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For A = ¼ the crystal consists of regions containing 
exclusively one or the other kind of layer. If 9=2z~n, 
equation (2) gives sharp interference maxima in the 
same positions as the maxima of the ordered scatter- 
ing and the intensities are proportional to [( V i -  V~)/2] 2. 
The total  intensity of the reflections is proportional to 
[(Vi+V~)/2]~+[(Vi-V2)/2] ~, which is the average in- 
tensi ty of two crystals with the structure amplitudes 
V1 and V~. The calculated structure amplitudes for this 
structure and the random structure are compared 
with those observed in Table 2. 

Since there are two types of layers, A cannot be 
exactly ¼ and some disorder streaking is expected 
near the reflections where h-lc 4: 3n, and the streak- 
ing will be more intense near the stronger reflections. 
For those reflections where h - k - - 3 n ,  [(Vi-V~)/2] ~ 
is zero and no streaking should be observed. That  
this is the case may be seen in Fig. 1. The streaking 
between the (10..4) and (10.5) reflections appears to 
be stronger than one would expect in comparison to 
the streaking between the other reflections, but  this 
can be explained by considering the boundaries of the 
regions where a superlattice with a repeat period of 
eighteen close-packed layers is formed by the two 
different layers. One would then expect maxima to lie 
between the regular reflections, but  they would be 
diffuse owing to the fact tha t  the size of diffracting 
regions is small. The streaking between the (10.4) and 
(10.5) reflections would correspond to the reflection 
(10.9) of the larger unit cell, and indeed the calculated 
intensity of this reflection is five times stronger than 
any other superlattice reflection. 

D i s c u s s i o n  

Samarium is one of the few rare earths with a relatively 
stable valence of +2. Whether the stabili ty of such 
a state is reflected in the metal is a mat ter  of some 
interest. According to Pauling's theory of valence 
(1947) the number of valence electrons should mat- 
erially influence bond distances, so that  any contribu- 
tion to the metal of + 2 rather than + 3 valence should 
increase the metal-metal  distance and reduce the 
density of samar ium relative to the normal sequence 
of rare earth metals. As nearly as can be judged there 
is no such effect, so tha t  the metallic valence of 
samarium is probably close to three. 

I t  is not known why the structure of samarium 
deviates from a cubic or hexagonal close-packed ar- 
rangement but it is not the only rare earth metal 
which does so. Klemm & Bommer (1939) reported 
evidence (they referred to K. Meisel's work) requiring 
the c axis of praseodymium and neodymium to be 
doubled. This has been confirmed for neodymium by 
Ellinger & Zachariasen and by us. In this case the 
packing sequence is a b c b. 
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An investigation is made of the periodic three-dimensional systems of points in which each point 
is connected to three others. These nets form the bases of the structures of a large number of 
crystals in which there are directed bonds or hydrogen bonds. 

Introduct ion 

The principles underlying the crystal structures of 
some groups of compounds, for example, ionic, mole- 
cular, and the simpler metallic systems, are known at 
least in broad outline. Less attention seems to have 
been paid to the large class of crystals whose struc- 
tures are determined by systems of directed bonds 
extending indefinitely in one, two, or three dimensions. 
These include: many non-metallic and 'semi-metalLic' 

elements; oxides of some non-metals; oxides, halides 
and sulphides of some less electropositive and B sub- 
group metals; certain borides, carbides and silicides; 
and some oxy-salts and complex oxides (e.g. silicates). 
The other major group of crystal structures to be 
regarded in this way embraces all hydrogen-bonded 
molecular crystals. The atoms taking part  in the 
hydrogen bonding act, from the structural point of 
view, like localized charges and result in limited 
numbers of relatively close intermolecular contacts. 
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These include: molecules containing OH groups (e.g. 
H 2 0  , H202)  , organic hydroxy compounds, oxy-acids, 
carboxylic acids, molecules containing CO and NH 
groups etc. 

If in a crystalline dihydroxy compound each OH 
group forms O-H-O bonds to two OH groups of 
neighbouring molecules the structural unit  may  be 
represented diagrammatically 

/ \ 

so tha t  the whole crystal may be represented as a 
3-connected network of points (OH groups) and lines. 

