Acta Cryst. (1954). 7, 597

The structure of SiF₄. By MASAO ATOJI and WILLIAM N. LIPSCOMB, School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U.S.A.

(Received 7 May 1954)

A determination of the Si-F bond distance at 1.56 ± 0.01 Å has been made from an X-ray diffraction study of single crystals of SiF₄ at -145° C. The structure of the solid derived by Natta (1930) on the basis of powder diffraction patterns is confirmed. These are 2 Si at 0, 0, 0 and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, and 8 F at x, x, x, etc., in the eightfold positions of $T_d^3-I\overline{4}3m$. The parameter x = 0.165 was determined by three-dimensional Fourier methods, with correction for termination of the series. The X-ray diffraction data are summarized in Table 1.

Table	1.	Observed	and	calculated	structure	factors*
			fe	r SiF.		

hkl	$ F_o $	$ F_c $	hkl	$ F_o $	$ F_c $
110	35.6	34.0	211	26.2	26.0
200	4.8	4.6	222	18.2	17.4
220	19-2	20.2	321	13.4	14.4
310	1.8	1.6	411	10.4	11.0
400	< 1.8	0.4	332	< 2.6	0.6
330	23.0	23.0	422	$8 \cdot 2$	8.2
420	10.8	10.6	431	7.0	7.8
510	7.8	7.4	521	6.0	6.2
440	6.0	6.0	433	< 2.6	0.2
530	< 2.6	0.8	442	4.4	4.4
600	9.2	8.8	611	6.0	4 ·2
620	< 2.6	0.4	622	4.4	3.0
710	3.4	2.4	631	< 2.6	0.2
550	2.6	$2 \cdot 2$	444	5.2	2.4

* The temperature factor is $\exp(-4\cdot 1 \sin^2 \theta/\lambda^2)$. The value of $R = \Sigma ||F_0| - |F_c|| \div \Sigma |F_0|$ is 0.064 for observed reflections only, and 0.075 for all reflections.

Previous determinations of the Si-F bond distance have led to values of 1.59 Å (Natta, 1930), and 1.54 Å (Brockway & Wall, 1934; cf. Braune & Pinnow, 1937), which are probably less precise than our value. With the use of 0.71 Å as a radius for F (Andrychuk, 1951), and the corrected additivity relation (Schomaker & Stevenson, 1941), the 'normal' single-bond Si-F distance is 1.68 Å. Of the various explanations for the shortening of 0.12 Å in SiF₄, the one given by Pitzer (1948) seems most reasonable to us in view of the uniquely high electronegativity of F (cf. also Pauling, 1952). Even so, the effect here is rémarkably large, comparable with that shown by the ions of the general type XO_4^{-n} (Donohue & Shand, 1947).

In addition we have attempted to evaluate the crystal energy by methods similar to those of Heller (1941) but with the use of a R^{-12} repulsive potential, where R is the interatomic distance between non-bonded atoms. For this purpose the values of ΣR^{-n} have been evaluated for

Table 2. Values of ΣR^{-n} for interactions in the SiF₄ crystal (Values in Å⁻ⁿ)

$\Sigma R^{-6} \times 10^{6}$	$\Sigma R^{-8} \times 10^7$	$\Sigma R = 10 \times 10^8$	$\Sigma R^{-12} \times 10^9$
$\Delta n \sim 10^{\circ}$	2n - 10	210 - X 10-	2 10 X 10

$\mathbf{F} \cdots \mathbf{F}$	45788	39655	39365	40870
${f Si} \cdots {f F}$	10051	4301	2004	962
$s_i \cdot \cdot \cdot s_i$	1077	408	168	71

the SiF₄ crystal, and since they may prove useful and represent fairly extensive calculations we have listed them in Table 2.

With the use of the crude model of a harmonic oscillator with a single frequency, we have calculated the crystal energy from the expression (cf. Heller, 1941)

$$\begin{split} E &= \frac{N}{2} \sum_{R} \left[\mathcal{R}(R) - \frac{3}{4} \alpha^2 \varepsilon R^{-6} - \frac{15}{4} \frac{\alpha^3 \varepsilon^2}{e^2 f} R^{-8} \right. \\ &\left. - \frac{735}{32} \frac{\alpha^4 \varepsilon^3}{e^4 f^2} R^{-10} - \frac{2835}{16} \frac{\alpha^5 \varepsilon^4}{e^6 f^3} R^{-12} - \dots \right], \end{split}$$

where N is Avagadro's number, $\Re(R)$ is the repulsive energy, α is the bond polarizability here taken as onequarter of the total polarizability (3.32 Å³) of SiF₄ and centered at the F atoms, $\varepsilon = hv$ is the energy corresponding to the principal specific frequency ν and is approximately equal to the ionization potential (17.4 e.V.) and $f = 4\pi m \varepsilon^2 \alpha/e^2 h^2 = 2.26$ is the oscillator strength (Margenau, 1939). The repulsive energy was estimated as C_r/R^{12} , with $C_r = 58.1 \times 10^{-10}$ ergs Å¹², from the pair interactions between F atoms determined from interactions between gaseous F₂ molecules. The calculated attractive energy of -5.9 kcal./mole and the repulsive energy of ± 1.7 kcal./mole thus lead to an estimated crystal energy of -4.2 kcal./mole. The observed value is -6.2 kcal./mole (Patnode & Papish, 1930).

This agreement is not regarded as particularly good, especially in view of the extreme assumption of placement of the polarizability of the molecule at the four F atoms. This assumption leads to a maximum attractive energy for this model. These results suggest that the constants in the $\mathbf{F} \cdots \mathbf{F}$ interatomic interaction potential are not known with sufficient accuracy in the range of distances which occur in solid SiF₄. Certainly the use of the $\mathbf{F} \cdots \mathbf{F}$ interaction obtained from gaseous \mathbf{F}_2 in the form of a Lennard-Jones 6:12 potential has proved to be unsatisfactory. However, if a satisfactory potential-energy constant becomes available, the results in Table 2 will become useful.

References

- ANDRYCHUK, D. (1951). Canad. J. Phys. 29, 151.
- BRAUNE, H. & PINNOW, P. (1937). Z. phys. Chem. B, 35, 239.
- BROCKWAY, L. O. & WALL, F. T. (1934). J. Amer. Chem. Soc. 56, 2373.
- DONOHUE, J. & SHAND, Jr., W. (1947). J. Amer. Chem. Soc. 69, 222.
- HELLER, R. (1941). J. Chem. Phys. 9, 154.
- MARGENAU, H. (1939). Rev. Mod. Phys. 11, 1.
- NATTA, G. (1930). Gazz. chim. ital. 60, 911.
- PATNODE, W. I. & PAPISH, J. (1930). J. Phys. Chem. 34, 1494.
- PAULING, L. (1952). J. Phys. Chem. 56, 361.
- PITZER, K. S. (1948). J. Amer. Chem. Soc. 70, 2140.
- SCHOMAKER, V. & STEVENSON, D. P. (1941). J. Amer. Chem. Soc. 63, 37.