and rays used

to describe the optical system. Fig. 1 shows a plane-symmetry

optical system with an off-plane object point S0. The coordi-

nate systems, xyz, x0y0z0 and x0
0y0
0z0
0 corresponding to the

aperture stop, the entrance and exit pupils are stipulated to

have a common origin, �PP, the center of the aperture stop; the

axes of z, z0 and z0
0 are along the grating surface normal at the

vertex, the incident and exit principal rays, respectively; the

axes of x, x0, x0
0 are all on the horizontal plane. The three

coordinate systems are used to describe the position of the ray

on the optical surface, the wavefronts on the entrance and exit

pupils, respectively. The ray S0
�PPS 00 is referred to as the prin-

cipal ray; and the base ray O0OO00, lying in the symmetry

plane, comes from the central field point O0 and is diffracted at

the grating vertex O. In the following, the wavefront aberra-

tion, the positions of the object and image plane and the

parameters of the optical parameters are specified with

respect to this ray. The field ray S0OS 00 is displaced from the

symmetry plane and specified with a field angle of u and u0 in

the object and image space.

Since there is no optical axis on a plane-symmetric optical

system as in the rotationally symmetric one, the field coordi-

nate is defined with respect to the base ray, and the aperture

coordinate with respect to the principal ray. The basal theory

denotes the aberration terms obtained by using field coordi-

nates. The first- and second-order wavefront aberrations

determine the principal ray and the focal positions on it (i.e.

Fm and Fs as in Fig. 1), respectively. The parabasal theory

below discusses the aberrations based on the definite principal

ray and the foci.

2.2. Reference wavefront surface

The wavefront aberration is defined as the displacement of

the wavefront from a specified reference surface. For rota-

tionally lens systems a spherical surface is used, and the

position of its center is determined from the paraxial theory

(Gaussian optics). For plane-symmetric optical systems,

especially grazing-incidence optics, very large astigmatism

exists; the wavefront may be cylindrical. Chrisp (1983a,b)

adopts an astigmatic reference surface to define the wavefront

aberration, but it does not specify the figure of this astigmatic

reference surface. A specific figure is required in order to

obtain the exact information of its focal lines. A toroidal figure

is chosen here because it is relatively simple with different

meridional and sagittal foci.

Fig. 2 shows a toroidal reference surface with its vertex on

the center of the entrance pupil, �PP ; Q(x0, y0, z0) is any point on

the surface; the z0 coordinate of Q is given by the toroidal

equation,

z0 ¼ rm � rm

(
1�

x2
0 þ y2

0ð Þ

r2
m

þ
2rs

rm

rs

rm

� 1

� �
1� 1�

y2
0

r2
s

� �1=2
" #)1=2

; ð2Þ

where rm and rs are the major and minor radii of the toroidal

surface, which here mean the distances of the meridional and

sagittal focal lines from the optical element. The direction of

the ray is defined as the normal of the wavefront; thus the ray
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Figure 1
Optical scheme of a plane-symmetry optical system and its reference
coordinate systems, reference rays and meridional and sagittal foci.



equation at point Q, from equation (2), is formulated as

follows,

x� x0
x0

rm�z0

¼
y� y0

y0

rm�z0

h
1þ rm�rs

r2
s�y2

0ð Þ
1=2

i ¼ z� z0

�1
: ð3Þ

Its projection trajectory Fm on the plane of x = 0 is then

ym ¼
rs � rmð Þy0

r2
s � y2

0

� �1=2
; zm ¼ rm; ð4Þ

and that of Fs on the plane of y = 0 is

xs ¼ x0 �
z� z0ð Þx0

rm � z0

; zs ¼ z0 þ
rm � z0

1þ rm�rs

r2
s�y2

0ð Þ
1=2

: ð5Þ

Fm and Fs are referred to as the meridional and sagittal foci,

and M(0, ym, zm) and S(xs, 0, zs) represent the corresponding

projection points on them to point Q. Expanding ym, xs, zs in

equations (4) and (5) as the power series of x0 and y0 to the

fourth order yields

ym ¼
rs � rmð Þ

rs

y0 þ
rs � rmð Þ

2r3
s

y3
0;

xs ¼
rm � rsð Þ

rm

x0 þ
rm � rsð Þ

2r2
mrs

x0y2
0;

zs ¼ rs þ
rm � rsð Þ

2r2
m

x2
0 þ

rm � rsð Þ

8r4
m

x4
0 þ

rm � rsð Þ

2r3
mrs

x2
0y2

0:

ð6Þ

The above equations show that the meridional focus, Fm, is

related to only y0 and it is a straight line perpendicular to the

z0 axis, while the sagittal focus, Fs, is related to both x0 and y0

and looks like a curved strip as shown in Fig. 2. The first term

on the right-hand side of the above equations just describes

the meridional and sagittal focal lines given by Chrisp

(1983a,b). However, the remaining terms are found to have

contributions to high-order wavefront aberration coefficients

in the later discussions.

The point Qy on the reference surface is defined to be on the

y0–z0 plane with the same y0 coordinate as Q. Setting x0 = 0 in

(6) indicates that the ray passing through Qy will intersect the

z0 axis at point S0(0, 0, rs) and the line QS at point M(0, ym, rm);

consequently, the lengths of QM, QyM, QyS0, and �PPS0 can be

found up to the fourth-order accuracy of x0, y0,

QM ¼ QyM ¼ rm �
rs � rmð Þ 4r2

s þ 3y2
0ð Þy2

0

8r4
s

;

QyS0 ¼
�PPS0 ¼ rs:

ð7Þ

2.3. Wavefront aberration

Chrisp (1983a,b) has defined the wavefront aberration of

a plane-symmetric optical system as given in the following.

Fig. 3 shows ray paths through a plane-symmetry optical

system; �PPþ, �PP are the centers of the entrance and exit pupils;

the z0 axis is along the principal ray S0
�PPþ �PPS 00; the x0, x0

0 axes

are on the horizontal plane passing through �PPþ, �PP ; the y0, y0
0

axes are perpendicular to the x0, x0
0 and the principal ray.

Parabasal rays in the x0–z0 plane pass through the meridional

focus Fm
0, and the y0–z0 plane contains the corresponding

sagittal focus Fs
0.