Jus t  as the simplest planar arrangement of atoms 
forming three equivalent bonds is found in the hexag- 
onal layers of crystalline graphite, so it is to be ex- 
pected tha t  the three-dimensional analogues of the 
plane nets will be important  as the basic frameworks 
underlying the crystal structures of many substances, 
both inorganic and organic. These three-dimensional 
periodic polygonal frameworks do not appear to have 
been derived systematically, though their importance 
in crystallography would seem self-evident. In  the 
simplest case such a framework (net) of linked points 
represents the structure of an element, each point 
being an atom, but we shall show tha t  these nets have 
a much wider application. 

An advantage of describing such frameworks as 
systems of polygons rather than as sets of points 
generated by groups of symmetry  operations is tha t  a 
number of substances may  have essentially the same 
structure but  distorted in different ways so as to have, 
for example, tetragonal, orthorhombic, or monoclinic 
symmetry  (as for PtS, PdO and CuO). Provided tha t  
the system of linked polygons is the same then all 
three structures are described as based on the same 
three-dimensional net. 

In  this sense these nets have a deeper structural  
significance than space groups. The particular sym- 
metry  exhibited by an arrangement of atoms or mole- 
cules is to be regarded as of secondary importance and 
determined by metrical factors such as relative lengths 
of bonds and relative values of interbond angles. The 
~'actical importance of space groups lies in the fact 
tha t  the knowledge of the symmetry  of a crystal 
assists in the determination of the structure, though 
the simpler structures could be- -and  in some cases 
were---determined from X-ray data  without recourse 
to space-group theory. 

We shall not generally be concerned here with these 
metrical factors, whence it  follows ~that the value of 
the geometrical approach as an aid to structure deter- 
ruination is limited. We may indicate the broad 
structural  possibilities for, say, an organic dihydroxy 
compound, but the exact way in which the molecules 

of a particular dihydric phenol are linked up will 
depend on the internal structure of the molecule. 

The scope of the present paper 

We shall derive and describe certain groups of periodic 
three-dimensional networks of linked points which 
conform to the following rules: 

1. Each point is connected to three others (3-con- 
nected net). 

2. There must  be a configuration of each net in 
which (a) the distance between unconnected points is 
greater than  the distance between any pair of con- 
nected points; (b) it is possible to go from any point 
of the net to any other, starting along any prescribed 
link, without traversing the same link twice;* (c) all 
the links from a given point go to different points, i.e. 
there are no loops (2-gons). Loops in 3-connected nets 
are trivial since they are equivalent to a pair of points 
added along a link. The need for including loops in a 
complete enumeration of the more highly connected 
nets will be mentioned in a later paper. 

A problem closely related to the present one is the 
open packing of spheres; its relation to the three- 
dimensional nets will be indicated. 

Methods of deriving three-dimensional  nets 

Any system of connected points which is periodic in 
three dimensions can be formed by the repetition, 
at  the points of a lattice, of identical units in the same 
orientation. For a three-dimensional 3-connected net 
the number of points in the repeat unit must be even, 
and the minimum number of points in the repeat unit  
is 4, since the unit must be connected to six others: 

\ - /  r 
/ \ / or ~ o J . ~ o j  

/-", [ I 
Alternatively three-dimensional nets may  be derived 

by joining up one- or two-dimensional nets containing 
sufficient ( p -  1)- or ( p -  2)-connected points to provide 
the links necessary to form the three-dimensional 
p-connected net. Here we shall derive three-dimensional 
nets from two-dimensional ones, and for this reason 
we shall first consider briefly the simpler planar 3- 
connected nets. 

Two-d imens iona l  nets 

These are derivable by  finding the ways in which a 
plane may be divided into polygons, each point being 
connected to three others. If ~n is the fraction of the 
total  number of polygons which are n-gons, then 
necessarily 

* This condition excludes an 'appendix' connected to the 
main body of the network by a single link. 
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Net 2a, N = 12 

..< 

-< 

--< 

Net 3, N : 4  Net 4, N - -  4 

Net 2b, N = 8 Net 1, N - -  2 

Net 5, N - -  6 

Net 6, N : 6 Net 7, N =  6 

Fig. l. Some 3-connected plane nets. 

