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An application of angular X-ray cross-correlation analysis (AXCCA) to the

scattered intensity distribution measured in 3D reciprocal space from a single-

crystalline sample is proposed in this work. Contrary to the conventional

application of AXCCA, when averaging over many 2D diffraction patterns

collected from different randomly oriented samples is required, the proposed

approach provides an insight into the structure of a single specimen. This is

particularly useful in studies of defect-rich samples that are unlikely to have the

same structure. The application of the method is shown on an example of a

qualitative structure determination of a colloidal crystal from simulated as well

as experimentally measured 3D scattered intensity distributions.

1. Introduction

The first approaches to study the structure of materials by

means of angular correlations in the scattered intensities go

back to the late 70s to early 80s (Kam, 1977, 1980; Clark et al.,

1983). It was proposed by Kam (1977) to reveal the structure

of macromolecules by analyzing the angular correlations in

the scattering patterns from randomly oriented molecules in

solution. In other research, correlations of scattered laser

intensities from colloidal glass were found to be related to its

local structure (Clark et al., 1983). At that time, the method

did not undergo further development due to the lack of

suitable instrumentation (Kam et al., 1981). Recently,

however, it has become of great interest after the work of

Wochner et al. (2009), where angular X-ray cross-correlation

analysis (AXCCA) was applied to study the structure of

colloidal glasses by means of X-ray scattering. The renewed

interest to AXCCA was triggered by the development of

modern X-ray sources such as third- and fourth-generation

synchrotrons (Schroer, 2019) and novel X-ray free-electron

lasers (XFELs) (Emma et al., 2010; Ishikawa et al., 2012; Kang

et al., 2017; Decking et al., 2020) that provide an X-ray beam

with outstanding characteristics including high brilliance,

ultimate coherence and femtosecond pulse durations. These

characteristics allow the measure of fluctuations in the scat-

tering patterns containing information about the local struc-

ture that could be revealed by AXCCA. The emergence of

suitable equipment has led, among practical applications, to

the development of the underlying theory (Saldin et al., 2010,Published under a CC BY 4.0 licence
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2011; Altarelli et al., 2010; Kirian, 2012; Kurta et al., 2016;

Martin, 2017).

The practical applications of AXCCA are defined by the

investigated sample and geometry of a typical X-ray scattering

experiment. In such experiments, the scattered intensities are

measured by a 2D detector that represents a cut of reciprocal

space by the Ewald sphere. AXCCA applied to such 2D

patterns reveals symmetries of the sample in the plane

orthogonal to the incident beam. This is particularly suitable

in studies of (quasi-)2D samples such as 2D nanostructures

(Kurta et al., 2013, 2012; Pedrini et al., 2013), thin polymer

films (Kurta et al., 2015; Lehmkühler et al., 2018; Schulz et al.,

2020) and liquid crystals (Zaluzhnyy et al., 2015, 2019;

Zaluzhnyy, Kurta, Sulyanova et al., 2017). In some cases, it is

possible to refine the unit-cell parameters of 3D superlattices

of nanocrystals (Zaluzhnyy, Kurta, André et al., 2017;

Mukharamova et al., 2019; Lokteva et al., 2019; Maier et al.,

2020).

To explore the symmetries of a 3D sample, one typically

collects many 2D patterns from randomly oriented identical

samples, for example, injected bioparticles (Kurta et al., 2017;

Pande et al., 2018) or nanocrystals (Mendez et al., 2016; Niozu

et al., 2020; Ayyer et al., 2021) as shown in Fig. 1(a). To achieve

reasonable scattered intensities from a small single sample,

extremely high flux of the incident X-ray beam is required that

can be provided by modern XFELs. The diffraction patterns

collected in such an experiment represent random cuts of

reciprocal space as shown in Fig. 1(b) that can be assembled

into the intensity distribution in 3D reciprocal space. The main

assumption of this approach is the reproducibility of the

measured samples. If the measured samples are different, the

revealed structure is averaged over many realizations.