A perfect toroidal wavefront �+ enters the system and

emerges as the aberrated wavefront �. The notation (+) is

used to distinguish the corresponding points, �PPþ, Qy
+, Q+ on

the toroidal reference surface of the object pencil. The aber-

rations of the image pencil cause its rays to be displaced from

the parabasal focal lines, Fm
0 and Fs

0, which correspond to an

exit toroidal reference surface �r . The aberrated wavefront �
will be compared with �r to define the wavefront aberration.

The wavefront aberration W of a ray passing through a

point P in the system is defined as the distance along the ray

between the aberrated wavefront and the reference surface.

So for ray SQ+PQS0, the wavefront aberration is

W ¼ QrQ
� �

¼ QþQr

� �
� QþQ
� �

: ð8Þ

Using h �PPþ �PPi = hQ+Qri, since they are the ray distances

between the same wavefronts, then the wavefront aberration

is equivalent to

W ¼ �PPþ �PP
� �

� QþQ
� �

: ð9Þ

To obtain the wavefront aberration, an auxiliary ray

S0Qy
+QyS0

0 is constructed. This ray lies in the sagittal plane

and intersects the four focal lines. It passes Qy
+, Qy as defined
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Figure 3
Ray paths through the plane-symmetry optical system, the wavefronts on
the entrance and exit pupil and their corresponding foci.

Figure 2
Toroidal reference wavefront surface and its foci on the meridional and
sagittal plane.



in the last section. Splitting the aberration into the path

difference between the principal and auxiliary ray, and the

path difference between the auxiliary and the general ray, (9)

can be written as

W ¼ �PPþ �PP
� �

� Qþy Qy

� �
þ Qþy Qy

� �
� QþQ
� �

: ð10Þ

The additional ray distances to the focal lines as indicated in

(7) can now be added; thus the first two terms in the above

equation are then converted into

�PPþ �PP
� �

� Qþy Qy

� �
¼ S0

�PPS 00
� �

� S0QyS 00
� �

; ð11Þ

and the latter two terms into

Qþy Qy

� �
� QþQ
� �

¼ MQyM0
� �

� MQM0
� �

: ð12Þ

Substitution of (11) and (12) into (10) gives the final result of

the wavefront aberration of the ray through P,

W ¼ S0
�PPS 00

� �
� S0QyS 00
� �

þ MQyM0
� �

� MQM0
� �

: ð13Þ

Now let us consider the wavefront aberration of a grating.

Referring to Figs. 1 and 3, if P,Py are the intersection points of

rays MQ+QM0 and S0Qy
+QyS0

0 with the grating surface, the

replacement of Q,Qy in (13) by P,Py gives the wavefront

aberration of the grating,

W ¼ S0
�PPS 00

� �
� S0PyS 00
� �

þ MPyM0
� �

� MPM0
� �

: ð14Þ

To convert from optical path distances to real distances

through the grating, the additional optical path difference

produced by the groove of the grating must be taken into

account. The optical path length of each term equals the

geometrical distance. If the groove number between P and �PP is

n, equation (14) for the mth diffraction order of the grating is

then

W ¼ S0
�PPS 00 � S0PyS 00 þMPyM0 �MPM0 � nm�: ð15Þ

The general form of a plane-symmetric surface can be

expressed, in its vertex coordinate system, by the equation

(Noda et al., 1974; Peatman, 1997)

z ¼
P1
i¼0

P1
j¼0

ci;j�
i�j;

c0;0 ¼ c1;0 ¼ 0; j ¼ even:

For the third-order aberration theory, the power series needs

to be kept to the fourth order; thus the figure equation is then

given by

z ¼ c2;0�
2
þ c0;2�

2
þ c3;0�

3
þ c1;2��

2
þ c4;0�

4

þ c0;4�
4
þ c2;2�

2�2: ð16Þ

Peatman (1997) has given the coefficients ci,j for a toroid,

ellipsoid and paraboloid. For a toroidal surface, ci,j is as

follows,

c2;0 ¼
1

2R
; c0;2 ¼

1

2�
; c3;0 ¼ 0; c1;2 ¼ 0;

c4;0 ¼
1

8R3
c0;4 ¼

1

8�3
c2;2 ¼

1

4R2�
;

ð17Þ

where R and � are the major and minor curvature radii of the

toroid. If R = �, (16) is just a spherical equation, and if R or �
tend to infinity it is then a cylindrical equation.

The last section has given the positions of M(0, ym , rm) and

S0(0, 0, rs) in the entrance-pupil coordinate system, and ym is

determined by (6). The optical path lengths in (15) can thus be

determined for the given points P and Py on a specific optical

surface. However, the optical elements discussed here are

usually a mirror or grating with a ray pencil of oblique or even

extremely grazing incidence, so that the principal ray is at an

oblique angle to the optical surface normal. The position of P

or Py can be described conveniently by the figure equation

of the optical surface on the coordinate system xyz or ��z0

(called the vertex coordinate system) as shown in Fig. 1.

Therefore we need to find the mapping relationships of the ray

coordinates from the optical element to the reference wave-

front surface to express ym by x and y.

Figs. 1 and 2 show an object ray pencil incident on a grating,

the related coordinate systems and foci. Since u or � is usually

very small and rm and rs are large, the following approxima-

tions can be made,

OMx ’
�PP0Mx ’ rm; OS0 ’ P0S0 ’ rs:

� and � are the angles of incidence and diffraction at the

grating. The distance of �PP0 from O is

�yy ¼ s� ¼ s0� 0 � ul; ð18Þ

where s = OO0 and � is the intercept and angle of the principle

ray with respect to the base ray, and l is a non-physical para-

meter so that the effect on aberrations due to �yy can be

correlated to u.

Fig. 4 shows the optical scheme of the field and aperture

rays passing through a system of two elements on the sagittal

plane. The ray geometry gives the proportion relationship

rsu

�yy
¼

s� rs

s
: ð19Þ

Equations (18) and (19) result in

�yy ¼
rss

s� rs

u ¼ lu ¼ s�: ð20Þ

Hence the relationships between s, � and l, u are derived as

follows,

� ¼
l

rs

� 1

� �
u � ��lu; l ¼

rss

s� rs

;

� 0 ¼
l0

r0s
� 1

� �
u0 � �0lu; s0 ¼

r0sl

l þ r0s
;

ð21Þ

where �l = 1�l/rs and �l
0 = 1 + l/rs

0.