Net 8 , N =  6 

~ 3 - ~ 4 - ~ - ~ 0 5 - 1 t - ~ 6 - ~ . . .  ~t-~n ---- 1 , 

and in addition 

3~3+4~4+5~%+6q%+... + nCfn = 6 

(1) 

(2) 

Table 1. 3.connected plane nets 

m N e t  N ~a ~a ~5 ~c, 

1 1 2 1 

2 2 8, 12 ½ - -  

3 4 - -  ½ 
4 4 ½ 

5 6 
6 6 - -  I 
7 6 t 
8 6 - -  ½ 

9 6 ~ 

II 12 
12 6 
13 12 - -  ½ 
14 6 - -  ½ 
15 12 ½ 

~ ~8 

½ 
½ 

~9 ~10 ~11 ~lg 

½ 

t 

for a 3-connected net. Some of the simplest 3-connected 
plane nets are illustrated in Fig. 1 and listed in Table 1 
in order of increasing 'order' m, m being the highest 
denominator in Tn. For 3-connected nets the number 
N of points in the repeat unit is 2m or a multiple of 2m. 
For example, there is no configuration of Net 2 with 
4 points in the repeat unit, but there are configurations 
with 8 and 12 points in their repeat units. This 
illustrates a further point, that  specifying the values 
of Ca etc. does not necessarily uniquely define the net, 
for there may be a number of arrangements of nl-gons, 
n~-gons, etc. in the same proportions. 

D e r i v a t i o n  o f  t h r e e - d i m e n s i o n a l  3 - c o n n e c t e d  n e t s  

These nets may be derived systematically by adding 
2-connected points to planar 3-connected nets and 
then joining each to a 2-connected point of an adjacent 
layer. I t  follows that  there must be an even number of 
2-connected points in the repeat unit. The number of 
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points in the repeat units of planar 3-connected nets 
are 2, 4, etc. (Table 1), so that  for the three-dimensional 
3-connected nets we have the following possibilities: 

cluded in those derived from the double repeat unit  
of Net 1, so that  we need list only those nets arising 
under (2). These are set out in Fig. 3, where each 

4 points in repeat unit" 2 2-connected, 2 3-connected 
There is only one planar 3-connected net with 2 

points in the repeat unit, giving the nets of Fig. 2. 

,~ . . . . . . . .  -7 r . . . . . . . . .  7 

3 4 

,'~ . . . . .  7 4 ; 7  z "~ . . . . . .  l . . . . . .  ;z 
.." ..Y.L'.." ,.' 

7 ? 
,,:i .... J _ 2 /  z .... l / 

N e t  I N e t  2 

E . . . . . . . . .  7 

5 6 7 

8 9 10 11 12 13 

(1)  (2 )  

Fig. 2. Der iva t ion  of 3-connected Nets  1 and  2. o :  po in t  
connected upwards  (U) to • po in t  of layer above;  
• : po in t  connected  downwards  (D) to o poin t  of layer 
below. 

,,- . . . . . . .  :~- - .~  . r  . . . . . . .  : f - 7  / -  . . . . .  : f - - 7  ,' i ,' ,' i ! 

# t S s • ~ • 

, ' ._ .  ' Z . . . .  " Z._. ; 
14 .15 16 

17 18 19 

Fig. 3. Repeat  units in three-dimensional 3-connected nets. 
The numbers  correspond to the numbers  of t h e  nets in 
Table 2. 

One of the 2-connected points (A) is to be connected 
to B' of the layer above, the other (B) to A "  of the 
layer below. The nets can be more easily visualized 
if we show a larger portion of the planar net, as 
indicated in the figure. :Net 1 can adopt the highly 
symmetrical cubic form sho~-n in Figs. 6 and 7, the 
points being the equivalent points 8(a) of the space- 
group 1413. This (enantiomorphic) net may be re- 
garded as the 3-connected analogue of the (4-connected) 
diamond net. 

6 79oints in repeat unit 
The possibilities here are: 
(1) Planar net with 2 points in repeat un i t+4  

2-connected points, considering then the various per- 
mutations of 2 U and 2D among the 2-connected points. 
(U stands for a point to be connected upwards to a 
point of the layer above and D for a point to be joined 
to one of the layer below.) 

(2) Planar nets with 4 points in the repeat un i t+2  
2-connected points. Here we have to consider the 
following n e t s o f  Table 1: :Net 1 (two unit cells), 
:Net 3, and :Net 4. (There is no configuration of :Net 2 
with only 4 points in the repeat unit.) 