At modern third-generation synchrotron sources, we can

exploit their high coherence to study the sample structure by

coherent diffraction imaging (CDI). In this technique, the 3D

electron density of the sample in real space is reconstructed by

a phase retrieval algorithm from the scattered intensity

distribution measured in whole reciprocal space (Shabalin et

al., 2016; Carnis et al., 2021). This may be achieved by the

angular scan of the sample with a large unit cell in small-angle

X-ray scattering (SAXS) geometry as shown in Figs. 1(c)–1(e).

Although such a reconstruction provides full information

about the structure, the method is highly demanding in terms

of experimental requirements and data quality. AXCCA is

based on the analysis of angular correlations of scattered

intensities in reciprocal space and can be applied to datasets of

much lower quality, for which the phase retrieval algorithms

fail, to reveal the structural features averaged over the sample

without the need to perform a reconstruction (Schlotheuber

né Brunner et al., 2021).

In this work, we propose employment of AXCCA to study

symmetries of the intensity distribution in 3D reciprocal space

from a single-crystalline sample. We apply this method to

simulated datasets for model colloidal structures and propose

a geometrical model to interpret the results. As an example of

practical application, we employ the dataset collected for a

CDI reconstruction of a colloidal crystal grain (Shabalin et al.,

2016; Meijer et al., 2014). We show that the developed method

provides qualitative information about the real space structure

without performing a complex iterative phase retrieval.

2. Theory

2.1. AXCCA applied to the intensity distribution in 3D
reciprocal space

Here, we consider the scattered intensity distribution

measured by a 2D detector. The conventional AXCCA is

based on the analysis of a two-point cross-correlation function

(CCF) defined as (Niozu et al., 2020)

Cðq1; q2;�Þ ¼ ~II q1ð Þ
~II q2ð Þ�

q1q2

kq1kkq2k
� cos �

� �� �
; ð1Þ

where Ĩ(q1) and Ĩ(q2) are the scattered intensities measured by

the detector at the points corresponding to the momentum

transfer vectors q1 and q2 with the relative angle � between

them. The averaging is performed over all positions corre-

sponding to q1 and q2 with the lengths q1 = ||q1|| and q2 = ||q2||,

respectively. The intensities can be scaled to their mean values,

for example, as

~II qið Þ ¼
I qið Þ � hI qið Þi

hI qið Þi
; i ¼ 1; 2; ð2Þ

where averaging is performed over all measured intensities

corresponding to the momentum transfer vectors qi with a

certain length qi = ||qi||.

When the measurements are performed in the SAXS

geometry corresponding to small momentum transfer vectors,

one can neglect the curvature of the Ewald sphere. Then, the

definition in equation (1) simplifies to

research papers

426 Dmitry Lapkin et al. � AXCCA applied to scattering data in 3D reciprocal space IUCrJ (2022). 9, 425–438

Figure 1
(a) Scheme of the experimental setup for measuring 2D diffraction
patterns from different randomly oriented samples injected into the
incident X-ray beam. The patterns collected represent random cuts of 3D
reciprocal space as shown in (b). (c) Scheme of the experimental setup for
measuring 2D diffraction patterns from a single sample rotated around an
axis normal to the incident beam. (d) 2D patterns of known orientation
can be further interpolated into 3D intensity distribution (e).



Cðq1; q2;�Þ ¼ ~IIðq1; ’Þ~IIðq2; ’þ�Þ
� �

’
; ð3Þ

where Ĩ(q, ’) is the scattered intensity measured by a detector

at the position q = (q, ’), here q, ’ are the polar coordinates,

and h� � �i’ denotes averaging over all angles of ’. The variables

used in the definition of CCF in equation (3) are shown in

Fig. 2(a).

Typically, the CCFs are averaged over many 2D diffraction

patterns collected from different realizations of the system (at

different positions of the sample, at different times or from

different randomly oriented injected particles). Averaging

over many different system realizations allows suppression of

random correlations in the scattered intensities specific to a

certain realization of the system. The averaged CCFs repre-

sent systematic correlations that correspond specifically to the

internal structure of the samples and not to the certain reali-

zation of the system. Moreover, averaging over many orien-

tations of the samples allows assessment of the correlations in

different cuts of 3D reciprocal space. Thus, the resulting CCFs

represent all correlations in 3D reciprocal space and not only

in certain planes.