Actually, the intersection point of the principal ray on the

grating surface, �PP, is not exactly on the � axis like �PP0, but also

displaced in the axes of � and z owing to the oblique incidence

of the ray pencil and the sagittal curvature of the grating. The

displacement of �PP from O is

�xx ¼ u2l2c0;2 tan � � xcu2; �yy ¼ ul; �zz ¼ u2l2c0;2: ð22Þ

So (16), representing the optical surface, becomes
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z ¼ c2;0 xþ xcu2
� �2

þc0;2 yþ ulð Þ
2
þc3;0 xþ xcu2

� �3

þ c1;2 xþ xcu2
� �

yþ ulð Þ
2
þc4;0 xþ xcu2

� �4

þ c0;4 yþ ulð Þ
4
þc2;2 xþ xcu2

� �2
yþ ulð Þ

2
�u2l2c0;2:

ð23Þ

Referring to Fig. 1, (x0, y0, z0), (xp, yp, zp) and (0, ym, rm) are

the coordinates of Q, P, M, and z0 and zp are determined by

(2) and (23), respectively. The coordinates of M, from x2.1, are

given by

xm ¼ 0; ym ¼
rs � rmð Þ

rs

y0 þ
rs � rmð Þ

2r3
s

y3
0 þ rm�lu;

zm ¼ rm:

ð24Þ

To set up the equation of the line QPM, the coordinate

x, y, z of P should be transformed to the entrance-pupil

coordinate system,

xp ¼ x cos �� z sin �; yp ¼ y; zp ¼ x sin �þ z cos�:

ð25Þ

Then the line equation of QPM is

x0

xp

¼
y0 � ym

yp � ym

¼
z0 � rm

zp � rm

: ð26Þ

Obviously this equation cannot be solved analytically. The

general approach is to use an iterative method. Because all

variables are not numerical but symbolic, it is difficult to judge

whether the result reaches the required accuracy or not. The

polynomial fit can circumvent the difficulty. Assuming that the

mapping relationship of the ray coordinates from the optical

element to the reference wavefront surface is a polynomial

expression,

x0 ¼
P4

i¼0

P4

j¼0

a0ijx
iyj; y0 ¼

P4

i¼0

P4

j¼0

b0ijx
iyj iþ j � 4ð Þ; ð27Þ

the coefficients aij
0 and bij

0 can be fitted using (26). With the

same process we can also obtain the reverse mapping rela-

tionship,

x ¼
P4

i¼0

P4

j¼0

aijx
i
0y

j
0; y ¼

P4

i¼0

P4

j¼0

bijx
i
0y

j
0 iþ j � 4ð Þ: ð28Þ

2.4. Wavefront aberration coefficients

The terms related to the optical path length in (15) can be

separated into the contributions from the object and image ray

pencils,

Wobj ¼ S0
�PP� S0Py þMPy �MP;

Wima ¼ S 00 �PP� S 00Py þM0Py �M0P:
ð29Þ

where S0
�PP = rs and S 00 �PP = rs

0. Hence (15) is equivalent to

W ¼ Wobj þWima � nm�: ð30Þ

The aberration coefficients can now be found from the

pencil coefficients obtained from the expansion of each pencil

contribution. The ray pencils of the image and object differ in

their coordinates with respect to the substrate. So once the

coefficients have been found for one of them, the coefficients

of another can be obtained by substitution of the corre-

sponding optical parameters. Note that the sign convention of

� or � is that they are taken to be positive if positioned at the

positive side of the x axis. In the following we first expand each

term in Wobj into a power series of coordinates of x, y, u.

The length MP is calculated by

MP ¼ x� rm sin �ð Þ
2
þ y� ~yymð Þ

2
þ z� rm cos �ð Þ

2
� �1=2

; ð31Þ

where ~yym is the coordinate of M in the y axis and, from Fig. 1,

is given by

~yym ¼ urm 1�
l

rs

� �
þ

rs � rmð Þ

rs

y0 þ
rs � rmð Þ

2r3
s

y3
0: ð32Þ

Substituting y0 with (27) and z with (23) in the above equation,

MP is now correlated to only the coordinates x, y, u and can be

developed into the power series form

MP ¼
P4

ijk

	ijkxiyjuk iþ jþ k � 4ð Þ; ð33Þ

where 	ijk are the coefficients of a power series.

To calculate S0Py and MPy we need to know the position of

Py. Since Py is the intersection point of the ray S0Qy
+QyS0

0 on

the optical surface, applying the mapping relationship (28) and

setting x0 = 0 can derive its position,
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Figure 4
Optical scheme of the field and aperture rays passing through a system of two elements on the sagittal plane.



xpy ¼ a01y0 þ a02y2
0 þ a03y3

0 þ a04y4
0;

ypy ¼ b01y0 þ b02y2
0 þ b03y3

0;
ð34Þ

where aij and bij have been fitted above. Replacing y0 in the

above equation by (27) enables xpy and ypy to be expressed as

the polynomial of x, y, u. Substituting them for x, y and (23)

for z in (31) will give the power series of MPy as in (33).

Concerning S0Py, we only need to replace the related para-

meters of M by those of S0 further; that is, to use rs and ~yys =

u(rs � l) instead of rm and ~yym in (31).

Adding the corresponding 	ijk of each ray pencil of the same

index i, j, k, Wobj can be expressed as the power series

Wobj ¼
P4

ijk

Mijkxiyjuk iþ jþ k � 4ð Þ; ð35Þ

where Mijk are the wavefront aberration coefficients of the

object pencil. The resultant 16 coefficients are listed in

Appendix A: equations (78)–(85) for in-plane aberration

(u = 0) and equations (86)–(93) for off-plane aberration,

depending on the parameters of �, rm, rs, l: Mijk = Mijk(�, rm,

rs, l).

Similarly, the contributions from the image pencil can be

derived in the same way as above, and Wima is expressed by

Wima ¼
P4

ijk

M0ijkxiyju0k iþ jþ k � 4ð Þ: ð36Þ

The coefficients of the image-pencil aberration can be

obtained only by substitution of �, rm
0, rs
0, l 0 of the image pencil

for �, rm, rs, l of the object pencil in each Mijk, respectively:

Mijk
0 = Mijk(�, rm

0, rs
0, l0).

