Acta Cryst. (1954). 7, 516

A method for setting the equi-inclination angle. By D. SAYRE, Johnson Foundation for Medical Physics, University of Pennsylvania, Philadelphia 4, Pennsylvania, U.S.A.

(Received 18 March 1954 and in revised form 31 March 1954)

It sometimes happens that the equi-inclination angle μ cannot be set precisely in advance, either because the lattice-level coordinate ζ is not yet known accurately or because the instrument has fallen out of adjustment (see Buerger, 1942; the nomenclature in this note is the same as his). The most important consequence of missetting μ is not, as is sometimes thought, that reflections will be lost (though this can happen) but that the Lorentz factor can be seriously affected, especially for near-in spots. This note describes a method for finding the correction $d\mu$ to be applied to μ . It takes only a few minutes, gives accurate results, and can be applied to any crystal whose symmetry is monoclinic or higher.

Fig. 1. Appearance of a central lattice line (a) when the μ used was too small, and (b) when the μ used was too large. Compare Buerger's Fig. 164.

An error in μ will be revealed by the fact that a central lattice line (row of reciprocal-lattice points which passes through the rotation axis) appears on the photograph not as a straight line but as one of the forms shown in Fig. 1. What has happened is that each spot has been formed at

a moment when the rotation angle ω differed by $d\omega$ from what it should have been.

How is $d\omega$ related to $d\mu$? As shown in Fig. 2(a), when μ is correctly set the reflecting circle for the net being photographed passes through the rotation axis, but when there is an error $d\mu$ the rotation axis misses the circle by $\zeta d\mu$, passing inside the circle if μ is too large and outside it if μ is too small. Then, as is evident from Fig. 2(b), $\xi d\omega = \zeta d\mu$, or

$$d\mu = \frac{\xi}{\zeta} d\omega . \tag{1}$$

The method rests on this formula. A test Weissenberg is taken, which need be only wide enough to include such a pair of spots as S_1 and S_2 in Fig. 1, and exposed only long enough to make them visible. It is convenient to take this photograph twice on the same film, displaced horizontally by a few centimeters, to give an accurate horizontal. Two ten-minute exposures should be enough. The error $d\omega$ is read with the aid of a sheet of transparent plastic scribed with a horizontal line and one inclined at an angle (for most cameras) of $\tan^{-1} 2 = 63 \cdot 4^{\circ}$. Lastly, $d\mu$ is calculated from (1); the sign of $d\mu$ is obtained by reference to Fig. 1.

The method is applicable whenever there is a central lattice line. With a monoclinic crystal mounted on a or c this will be, say, the 40l's or the h03's, respectively. A crystal of higher symmetry, or a monoclinic crystal mounted on b, will have many central lattice lines.

This work was aided by a research grant from the U.S. Public Health Service.

Reference

BUERGER, M. J. (1942). X-ray Crystallography. New York: Wiley.

Fig. 2. (a) View from above, showing that the circle of reflection misses the rotation axis by $\zeta d\mu$. The circle of reflection is not explicitly shown here, because it is edge-on in this view, but its trace lies in the net to be photographed. (b) View down the rotation axis, showing that $\xi d\omega = \zeta d\mu$. Here the reflecting circle is explicitly shown. In both drawings the parts shown in broken lines refer to the case when μ is mis-set. These drawings correspond to the lower and upper parts of Buerger's Fig. 139.