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and because they are sufficiently faint that  they do not 
represent a major disorder in the structure, we have 
not investigate d them further. I t  does seem likely that  
they represent such a limited disorder that  no doubt 
remains about the correctness of the ordered structure. 
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A discussion of the effect of anisotropic thermal vibration of the atoms in a crystal on the intensity 
of the Bragg reflexions leads to a method by which these anisotropic temperature factors can 
easily be evaluated numerically. 

I t  is well known that  the effect of isotropic thermal 
vibration of atoms in a crystal is to reduce the atomic 
scattering factor for Bragg reflexions by a factor 

exp [ - 2~9u2S 2] , ( 1 ) 

where u 2 is the mean square displacement of an atom 
from its average position and S = 2 sin 0/4. I t  has 
generally been assumed that  when the thermal 
vibration is anisotropic, the surfaces of constant 
temperature factor in reciprocal space are ellipsoids. 
As far as I am aware, no proof of this has been offered. 
The following derivation shows the circumstances in 
which the result is true, and has the merit of suggesting 
a way in which the calculation of structure factors, 
with allowance for anisotropic temperature effects, can 
be simplified. 

Let r, having rectangular components (x, y, z), be 
a distance in space, and S, with rectangular com- 
ponents (2, U, ~), a distance in reciprocal space. The 
directions (x, y, z) and (2, ~, ~) coincide; they are not 

however the directions of the crystallographic axes 
(which need not be rectangular), but are the 'prin- 
cipal directions of vibration' of an atom. Let @o(r) 
be the electron distribution in the atom at rest, and 
fo(S) its atomic scattering factor, fo(S) is the Fourier 
transform of @0(r); the latter is assumed to have 
spherical symmetry and therefore fo(S) also has this 
symmetry. Now suppose the atom to be displaced 
from its mean position so that  the probability that  its 
centre lies within a volume element dx dy dz is 

p(x, y, z )dxdydz  = ((2re)3/2uxuyu~) -1 

× exp [-(z2/2u~+y2/2u~+z~/2u~)]dxdydz,  (2) 

ux,2 uy2 and uz2 being the mean square displacements 
in the three directions at right angles. The resulting 
average electron distribution @(r) may be described 
as the convolute of @0(r) with p(x, y, z). I t  follows 
that  the resulting atomic scattering factor, f(S), is 
the product of fo(S) with the Fourier transform of 
p(x, y, z). This transform may be sho~m to be 
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2 2 2 2 exp [-2z~(~2u~÷~ uy÷~ u~}]. (3) 

(For a fuller discussion of points raised in this para- 
graph, see, for example, James, 1954, Appendix V.) 
That  is, 

2 2 2 2 2 2 2 f(~, V, $ ) = / 0 ( S )  exp [ - 2 ~  {~ u~+~ uy÷~ u~}]. (4) 

This result shows tha t  the surfaces of constant 
scattering factor are ellipsoids provided tha t  the 
thermal vibration is specified by the distribution (2) 
and tha t  fo(S) is isotropic. The assumption of a distri- 
bution of this form is reasonable, and is in line with the 
assumption made by Debye (1913a, b, c) for the case 
of isotropic vibration. The calculation of structure 
factors when a crystal contains even one atom per 
unit  cell having an anisotropic temperature factor 
requires a great deal of numerical work. Much of this 
can be avoided in a way which will now be described. 

A convenient graphical method of evaluating 
exp [-2~2u2S 2] is based on the fact tha t  for a particu- 
lar reciprocal-lattice point the value of S is just the 
distance of the point from the origin. The method will 
not be described here as it is an obvious modification 
of tha t  used to evaluate graphically the Lorentz 
polarization factor (Cochran, 1948). I t  will now be 
shown tha t  there exists another lattice, obtained by a 
homogeneous distortion of the original, which has the 
property tha t  the distance S '  of a point from the 
origin, when substituted in the isotropic factor (1) 
gives the anisotropic factor (3). The graphical method 
can therefore be used to evaluate (3) just as easily 
as to evaluate (1). This can be seen from the fact tha t  
if in the expression (1) we replace ~ by ~uz/u etc. we 
obtain (3). In  other words, the isotropic factor for the 
point (~u~/u, ~uy/u, $u~/u) is just the anisotropic 
factor for the point (~, ~1, $)" The distorted reciprocal 
lattice is therefore obtained by  homogeneous distor- 
tion of the original reciprocal lattice by factors 
u J u ,  uy/u, u~/u in the x, y and z directions respec- 
tively. 

Let the direction cosines of a* relative to (x, y, z) 
be la,, mao , nao and similarly for b* and c*. The lattice 
translations, and interaxial angles, of the distorted 
reciprocal lattice are then given by 

= (laoux÷ma~,Uy÷naoUz) etc., (a*) 1 (a*/u) " 2 2 2 2 2 ½ 

and cos (~,)1 

u~lbol¢°+u~mbomco+u~n~°n¢° ,,,,~ 

T H E  E F F E C T  OF A N I S O T R O P I C  T H E R M A L  V I B R A T I O N  

a 1 -^ ~12~u2--m21, 2--irb2iU2~½ ~---tb'tbk a /  x "1- a / t~y  "3- a /  z) , etc., 
COS 0~ 1 

(lblc/u~ + mbmc/u~ ÷ nbndu~) ½ 
: 2 2 2 2 2 2 ~ 2 2 2 2 2 2 ½ e t c . ,  (lb/u~+ mb/uy÷ nb/u~)- ( lc/u~÷m~/uy+ nc/u~) 

whose reciprocal lattice also defines the required 
lattice (a*) ~, (b*) 1, (c*)L As found in this way, two 
stages of calculation are therefore required, but  the 
calculation begins from quantities which are more 
easily determined. 

= ~ 2  2 2 2 2 ½ 22 2 2 2 ~ i (Uxlbo ÷ Uymbo -4- Uz n bo) (u::lco + uymco ÷ u~ no,,) 
etc. 

I t  will in many  instances, however, be easier to specify 
the direction cosines of a, b and c in the system 
(x, y, z). Let  those of a be la, ma, ha. 

Then there exists a distorted lattice in direct 
(crystal) space given by 

Fig. 1. Graphical construction for the distorted reciprocal 
lattice in two dimensions. The parallelogram OPQR defines 
the reciprocal lattice, x and y are directions of maximum and 
of minimum thermal vibration respectively. It  is assumed 
that ux/u = 1.2 and Uy/U ---- 0.8. The points A" and B" on 
the y axis are such that OA'/OA = OB'/OB = 0-8, while 
C' and D" on the x axis are such that OC'/OC = OD'/OD = 
1-2. The defining vectors of the distorted reciprocal lattice 
are therefore parallel to A'C" and B'D" respectively, so that 
the parallelogram OP'Q'.R" gives one cell of the distorted 
reciprocal lattice. 

From the cumbersome nature of the formulae set 
out above it may  be wondered what  has become of the  
simplicity claimed for the method, Usually, however, 
the symmetry  of the lattice is higher than triclinic, 
and further simplifications ensue if one of the direc- 
tions (x, y, z) coincides with a crystallographic axis. 
In  dealing with structure factors belonging to one zero 
layer of the reciprocal lattice, the distorted reciprocal 
lattice can be obtained from the original by a simple 
graphical construction shown in Fig. 1. 
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