The groove function n = n(�, �) in (30) for holographic and

mechanically ruled gratings has been derived by Namioka et

al. (1994),

n ¼
�



þ

�




n20

2
�2 þ

n02

2
�2 þ

n30

2
�3 þ

n12

2
��2

	
þ

n40

8
�4 þ

n22

4
�2�2 þ

n04

8
�4 þ . . .



; ð37Þ

where the effective grating constant 
 is defined by


 � 1= @n=@�ð Þ�¼�¼0; ð38Þ

and � and nij are given by equations (20)–(22) of Namioka et

al. (1994). With the coordinate transformation � = x + xcu
2,

� = y + ul, n can be expressed as

n ¼
P4

ijk

�=
ð ÞNijkxiyjuk; ð39Þ

where Nij are given in Table 1.

Consequently, the wavefront aberration W of (30) in terms

of the pencil coefficients can now be represented by

W ¼
P4

ijk

wijkxiyjuk iþ jþ k � 4ð Þ: ð40Þ

wijk , referred to as the wavefront aberration coefficients, are

given by

wijk ¼ Mijk �; rm; rs; lð Þ þ ð�1ÞkMijk �; r0m; r0s; l0ð Þ ��Nijk;

ð41Þ

where � = (m�/
)� and the factor (�1)k results from u0 = �u

since the field ray is displaced from the base ray only on the

sagittal plane without the effect of the groove diffraction of

the grating.

The direction of the base ray after diffraction must be such

that the meridional tilt of the wavefront is zero, i.e. w100 = 0.

This directly leads to the familiar grating equation,

sin �þ sin � ¼ m�=
: ð42Þ

To determine the direction of the principal ray, an addi-

tional condition, w011 = 0, should be satisfied,

l 2c0;2 cos��
1

rs

� �
� l 0 2c0;2 cos ��

1

r0s

� �
¼ n02�l: ð43Þ

The position along the base ray of the meridional focal line is

given from w200 = 0, i.e.

2c2;0 cos�þ cos �ð Þ �
cos2 �

rm

þ
cos2 �

r0m

� �
¼ n20�: ð44Þ

Similarly for the sagittal focal line position, w020 = 0, and

2c0;2 cos �þ cos�ð Þ �
1

rs

þ
1

r0s

� �
¼ n02�: ð45Þ

Equations (43) and (45) directly lead to l 0 = �l.

From the above discussions, the explicit expression of the

wavefront aberration for parabasal theory will be

W ¼ w300x3
þ w120xy2

þ w400x4
þ w220x2y2

þ w040y4

þ w102xu2
þ w013yu3

þ w202x2u2
þ w022y2u2

þ w111xyuþ w031y3uþ w211x2yu: ð46Þ

The former five terms give the wavefront aberration for an in-

plane object and the latter seven terms give the additional off-

plane wavefront aberration for an off-plane object.

3. Transverse aberration on the image plane

The issue of determining the position of an aberrated ray on

the image plane is to find the diffraction direction of the ray. If

the mapping relationships of the ray from the optical surface

to the aberrated wavefront can be obtained, the direction of

the aberrated ray will be determined. Equation (27) is used to

calculate the position of the rays on the incident wavefront for

any point P. But it does not apply to the case of an aberrated

ray because aberration from the optical surface takes place.
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Table 1
Nij as a function of nij .

In-plane Off-plane

N100 ¼ 1=� N120 ¼ n12=2 N011 ¼ n02l N102 ¼ n12l 2=2þ n20xc

N200 ¼ n20=2 N400 ¼ n40=8 N111 ¼ n12l N202 ¼ n22l 2=4þ 3n30xc=2
N020 ¼ n02=2 N220 ¼ n22=4 N031 ¼ n04l=2 N022 ¼ 3n04l 2=4þ n12xc=2
N300 ¼ n30=2 N040 ¼ n04=8 N211 ¼ n22l=2 N013 ¼ n04l 3=2þ n12xcl



The effect of aberration must be considered. A toroidal

surface is also employed as the reference surface for the

aberrated wavefront.

As shown in Figs. 5 and 6, �0
0 and �I denote the exit

wavefront surface at the exit pupil and the image plane at a

distance r0
0 from the optical element. The reference surface

normal at Q0 intersects the principal ray S �PPS0 at M0 and S0

displaced from the optical element by rm
0 and rs

0, meridionally

and sagittally. The direction of the aberrated ray in relation to

the normal is given from the slope of the wavefront with

respect to the reference surface. The wavefront aberration

measures the separation between these two surfaces; its

differentials in the two pupil coordinates will give this slope in

the meridional and sagittal direction. So the angular displa-

cement of the aberrated ray from the reference surface normal

in the meridional and sagittal directions, �x
0, �y

0, are

� 0x ¼
dW

dx 00
; � 0y ¼

dW

dy 00
; ð47Þ

where x0
0, y0

0 are the coordinates of the ray on the aberrated

wavefront at the exit pupil. Consequently, the actual inter-

section points, Md
0 and Sd

0, of the aberrated ray with the

principal ray are at distances of rmd
0 and rsd

0 from the optical

element. This aberrated ray finally reaches point B on the

image plane.

In (47), x0
0, y0

0 are correlated to the wavefront aberration

but the relationships between them are unknown. This is one

difficulty in wavefront aberration. However, the aberrated ray

equation can be set up based on the ray geometry. Assuming

the mapping relationship of the ray from the optical element

to the aberrated wavefront surface is as follows,

x00 ¼
P4

i¼0

P4

j¼0

Aijx
iyj; y00 ¼

P4

i¼0

P4

j¼0

Bijx
iyj iþ j � 4ð Þ; ð48Þ

where A00 = 0 and B00 = 0, then differentiating both sides of

the above equations with respect to x0
0, y0

0 will result in the

following equations,

1 ¼
X4

i¼0

X4

j¼0

i
@x

@x00
Aijx

i�1yj
þ j

@y

@x00
Aijx

iyj�1

� �
;

0 ¼
X4

i¼0

X4

j¼0

i
@x

@y00
Aijx

i�1yj
þ j

@y

@y00
Aijx

iyj�1

� �
;

1 ¼
X4

i¼0

X4

j¼0

i
@x

@y00
Bijx

i�1yj
þ j

@y

@y00
Bijx

iyj�1

� �
;