I t  is found that  the nets arising from (1) are in- 

diagram shows a repeat unit containing 4 3-connected 
and 2 2-connected points. 

This is not a complete enumeration of all 6-point 

0 .C 

Net 21 Net 20 (a) 

Ib) (c) 

Fig.  4. (a) De r i va t i on  of Nets  20 and  21. (b) P ro jec t i on  of 
N e t  21. (c) Pro jec t ion  of t w o  i n te rpene t ra t i ng  Nets  9. 
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nets. For 3-connected nets having 6 or more points 
in the repeat unit, nets of the kind shown in Fig. 4(a) 
arise. In these projections the squares represent clock- 
wise 4-fold helices and the central pairs of points are 
joined by lines perpendicular to the plane of the paper. 
The numbers represent heights in terms of one- 
quarter  of the unit  translation along the screw axis. 

Net 21 is a part icularly interesting net which in its 
most symmetrical  configuration possesses trigonal 
symmet ry  and consists of series of hexagonal helices. 
If a 6-fold helix is set up at each corner of a hexagonal 
unit  cell and a second helix starts d/2 out of phase 
with the first (d being the repeat distance along a helix) 
then the helices may  be joined up as shown in Fig. 13, 
so tha t  all the points form one continuous network. 
This net is very closely related to the rhombohedral 
form of N e t  9, for if we s tar t  with the same system of 
two 6-fold helices around each vertical axis but  join 
up as shown in (c) of Fig. 4 then this projection re- 
presents, not  a single Net  9, but  two ident ical  nets 
completely interpenetrat ing but  not connected one to 
the  other. In  Fig. 4(b) and (c) c and a represent clock- 
wise and anticlockwise helices and 6 a closed hexagon, 
and the numbers indicate heights in terms of d16. 
The smallest polygon in Net  21 is a 12-gon, and this 
net  is one of a special set which we shall discuss later 
(see 'Uniform nets'). 

The three-dimensional 3-connected nets are listed 
in Table 2, where some information is given about the 
polygons of which they  are built. 

Table 2. Three-dimensional 3-connected nets 
P o l y g o n s  in net 

^ 

Net N 3 4 5 6 7 8 9 10 
1 4 - -  - -  - -  10 
2 . . . . . . .  1 0  

3 6 7 - -  9 1 0  

4 8 - -  l O  

5 - -  - -  8 

6 8 

7 - -  - -  - -  6 10 - -  
8 - -  - -  - -  6 1 0  - -  

9 6 1 0  

1 0  - -  4 . . . . .  

1 1  5 11  

1 2  6 1 0  - -  

1 3  - -  4 8 

1 4  3 . . . . .  

1 5  3 

1 6  - -  4 

17 - -  4 . . . .  
18 5 . . . . .  11 
1 9  5 1 1  

2 0  8 - -  1 0  - -  

2 1  . . . .  

1 1  1 2  1 3  1 4  

1 4  

12 
1 4  

12 - -  1 4  

12 - -  1 4  

1 2  - -  1 4  

1 2  - -  1 4  

1 4  

1 2  1 3  

1 2  1 3  1 4  

1 2  - -  1 4  

1 2  - -  1 4  

1 2  - -  1 4  

1 2  1 3  1 4  

1 2  

1 2  - -  1 4  

Certain nets can adopt configurations with rather  
symmetrical  arrangements of links at  each point, for 
example: 

3 coplanar bonds at  120 °. Nets 1, 2, 5, 6, 7; 
3 coplanar bonds (angles, 150 ° (2), 60°): Nets 14, 1 5 ;  
3 coplanar bonds (angles, 135 ° (2), 90°): Net 10. 

