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-£duq(u) / f l ,  (h -1)  
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and the other group consists of quantum fluctuation around q .  
The average path is the same as the classical path in the high 

temperature limit (fl->0). To use the non-perturbation method 
based on the path-integral technique, we approximate the 
instantaneous potential V(q(u)) by a trial potential quadratic in 
the fluctuation path q - q  (Cuccoli, et al., 1995) 

Thermal effects in EXAFS due to atomic vibration are studied 
by use of the path integral approach. This approach can be 
applied to strong anharmonic systems, where the cumulant 
analyses break. This paper describes some results applied to 
one-dimensional systems with double-well potential and Morse 
potential. For both systems, quantum tunneling effect plays an 
important role in EXAFS thermal factor. 
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V ~ Vo(q,'~) = w(~) +/,t o2(~')2(q -c~) 2 /2  (2.3) 

Now the parameters w(~') and (a(q) are to be optimized so 

that the trial reduced density well approximates the true reduced 
density. Final expression for the average of a local operator A 
can be represented in terms of the probability density P(q) just 
like a classical statistical mechanics (from nov,, on q is used 

instead of q for brevity), 

1. Introduction 
Theoretical aspects of temperature dependence in EXAFS 

have been studied within the framework of harmonic vibration 
and some improvements have been found beyond the harmonic 
approximation with perturbation theory (Tranquada & Ingalls, 
1983, Fujikawa & Miyanaga, 1993, Yokoyama, et at., 1996). 
The perturbation approaches are useful to describe weak 
anharmonicity in the analyses of temperature effects in EXAFS 
and they have provided interesting information based on 
cumulant expansion. On the other hand real space approaches 
(Yokoyama, et at., 1989 and Dalba, et at., 1995) have been 
widely used ela~ieal meehanieaUy to relate the EXAFS Debye- 
Waller factors to interatomic potential. In this paper we apply 
the path integral approach to the EXAFS thermal factors of 
diatomic systems vibrating quantum mechanically in strongly 
anharmonic systems with a double-well potential and Morse 
potential. 

2. Basic Theory 
Let consider diatomic systems in a reservoir at temperature T 

whose relative vibrational motion is described by the 
Hamiltonian, 

2 
H - 2L + V(q) 

(2.1) 

where ~ is the reduced mass and q is the instantaneous 
interatomic distance. When we deal with statistical average of 

an operator A, we should calculate the trace ~,t>=Tr (Ap)/Z, 
where p is the density operator defined by p=exp(-flH), 

fl=l/kBT, and Z=exp(-flF)=Tr(p) is the partition function for the 
system. The trace can be calculated by applying Feynman's 
path integral techniques, however, instead of summing over all 
paths in just one step, one can classify the paths into two groups 
as proposed by Feynman (Feynman, 1972). One group consists 
of average (quasi classical) path given by 
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< A >=fA(q)P(q)dq (2.4) 

This expression, however, includes the important quantum 
effects, and the probability density is represented by 

1 # 
P(q ) = "-~ 4 " ~  exp[- flVL (q )] 

(2.5) 

where the local effective potential VL(q) is obtained from the 
self-consistent requirement in terms of w(~) and (.o(~). In the 

EXAFS analyses the operator A should be exp(2ikAct), where 

k is the wave vector of an ejected photoelectron, k=lk I and Act 

is the projected relative displacement which is simply given by 

Aq = q - q, ( q, is the equilibrium interatomic distance ) in one- 
dimensional cases. So that what we should calculate to study 
EXAFS thermal factors is 

g(k ) ---< exp(2ikq) >=- f e x p (  2ikq)P(q)dq 
(2.6) 

in the plane wave approximation. When all of the integrals in 
the cumulants and also the cumulant expansion converge, the 
thermal damping function g(k) can be written, 

4 2 + 3  k4 < >c - ' "}  g(k) = exp{-2k 2 < q >c q 

4 ~ ~ 
xexp[i{k <q>c --3 k- <q- >c +" ' } ]  

(2.7) 

3. Application to Diatomic System 
We now consider a strongly anharmonic system with double- 

well potential 

I'I((1)= e(q 2 - 0  "2) (3.1) 
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At q = -,-a the absolute minimum of V, V(q)min=0 is given. 