0 ¼
X4

i¼0

X4

j¼0

i
@x

@x00
Bijx

i�1yj
þ j

@y

@x00
Bijx

iyj�1

� �
:

ð49Þ

From these linear equations, the four derivatives, @x/@x0
0,

@x/@y0
0, @y/@x0

0, @y/@y0
0, can be solved with the coefficients Aij

and Bij to be determined. Thus �x
0, �y

0 will be correlated to

x, y, u by the following expressions,

� 0x ¼
@W

@x

@x

@x 00
þ
@W

@y

@y

@x 00
; � 0y ¼

@W

@x

@x

@y 00
þ
@W

@y

@y

@y 00
: ð50Þ

On the other hand, as shown in Figs. 5 and 6, the auxiliary

line equations of P0Q0M0 and P0Q0S0 can be written as

x00 �
r0m � z00
r0m � zp

xp þ ðzp � z00Þ�
0
x

� �
¼ 0;

y00 �
z0s � z00
z0s � zp

yp þ zp � z00
� �

�0y þ�0lu
� �� �

¼ 0;

ð51Þ

where x0
0, y0

0, z0
0 of Q0 and �x

0, �y
0 can be expressed by the

coordinates of x, y, u; (xp, yp, zp), the coordinate of P in the

exit-pupil coordinate system, is calculated by (25) with the

replacement of � by �. z0
0 and zs

0 are well approximated by

z00 ¼
x020

2r0md

þ
y020

2r0sd

þ
x040

8r03md

þ
y040

8r03sd

þ
x020 y020

4r02mdr0sd

; ð52Þ

z0s ¼ r0s þ
r0m � r0sð Þ

2r02m
x020 þ

r0m � r0sð Þ

8r04m
x040 þ

r0m � r0sð Þ

2r03mr0s
x020 y020 : ð53Þ

After substitution of the above parameters into (51), the

coefficients Aij, Bij can be fitted, leading to the determination

of �x
0, �y

0.

For a plane-symmetric system, the position of an image

plane is usually specified with the distance from the grating

vertex along the base ray, so the origin of the image coordinate
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Figure 5
Ray diffracted from point P of the grating surface intersects point B on
the image plane �I on the meridional plane, with the incident and exit
wavefront as well as the focus.

Figure 6
Ray diffracted from point P at the grating surface intersects point B on
the image plane �I on the sagittal plane, with the incident and exit
wavefront as well as the focus.



x0, y0, OI, is set at the intersection point of the image plane with

the base ray, as illustrated in Figs. 5 and 6. Second, the

displacement of �PP from O causes the principal ray to displace

the base ray both horizontally and vertically. From (22) the

displacement in the x0 and y0 directions is determined by

Hx0 ¼
sin �� �ð Þxc

sin �
u2; Hy0 ¼ ul: ð54Þ

Consequently, the position of image B is calculated by

x0 ¼
xp � x00

zp � z00
r00 þ

zpx00 � z00xp

� �
zp � z00

þHx0 ;

y0 ¼
yp � y00

zp � z00
r00 þ

zpy00 � z00yp

� �
zp � z00

þHy0 ;

ð55Þ

Thus the expressions on the right-hand side of (55) are

expanded into the power series,

x0 ¼
P4

i¼0

P4

j¼0

P3

k¼0

dijkxiyjuk;

y0 ¼
P4

i¼0

P4

j¼0

P3

k¼0

hijkxiyjuk iþ jþ k � 4ð Þ:

ð56Þ

As a result, 32 non-zero coefficients dijk and hijk, called

transverse aberration coefficients, yield; 13 of them are fourth-

order terms and 19 terms for first- to third-orders. {d400, d040,

d220, h310, h130} of the fourth-order terms pertain to in-plane

aberrations and {d211, d031, d013, d022, d202, h301, h121, h112} to off-

plane ones. The fourth-order terms are quite complex but with

much smaller contributions to the aberration than those from

lower-order terms. They, in principle, should include the fifth-

order wavefront aberration coefficients like w500, w320 and so

on, but it is found that the results will no longer be correct

if they are included. The resultant fourth-order aberration

coefficients removing only the term related to the fifth-order

wavefront aberration still have a positive contribution espe-

cially when a large aberration of the optical system exists.

In Appendix B, only the transverse aberration coefficients

from the first to third order are listed. The imaging formulae of

the third-order aberration will be

x0 ¼ d100xþ d200x2
þ d020y2

þ d300x3
þ d120xy2

þ d002u2

þ d011yuþ d111xyuþ d102xu2;

y0 ¼ h010yþ h110xyþ h210x2yþ h030y3 þ h003u3 þ h001u

þ h101xuþ h201x2uþ h021y2uþ h012yu2:

ð57Þ

The expressions of dijk and hijk show that the contributions

to the transverse aberration consist of two parts: wavefront

aberration and the effect caused by the displacement of the

image plane from the focus (i.e. defocus). Because we have

w200 = 0, w020 = 0 in parabasal theory, the effect of defocus

cannot be obtained from the wavefront aberration itself. The

previous aberration theories developed with the optical-path

function or wavefront aberration cannot include the defocus

effect, so they are limited only to dealing with imaging close to

the focal position. The limitation is now removed.

Secondly, the position of the principal ray is determined by

the terms of d002u2 and h001u + h003u3 because they specify the

diffraction ray from the center of the exit pupil.

4. Wavefront aberration of multi-element systems

4.1. Transfer equations of field and aperture rays

For plane-symmetric multi-element optical systems, all the

optical elements have a common symmetry plane; the base ray

passing through the center of each element lies in this plane

and its direction is determined by the grating equation. The

principal ray is displaced from the base ray on the sagittal

plane and governed by w011 = 0 besides the grating equation.

The parabasal foci are found by applying the equations w200 =

0 and w020 = 0 repeatedly throughout the system.

To calculate the wavefront and transverse aberration coef-

ficients of a multi-element system, information on the field and

aperture rays of each element are required; thus their transfer

equations between successive optical elements are needed.

Fig. 4 illustrates the transfer scheme of the field and aper-

ture rays between the mth and (m+1)th elements on the

sagittal plane. A prime (0) is used to distinguish Fs
0, rs
0, s0, � 0, u0

of the exit ray pencil from the corresponding parameters, Fs, rs,

s, �, u of the incident ray pencil.