The following remarks concern particular nets. Net  9 
can adopt a configuration with rhombohedral symme- 
t ry  which can alternatively be derived by placing plane 
hexagons at  the points of a simple cubic lattice with 
their planes perpendicular to a body-diagonal of a 
cubic cell (Figs. 5(b) and 6(d)). Net 14 can be derived 
from Net  1 by replacing one-quarter of the points by 
triangles (Fig. 5(c) and (d)); Net 15 is related in exact ly 

(o) (b) 

._£...£_..£._ 
, o/ ', I ,, / 

1 2 

(c) (d) 

:y: "?, 

(e) (f) 
Fig. 5, (a) Cubic lattice viewed along [111]. (b) Net9 viewed 

along a 3-fold axis. c and a indicate clockwise and anti- 
clockwise helices. (c) Net 1 viewed along 3 or 31 axis. 
(d) Net 14, similar projection. (e) Projection of Net 5. 
(f) Projection of Net 6. {Numbers indicate heights in terms 
of one-third of the unit translation perpendicular to plane 
of paper.) 

the same way to Net 2. For  another projection of Net 1, 
along a 41 axis, see Fig. 14(b). 

Nets 5 and 6 are closely related. Both can be con- 
structed with three equal coplanar bonds from each 
point inclined at  120 ° and both project as the same 
two-dimensional net  (Fig. 5(e) and (f)). The triangles 
in the projection of Net  5 represent 31 and 3~ axes, 
but  in the projection of Net  6 they  represent all 31 
(or 33) axes. In  the projection of Net  5 the 12-gons 
represent closed 12-gons; in the projection of Net  6, 
helices. Both structures are very open, having tunnels 
through them. 

Nets 1, 2, 7, 9 and 10 of Table 2 are i l lustrated in 
Fig. 6. In  addition, Nets 1, 2, 5, 6, 9, 10, and 21 are 
i l lustrated by pairs of stereoscopic photographs in 
Figs. 7-13. 

No a t tempt  has been made to derive systematically 



540 T H E  G E O M E T R I C A L  B A S I S  OF C R Y S T A L  C H E M I S T R Y .  P A R T  1 

. . . . .  i . . . . . . . . . .  i . . . . . .  ~ J i 

I ! ........ ' I 

I ..... " "  ! I . . .  .... 
0..~.~,t~:'~ :0- .................................. 1 ....... 

( o )  

( b )  

l ! " " ~  

(d) 

Fig. 6. Three-dimensional 3-connected nets. (a) Net 1. (b) Net 2. (c) Net 7. (d) Net 9. (e) Net 10. 

nets with more than  6 points in the repeat  unit .  How- 
ever, the nets of Table 2 suggest families of more 
complex nets, some of which are likely to be impor tan t  
in crystal  chemistry.  

Some  fami l ies  of m o r e  c o m p l e x  nets  

The projections of three-dimensional  nets on suitable 
planes are simple plane nets, as i l lustrated for Net  21 
in Fig. 4(b) and for Net  9 in Fig. 5(b). The polygons 
in the plane net  represent either closed polygons or 
helical arrays of points  in the three-dimensional  net  

of which it is one projection. This suggests an alterna- 
t ive way of deriving families of three-dimensional  nets 
all of which project as the same plane net. In  the plane 
net  of Fig. 14(a) some or all of the polygons m a y  
represent the projections of points generated by screw- 
axes (41 or 4 a, 81 or 8v) so tha t  we can visualize a 
fami ly  of 3-connected nets all having this plane net  
as one projection. Start ing with the nets having 4 
points in the repeat unit  we have first Fig. 14(b), 
which is the projection of Net  1 of Table 2. For 8 
points  in the repeat  uni t  there are the possibilities 
(c)-(h), of which (e) and (f)  are i l lustrated in Fig. 15 

r .... ~ | i h | t l l ~  

i 

Fig. 7. Net 1. 
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(o) Cc) (d) 

(b) (e) (f) 

(g) 

~ ~ '  ® 

(h) 
Fig. 14. The family of nets related to Net 1 of Fig. 6(a). 

and (c) and (g) in Figs. 16 and 17. The net  (c) corre- 
sponds to the diamond net  in which each point  has 
been replaced by a square. Of the others, ( f)  is of 
par t icular  interest.  I t  contains no closed 4-gons or 
8-gons, and in this sens'~ ~t is the next  more complex 
member  of the family  s tar t ing with (b). Like (b) it  
is an assembly of 10-gons. We shall see in P a r t  3 
t ha t  (b) and (f)  do in fact  form the bases of the struc- 
tures of two closely related crystals. 

, 

(e) 

/ 

. . . . . . . . . . . .  . ' : ~ " 1  

. ° °  

(f)  
Fig. 15. 3-connected nots related to Net 1 of Fig. 6(a). 

Lettering as in Fig. 14. 