An important parameter to describe quantum effects is 

defined by ~0 / Ea2" the case of weak (strong) quantum effects 

occur when o; is small (large). In the following applications 

we shall use the unit, o = m = 1 for simplicity. Figure 1 shows 

<q2> c as a function of temperature for g = 5 with the classical 

result (dotted line). The classical particle in double well 
potential is frozen at the one of the bottom of the potential well, 

at q = ± l ,  so <q2> c = 1 at T=0. Of course the classical 

approximation does not work at such a low temperature, and 
tunneling effect play an important role through the potential 
barrier at q=0. 
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Figure 1 

The temperature dependence of the quantum (solid line) and 

classical (dotted line) second order cumulant <q2> c for the 

double-well potential at ~ =5. 
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Figure 2 

The quantum (solid line) and classical (dotted line) damping 
function g(k) for Cu-O system with double-well potential at 80 
K. The cumulant expansion for g(k) are also shown up to 
second order (dashed line) and fourth order (three-dots-dashed 
line). 

Figure 2 shows the damping function g(k) as a function of k at 
the temperature T=80 K for Cu-O atomic pair in YBa2CuO7.d. 

Several experimental results indicate that the axial oxygen atom 
moves in a double-well potential (Mustrede Leon et al. , 1993). 
The calculated results show that neither the cumulant expansion 
nor the classical approximation work well at 80 K. It is noted 
that the phase inversion is observed at high k in g(k). 

Next we discuss the thermal effects in EXAFS for a Morse 
potential; 

V( q) = D[e -2r (q-q" ) - 2e -F(q-q") ] 
, ( 3 . 2 )  

where the parameter D describes the depth and F the curvature 

of the potential. The Morse potential is asymmetric around the 
equilibrium position q,, and the thermal factor for the EXAFS 
should be complex . Figure 3 shows the probability densities 
compared with those in the classical approximation for this 
potential With D=I (except for three dot-dashed line where D=5 
is assumed: the small (large) D corresponds to large (small) 

quantum effect), F=0.1A-1 , q,=2.5 A and the reduced 
temperature t (=k~T/D) = 0.02. For a typical value of D is 0.8 
eV; T=186 K is obtained for t=0.02. The quantum effects 
contribute to the broadening of the peak and the quantum 
probability distribution shifts its maximum position to 2.6 
because of the tunneling effects. 
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Figure 3 

The quantum (solid line) and the classical (dashed line) 
probability density functions for the Morse potential at high 
temperature t = 0.02 for D=I .  Three dot-dashed line represents 
that for D=5. 

Figure 4(a) shows the damping function Ig(k)l corresponding 
to P(q) in Fig. 3, where the results for the cumulant 
approximations are also shown for comparison. Both of the 
cumulant expansions up to the second order and up to the fourth 
order terms give satisfactory results in particular the latter result 
is good enough, whereas the classical approximation gives a 
poor result. Figure 4(b) shows the phase functions. The first 
order cumulant gives a linear function of k , which is poor 
approximation for large k. If we take the third order cumulant 
into account, the result is much imprcwed. The classical 
approximation, on the other hand, is quite bad h'~r the phase 
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factor, too. The results for D=5 are also shown in Fig. 4. In 
Fig. 4(a) the small D (D=I)gives the result close to the classical 
approximation, though the strong quantum effects are expected. 
The decay of Ig(k)l is rapid for large D as a function of k because 
the probability density P(q) for large D is broader than that for 

small D as shown in Fig. 3. On the other hand q,(q) for small 
D shows the large deviation from the classical phase function in 
the low energy region, because the peak shift in P(q) is larger 
for D=I than that for D=5. 
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(a) EXAFS thermal damping function Ig(k)l and (b) phase j(k) 
as a function of k for the quantum result (solid line) and the 
classical approximation (dashed line) at t=0.02. The results for 
the cumulant expansion are also shown for up to the second 
(first) order by the long dashed lines and up to the fourth (third) 
order by dash-dotted lines in (a) ((b)). Three dot-dashed lines in 
(a) and Co) represent the quantum results for D=5. 

4. Conclusion 
The real space approach based on finite temperature path 

integral theory is applied to the strongly anharmonic systems as 
double-well and Morse potentials, and the applicability of the 
classical and the cumulant approximation is studied. In both 
cases the tunneling effects play an important role at low 
temperature, there the classical approximation cannot be applied 
but the cumulant approximation gives the reasonable results. 
For the asymmetric potential, thermal effects appear in both the 
damping function and the phase function. The phase is rather 
sensitive to temperature than the thermal damping. 