Obviously the transfer equations of u are

u0ðmÞ ¼ �uðmÞ; uðmþ1Þ ¼
r0sðmÞ

rsðmþ1Þ

u0ðmÞ ¼ �
r0sðmÞ

rsðmþ1Þ

uðmÞ: ð58Þ

From (21), l(m) is determined by

lðmÞ ¼
rsðmÞsðmÞ

sðmÞ � rsðmÞ

; l 0ðmÞ ¼ �lðmÞ: ð59Þ

Calculation of l(m) requires the value of s(m). The sagittal

focusing equation (45) leads to

1

rsðmÞ

þ
1

r0sðmÞ
¼

1

sðmÞ
þ

1

s0
ðmÞ

¼ 2c0;2ðmÞ cos�ðmÞ þ cos�ðmÞ
� �

� n02�; ð60Þ

s(m)
0 is thus calculated by

1

s0
ðmÞ

¼
1

rsðmÞ

þ
1

r0sðmÞ
�

1

sðmÞ
; ð61Þ

and its transfer equation is simply given by

sðmþ1Þ ¼ r0sðmÞ þ rsðmþ1Þ � s0ðmÞ: ð62Þ

As discussed in x3, d002(m)u(m)
2 and h001(m)u(m) [h003(m)u(m)

3

is neglected here] give the position of the principal ray on the

image plane. If the image distance equals rs(m)
0 + rs(m + 1), the

position of the aperture-stop center on the (m + 1)th element,
�PPðmþ1Þ, will be given by
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�xxðmþ1Þ ¼ l2
ðmþ1Þc0;2ðmþ1Þ tan�ðmþ1Þu

2
ðmþ1Þ �

d002ðmÞu
2
ðmÞ

cos �ðmþ1Þ

� xcðmþ1Þu
2
ðmþ1Þ;

�yyðmþ1Þ ¼ h001ðmÞuðmÞ ¼ �
rsðmþ1ÞlðmÞ

r0sðmÞ
þ r0sðmÞ þ rsðmþ1Þ

" #
uðmÞ:

ð63Þ

The first term in �xxðmþ1Þ comes from xc(m)u(m)
2 of (22). The

coordinate system for two-element optics is shown in Fig. 7.

With equations (58)–(62), �yyðmþ1Þ in (63) can be, as expected,

simplified to u(m+1)l(m+1); and xc(m+1) is now derived,

xcðmþ1Þ ¼
1

cos �ðmþ1Þ

l2
ðmþ1Þc0;2ðmþ1Þ sin�ðmþ1Þ �

rsðmþ1Þ

r0sðmÞ

" #2

d002ðmÞ

( )

d002ðmÞ ¼ �

r0sðmÞ þ rsðmþ1Þ

h i
w102ðmÞ

cos�ðmÞ
þ

xcðmÞ sin �ðmÞ � �ðmÞ
� �

sin �ðmÞ
;

ð64Þ

and d002(0) � 0 is assumed for the case of the first element.

Taking the first-order approximation, (57) gives the position

of an aperture ray at the entrance pupil of the (m + 1)th

element,

x0ðmþ1Þ ¼ �x0ðmÞ ¼ �d100ðmÞxðmÞ ¼
rmðmþ1Þ cos �ðmÞ

r0mðmÞ
xðmÞ;

y0ðmþ1Þ ¼ y0ðmÞ ¼ h010ðmÞyðmÞ ¼ �
rsðmþ1Þ

r0sðmÞ
yðmÞ:

ð65Þ

Mapping it onto the aperture-stop coordinate system, the

transfer equation of aperture ray will then be

xðmþ1Þ ¼
rmðmþ1Þ cos �ðmÞ
r0mðmÞ cos �ðmþ1Þ

xðmÞ; yðmþ1Þ ¼ �
rsðmþ1Þ

r0sðmÞ
yðmÞ: ð66Þ

4.2. Wavefront aberration of multi-element systems

For multi-element optical systems, the total wavefront

aberration is the sum of the contribution from each optical

element in the region of the third-order aberration. Thus, for a

system of n gratings the wavefront aberration should be

W ¼ Wð1Þ þWð2Þ þ . . .þWðnÞ ¼
Pn
m¼1

P4

ijk

wijkðmÞx
i
ðmÞy

j
ðmÞu

k
ðmÞ

iþ jþ k � 4ð Þ; ð67Þ

where wijk is given by (41), and x(m), y(m), u(m) are the coor-

dinates of the ray and the field angle of the mth element. To

derive the wavefront aberration coefficients of a multi-

element system, we need the corresponding relationships

between x(m), y(m), u(m) (m = 1, 2 . . . , n � 1) and x(n), y(n), u(n).

From (66) the relationship between x(m), y(m) and x(n), y(n)

can be obtained,

xðmÞ ¼ AðmÞxðnÞ; yðmÞ ¼ �1ð Þn�m
BðmÞyðnÞ: ð68aÞ

AðmÞ �
r0mðmÞr

0
mðmþ1Þ . . . r0mðn�1Þ

rmðmþ1Þrmðmþ2Þ . . . rmðnÞ

cos�ðmþ1Þ cos �ðmþ2Þ . . . cos �ðnÞ
cos�ðmÞ cos �ðmþ1Þ . . . cos �ðn�1Þ

;

BðmÞ �
r0sðmÞr

0
sðmþ1Þ . . . r0sðn�1Þ

rsðmþ1Þrsðmþ2Þ . . . rsðnÞ

:

ð68bÞ

Equation (58) gives the relationship of the field angle u

between two adjacent elements, and thus leads to

uðmÞ ¼ �1ð Þn�m rsðmþ1Þrsðmþ2Þ . . . rsðnÞ

r0sðmÞr
0
sðmþ1Þ . . . r0sðn�1Þ

uðnÞ

¼ ð�1Þn�m uðnÞ

BðmÞ
: ð69Þ

Replacing x(m), y(m), u(m) in (67) by (68a) and (69) gives

W ¼
Pn�1

m¼1

P4

ijk

wijkðmÞA
i
ðmÞB

j�k
ðmÞx

i
ðnÞy

j
ðnÞu

k
ðnÞ þ

P4

ijk

wijkðnÞx
i
ðnÞy

j
ðnÞu

k
ðnÞ

�
P4

ijk

Wijkxi
ðnÞy

j
ðnÞu

k
ðnÞ; ð70Þ

where Wijk, called the wavefront aberration coefficient of the

multi-element system, is then given by

Wijk ¼
Pn�1

m¼1

wijkðmÞA
i
ðmÞB

j�k
ðmÞ þ wijkðnÞ: ð71Þ

Equation (57) applies likewise to calculations of the trans-

verse aberration of a multi-element system; only in calcula-

tions of dijk and hijk, all the related parameters are those of the

final optical element, and Wijk should be used instead of wijk.