U n i f o r m  n e t s  

Certain three-dimensional nets have  the  proper ty  tha t  
the  shortest  complete circuit s ta r t ing  from any  point 

Fig. 16. The net shown in plan in Fig. 14(c). 

i 

Fig. 17. The net shown in plan in Fig. 14(g). 
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Table  3. Uniform. three-dimensional 3-connected nets 

Circuits back to A 
. ^ Equivalent 

Net N BC (6) CD (12) DE ( 2 4 )  Symbol Space group position 

1 4 6 12 18 10 a I413 8 (a) 
2 4 6 10 - -  10 a I4/amd 8 (e) 
5 6 6 8 8 8 a R-3m 18 (f)* 
6 6 6 8 8 83 C622 6 (i)* 

21 6 4 4 - -  122.14 C622 6 (g)* 

* In the Nets 5, 6 and 21 a variable parameter x must lie within certain limits and also there must be an appropriate value 
of the other variable c/a in order that  no neighbours in excess.of three come closer to a point than the three to which it is con- 
nected. For example, for Net 21 the condition for 3 (and only 3) equidistant nearest neighbours is that values of c/a and x corre- 
spond to points on the plot of c/a ~- 9(l--4x-]-3x 2) between the intersections with the lines x ---- ¼ and c/a -~ 1--2x. 

along any  l ink and  r e tu rn ing  (along ano the r  l ink) to  
the  s t a r t ing  po in t  passes t h rough  the  same t o t a l  num-  
ber of l inks (points).  This  can a l t e rna t i ve ly  be s t a t ed  
in the  fo rm:  

E v e r y  l ink belongs to  an  n-gon (shortest  circuit) .  
A ne t  sa t isfying t h i s  cond i t ion  m a y  be called a uni form 
net.  

Of the  p lane  3-connected  nets  on ly  the  hexagona l  
Ne t  1 of Fig. 1 satisfies th is  condi t ion.  Of the  three-  
d imens iona l  3-connected  nets  f ive of those  l is ted in  
Table  2, n a m e l y  Nets  1, 2, 5, 6 and  21 are uni form,  
and  so also are those  of Fig. 14 (f)  and  (g), wi th  re- 
spec t ive ly  10-gon and  8-gon circuits.  I n  addi t ion ,  one 
uni form 9-gon ne t  has  been found ;  i ts  de r iva t ion  is 
ind ica ted  in Fig. 18 and  i t  is i l lus t ra ted  in Fig. 19. 

Fig. 18. Derivation of a uniform 9-gon net; 
compare with Fig. 2. 

We  m a y  proceed a s tage fu r the r  in classifying uni- 
form nets  by  consider ing the  choice of pa ths  back  to  
the  s ta r t ing  po in t  A (by the  m i n i m u m  n-gon circuit)  
f rom points  B, C, etc. r e m o v e d  1, 2, etc. po in t s  f rom A. 
For  a 3-connected  ne t  there  are six possible pa th s  
back  to A f rom the  th ree  poin ts  B via  the  six l inks BC,  

12 f rom poin ts  C via  l inks CD, and  so on, and  we 
de te rmine  by  how m a n y  of the  6 BC,  12 CD, etc. 
pa ths  we can still  r e t u rn  to  A in an  n-gon circuit .  
I n  th is  way  we see (Table 3) t h a t  the  3-connected  
Ne t  1 occupies a special  pos i t ion  among  th ree-d imen-  
s ional  3-connected  nets.  I n  a s imilar  way  i t  is found  
t h a t  of the  4-connected  nets  the  d i a m o n d  ne t  (6-gon 
circuits) has  th is  special  p roper ty ,  and  of 6-connected  
nets ,  the  P la t t ice  (4-gon circuits).  Corresponding to 
the  th ree  p lane  nets  in  which  all  t he  polygons  are of 
the  same k ind :  

3-connected 4-cormeeted 6-connected 
Two-dimensional 

nets 6-gon 4-gon 3-gon 

We have  the  special  'mos t  un i fo rm '  th ree -d imens iona l  
nets  : 