5. Comparison of the theory with analytic formulae of
the spot diagram

It is of practical interest at this point to examine the validity of

the theory. One way is to use ray-tracing calculations, but this

cannot check single terms of the aberration. Namioka et al.
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Figure 7
The coordinate system of two-element optics: the upper one arranged
with the figure of ‘Z’ and the lower one arranged with the figure of ‘U’.



(1994) have derived the analytic formulae of the spot diagram

following exact ray-tracing formalism, and given the following

equations for image calculations,

x0 ¼ r00 sec �þ �ð Þ 1� tan� tan�ð Þ

� xf100 þ x2f200 þ y2f020 þ yzf011 þ z2f002

�
þx3f300 þ xy2f120 þ xyzf111 þ xz2f102 þO x4=R3

� ��
;

y0 ¼ r00 zg001 þ yg010 þ xyg110 þ xzg101 þ x2yg210

�
þx2zg201 þ y3g030 þ y2zg021 þ yz2g012 þ z3g003

þO x4=R3
� ��

;

ð72Þ

where z is the field parameter (u = z/r, if r is the object

distance); the aberration coefficients fijk, gijk are determined

by equations (25N)–(28N) [note: N after the equation number

means the equations from Namioka et al. (1994)]. The above

equations are similar to (57) and comparable between them.

Namioka et al. (1994) discuss the imaging for an ellipsoidal

grating with varied spacing and curved grooves; its figure

equation (17N) has a different form from (16). They will be

identical if we assume, in (17N) and (19N), that

R ¼
1

2c2;0

; � ¼
1

2c0;2

;
1

A
¼ 0;

"30 ¼ c3;0; "12 ¼ c1;2; "40 ¼ c4;0;

"22 ¼ c2;2; "04 ¼ c0;4;

ð73Þ

Second, it is reasonable to assume that rs = rm = r. From (44)

and (45), equations (27aN) and (27bN) will become

F200 ¼ TA þ TB þ n20�

¼
cos2 �

r00
�

cos2 �

r0m
¼

�m cos2 �

r00
; ð74aÞ

F020 ¼
�SSA þ

�SSB þ n02� ¼
1

r00
�

1

r0s
¼

�s

r00
; ð74bÞ

where �m and �s are defined by equation (94) of Appendix B.

Third, in the study of Namioka et al. (1994), the aperture-

stop center is coincident with the grating vertex, so we set l = 0

in the calculations of dijk and hijk.

Now we can compare their 19 transverse aberration coef-

ficients from the first to third order according to (57) and (72)

by examining the differences for the case of � = 0,

�dijk ¼ fijk

r00
cos�

rk � dijk; ð75aÞ

�hijk ¼ gijkr00rk � hijk: ð75bÞ

Substituting the expressions of fijk, gijk, dijk and hijk into the

above equations, the results show that only two terms are non-

zero,

�h201 ¼ �
r00 cos2 �

2r02m
; �h021 ¼ �

r00
2r02s

: ð76Þ

The two terms do not contain the parameters of the object ray

pencil, i.e. r, � and the figure coefficients ci,j, so the differences

are not caused by wavefront aberration but by the approx-

imation of some geometry relationships in finding the trans-

verse aberration in x3.

The error of the image coordinate y0 owing to (76) is

approximated to

�y0 ¼ �h201x2uþ�h021y2u ’ �
�02v þ �

02
h

� �
s0y

2
; ð77Þ

where sy
0 = r0

0u means the half sagittal image size without

aberration, and �v
0 and �h

0 are the exit converging angles of the

ray, which are �0.01 rad for a marginal ray in synchrotron

radiation optics; thus �y0 is about 0.0001sy
0 and negligible.

6. Summary

The third-order aberration theory developed here is applic-

able to aberration analysis of the usual plane-symmetric multi-

element mirror or grating systems. The surface figure of the

element can be plane, spherical, cylindrical, toroidal, elliptical,

parabolic and so on. The wavefront and transverse aberration

coefficients are derived as listed in Appendices A and B.

The previous aberration theories based on the optical path

function or wavefront aberration can only deal with the

aberration analysis when the image plane is at the foci on

both the meridional and the sagittal planes. Now the theory

removes this limitation. This is especially important for

synchrotron radiation instrumentation because the meridional

and sagittal foci of each optical element are often not coin-

cident, leading to the image plane, at least, displaced from

either the meridional or sagittal focus.

Equation (28) is used to calculate the ray distribution on the

optical surface. The accuracy of the first-order approximation

depends on the acceptance angle of the light beam, the angle

of incidence and the curvature radius. In synchrotron radia-

tion optics, the source size (�1 mm) and the acceptance angle

(�several mrad) are usually small, so we can even use the

first-order approximation with u = 0 to calculate the aperture-

ray coordinates whereas the image can be obtained with a high

degree of accuracy. Anyway, the aberration theory is mainly

used for the initial choice and optimization of the parameters

of optical systems not for replacement of ray tracing; thus the

simplicity of aberration expressions is emphasized. The theory

with the first-order approximation of the aperture ray has

simple aberration expressions while remaining quite high in

accuracy in most cases so far; moreover, the expressions of the

aberration coefficient clearly show the dependence of the

wavefront aberration. At this point it is advantageous over the

other methods, especially in studying multi-element systems.

APPENDIX A
Wavefront aberration coefficients of the object pencil

M100 �; rm; rs; lð Þ ¼ sinð�Þ; ð78Þ

M200 �; rm; rs; lð Þ ¼
cos �

2
2c2;0 �

cos �

rm

� �
; ð79Þ
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M300 �; rm; rs; lð Þ ¼
1

2
2c3;0 cos �þ

sin � cos�

rm

2c2;0 �
cos �

rm

� �� �
;

ð80Þ

M020 �; rm; rs; lð Þ ¼
1

2
2c0;2 cos ��

1

rs

� �
; ð81Þ

M120 �; rm; rs; lð Þ ¼
1

2

sin �

rm

2c0;2 cos ��
rm

r2
s

� �
þ 2c1;2 cos�

� �
;

ð82Þ

M400 �; rm; rs; lð Þ ¼
cos2 � 5 cos2 �� 4ð Þ

8r3
m

þ
c2;0 cos � 2� 3 cos2 �ð Þ

2r2
m

�
c2

2;0 sin2 �

2rm

þ
c3;0 sin 2�

2rm

þ c4;0 cos �; ð83Þ

M040 �; rm; rs; lð Þ ¼
1

8r3
s

�
c0;2 cos �

2r2
s

�
c2

0;2 sin2 �

2rm

þ c0;4 cos�;

ð84Þ

M220 �; rm; rs; lð Þ ¼
1

2r2
s

cos2 �

2rm

�
sin2 �

rs

� c2;0 cos �

� �

þ
c0;2 cos � 2� 3 cos2 �ð Þ

2r2
m

�
c2;0c0;2 sin2 �

rm

þ
c1;2 sin 2�

2rm

þ c2;2 cos �; ð85Þ

M102 �; rm; rs; lð Þ ¼ �
1

2
�2

l sin �þ c1;2l2 cos�þ 2c2;0xc cos �;

ð86Þ

M202 �; rm; rs; lð Þ ¼
1

2

cos2 �

2rm

�
sin2 �

rs

� c2;0 cos�

� �
�2

l

þ
c1;2l2 sin 2�

2rm

þ c2;2l2 cos�

þ
c2;0xc sin 2�

rm

þ 3c3;0xc cos�; ð87Þ

M022 �; rm; rs; lð Þ ¼
3

4rs

�2
l �

c0;2�l cos�

2
1�

5l

rs

� �

�
2c2

0;2l2 sin2 �

rm

þ 6c0;4l2 cos �þ c1;2xc cos �; ð88Þ

M011 �; rm; rs; lð Þ ¼ �l þ 2c0;2l cos�; ð89Þ

M013 �; rm; rs; lð Þ ¼ �
1

2
�l þ 2c0;2l cos �
� �

�2
l þ 4c0;4l3 cos �

þ 2c1;2lxc cos �; ð90Þ

M111 �; rm; rs; lð Þ ¼
�l sin �

rs

þ
c0;2l sin 2�

rm

þ 2c1;2l cos �; ð91Þ

M211 �; rm; rs; lð Þ ¼ �
1

rs

cos2 �

2rm

�
sin2 �

rs

� c2;0 cos�

� �
�l

þ
c0;2l cos �

r2
m

2� 3 cos2 �
� �

�
2c2;0c0;2l sin2 �

rm

þ
c1;2l sin 2�

rm

þ 2c2;2l cos�; ð92Þ

M031 �; rm; rs; lð Þ ¼ �
�l

2r2
s

þ
c0;2 cos �

rs

1�
2l

rs

� �

�
2c2

0;2l sin2 �

rm

þ 4c0;4l cos �: ð93Þ

APPENDIX B
Transverse aberration coefficients

�m ¼
r0m � r00

r0m
; �s ¼

r0s � r00
r0s

; �0l ¼
r0s � l0

r0s
¼ 1þ

l

r0s
;

ð94Þ

d100 ¼ �m cos�; ð95Þ

d200 ¼ �
3r00w300

cos�
þ�m sin �

cos�

r0m
� c2;0

� �
; ð96Þ

d300 ¼ �
4r00w400

cos�
þ 3 tan� 1þ

r00
r0m
�

2r00c2;0

cos �

� �
w300

þ�m

cosð2�Þc2;0

r0m
þ

cos � sin2 �

r02m
� sin �c3;0

� �
; ð97Þ

d020 ¼ �
r00w120

cos�
��m sin �c0;2; ð98Þ

d120 ¼ �
2r00w220

cos�
þ tan�w120 1þ

r00
r0m
þ

2r00
r0s
�

2r00c2;0

cos�

� �

þ�m

cosð2�Þc0;2

r0m
� sin �c1;2

� �
; ð99Þ

d011 ¼ �
r00w111

cos�
� 2�m sin �c0;2l; ð100Þ

d002 ¼ �
r00w102

cos �
þ

xc sinð�� �Þ

sin �
; ð101Þ

d111 ¼ �
2r00w211

cos�
þ tan�r00

1

r00
þ

1

r0m
þ

1

r0s
�

2c2;0

cos �

� �
w111

þ 2 tan �r00�
0
lw120

þ 2�ml
cosð2�Þc0;2

r0m
� sin �c1;2

� �
; ð102Þ
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d102 ¼ �
2r00w202

cos�
þ tan �r00�

0
lw111

þ tan� 1þ
r00
r0m
�

2r00c2;0

cos �

� �
w102

��m sin � 2c2;0xc þ c1;2l2
� �

; ð103Þ

h010 ¼ �s; ð104Þ

h110 ¼ �2r00w120 þ
�s sin �

r0s
; ð105Þ

h210 ¼ � 2r00w220 þ 2 sin �w120 � 6 tan�r00c0;2w300

þ
�s

r0s
cos �c2;0 þ

sin2 �

r0s

� �

þ
�m ��sð Þ cos2 �

2r0mr0s
; ð106Þ

h001 ¼ �r00 þ�sl; ð107Þ

h101 ¼ �r00w111 þ�s�
0
l sin �; ð108Þ

h201 ¼ � r00w211 þ sin �w111 � 6 tan�r00c0;2lw300

þ�s�
0
l

sin2 �

r0s
�

cos2 �

2r0m
þ cos�c2;0

� �
; ð109Þ

h021 ¼ � 3r00w031 � 2 tan �r00c0;2 lw120 þ w111ð Þ

þ�s cos�c0;2 1þ
3l

r0s

� �
�

�0l
2r0s

� �
; ð110Þ

h012 ¼ � 2r00w022 � 2 tan�r00c0;2 lw111 þ w102ð Þ

þ 2�s cos �c0;2l�0l; ð111Þ

h030 ¼ �4r00w040 � 2 tan�r00c0;2w120 þ
�s cos�c0;2

r0s
; ð112Þ

h003 ¼ �r00w013 � 2 tan �r00c0;2lw102: ð113Þ
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