Three-dimensional 
nets 10-gon 6-gon 4-gon 

I t  will be a p p a r e n t  t h a t  the  above  condi t ion  for 
un i fo rmi ty  is no t  a ve ry  res t r ic t ive  one, requi r ing  on ly  
t h a t  two n-gons mee t  a t  each 3-connected  poin t .  
Adop t ing  a nomenc l a tu r e  analogous  to  t h a t  for poly- 
hedra ,  in  which the  symbol  shows the  polygons  mee t ing  
a t  a poin t ,  we f ind t h a t  Ne t  21 differs f rom Nets  
1, 2, 5 and  6 in the  same way  t h a t  the  Arch imedean  
solids m . n  2 differ f rom the  regular  solids n 3 (see 
Table  3). I t  would  seem, t hough  th is  po in t  has  no t  
been proved,  t h a t  the  only  nets  of the  n 3 t ype  are 83, 
93 and  103 , and  t h a t  the re  are two dif ferent  nets  
corresponding to  the  symbol  83 , and  s imi lar ly  for  103 . 

• ~-- 

Fig. 19. The uniform 9-gon net of Fig. 18 viewed in a direction nearly parallel to the trigonal axis. 
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Space g r o u p  

P 4 3 m  
Im3m 
Im3m 
I 4 x 3  

Table 4. Densities of open packings of equal spheres 
E q u i v a l e n t  p o i n t s  D e n s i t y  N o t e s  

8 (a) 0 .185  3 - c o n n e c t e d  N e t  1. H .  & L .  3 l 
24 (j) : x = ~ ,  y = ~ ,  z = ~ 0.165 
4 8 ( j )  : y - ~ ¼ ,  z - ~  0 .139  
24  (g) : x ---- 0 .147  0 .117  
2 4 ( h )  : x----  0 . 058  0 .056  H . & L .  32 

These nets 83, 93 and 103 continue the series starting 
with the 3-connected regular solids, 33, 43 and 53, and 
the planar net  63 . Similarly, if we replace the points 
in these three-dimensional nets by  triangles then n 3 
becomes 3 .n  2, tha t  is, these derived nets are the 
analogues of certain of the Archimedean semi-regular 
solids, the t runcated tetrahedron, cube, and dodeca- 
hedron, 3.62, 3.82, and 3.102. The next member of 
the series is the plane net, 3.122 , and from the three- 
dimensional 3-connected nets 83, 93 and 103 are derived 
the nets 3.162 , 3.182 and 3.202 . 

Certain of the uniform nets can adopt a configura- 
tion with high symmetry  in which all the points are 
equivalent, i.e. the  net can be formed by connecting 
up in the appropriate way the points of one set of 
equivalent positions in a space-group. This information 
is included in Table 3 for five of the uniform nets. 

Open pack ings  of spheres 

The most open packings of equal spheres for 3- and 4- 
coordination were derived by Heesch & Laves (1933), 
who required all the spheres to be crystallographically 
equivalent and to form one connected, infinite three- 
dimensional system. (Examples of more open packings 
of non-equivalent spheres were given by Melmore 
(1942a, b, 1949).) The nets formed by connecting the 
centres of adjacent spheres are therefore examples of 
uniform nets of the kind listed in Table 3. Heesch & 
Laves were interested in the most open packings and 
they  considered only the most symmetrical structures 
with cubic or hexagonal symmetry.  

The open packings were called: 

3-coordination: types 31 and 32; 
4-coordination: types 41, 42, 4 3 and 44. 

The symbols refer to the topological type, and there 
may  be more than one packing corresponding to a 
particular symbol. 

Type 31 
The cubic form is the cubic configuration of the 

3-connected Net 1 (Fig. 7). The rhombohedral and 
hexagonal variants are the Nets 5 and 6, illustrated 
in Figs. 9 and 10. 

Type  32 

This arises from the cubic configuration of 31 by  
replacing each point by an equilateral triangle. I t  is 
the net 3.202 to which we have referred, and it  will be 
illustrated in a later paper. 

Heesch & Laves's packing 32 is apparently the least 
dense packing of equal equivalent spheres (though this 
has never been proved) but  there are a number of 
packings with densities between those of their packings 
31 and 32 of which three examples are given in Table 4. 
(The density of a packing is the fraction of the whole 
space which is occupied by spheres.) The three 24-point 
nets of Table 4 will be illustrated in a later paper. 

Reference will be made to the open packings 41-44 
in Par t  2, which will be concerned with 4-connected 
nets. 
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