In this work, we propose to apply equation (1) to the

scattered intensity distribution in 3D reciprocal space

measured for a single sample. In 3D reciprocal space, both

momentum transfer vectors q1 and q2 can take any angular

position. The averaging in equation (1) is then performed over

spheres in reciprocal space with the radii q1 = ||q1|| and q2 =

||q2||, respectively, as shown in Fig. 2(b). The resulting CCFs in

this case contain all present correlations from a single sample

without a need to perform averaging over many realizations.

We note that a similar result would originate from averaging

over many randomly oriented 2D scattering patterns collected

from the same sample (or identical samples). Indeed, each pair

of momentum transfer vectors taken in 3D reciprocal space

lay in a certain 2D hyperplane that can be thought of as a 2D

diffraction pattern. If the number of the randomly oriented 2D

patterns is big enough, they cover the whole 3D space and the

CCFs averaged over such a set of 2D patterns are identical to

the CCFs calculated for the 3D pattern (Niozu et al., 2020).

The number of randomly oriented 2D scattering patterns

required to obtain the same information as from the 3D

scattered intensity distribution is discussed in Section 3.3.

2.2. CCFs in the case of a crystalline sample

AXCCA was shown to be useful to extract additional

information from the scattering patterns of crystalline samples

(Mendez et al., 2016; Niozu et al., 2020). In this case, the

scattered intensity contains well defined Bragg peaks origi-

nating from the crystallographic planes of the sample. When

the CCF C(q1, q2, �) is calculated at the momentum transfer

values q1 and q2 corresponding to the Bragg peak positions, it

contains correlation peaks at the characteristic relative angles

� between the Bragg peaks, i.e. the reciprocal lattice vectors

g1 and g2 with the lengths q1 = ||g1|| and q2 = ||g2||.

Given a model of a unit cell with the lattice basis vectors a1,

a2 and a3, we can calculate the reciprocal basis vectors b1, b2

and b3 and thus any reciprocal lattice vector (Kittel, 2004). For

a pair of Bragg peaks corresponding to the reciprocal lattice

vectors g1 and g2, the angle between them can be calculated

using the scalar product

g1 � g2 ¼ kg1kkg2k cosð�Þ; ð4Þ

where dot indicates a scalar product between two vectors.

These Bragg peaks would contribute to the CCF calculated for

the momentum transfer values q1 and q2 corresponding to the

norms of the vectors q1 = ||g1|| and q2 = ||g2||, respectively, at the

angle �, as shown in Fig. 3(a). Given the lattice parameters

and symmetry, one can calculate all positions of the correla-

tion peaks. Details of the calculation are given in Appendix A.

Note that, in the case of high lattice symmetry, several pairs of

different reciprocal lattice vectors with the same norms may

contribute to the CCF at the same relative angle �. For

example, for a face-centered cubic (f.c.c.) lattice, the pair of

Bragg peaks 111 and 111 as well as the pair 111 and 111

research papers

IUCrJ (2022). 9, 425–438 Dmitry Lapkin et al. � AXCCA applied to scattering data in 3D reciprocal space 427

Figure 2
Scheme of the CCF calculation in the case of 2D (a) and 3D (b) intensity distributions. The product of intensities at two points q1 and q2 in reciprocal
space, separated by the angle �, contribute into the CCF value at this � value. The final CCF is obtained by averaging over all points on the rings/spheres
of the corresponding radii. The color code exemplarily represents the simulated intensities for a colloidal crystal with an f.c.c. structure: (a) 2D diffraction
pattern from the colloidal crystal oriented along the [001]f.c.c. axis with respect to the incident X-ray beam and (b) intensities at the spheres in 3D
reciprocal space of the colloidal crystal with the radii q1 and q2, corresponding to the 111 and 220 reflections, respectively.



contribute to the CCF at the same angle � = arc cos (1/3) �

70.53�. In such a case, different peaks in the resulting CCFs

can have different degeneracy, which is reflected in their

relative magnitudes.

Considering close-packed structures, different stacking

motifs of hexagonal layers result in different symmetries of the

structures. Two structures of high symmetry are f.c.c. and

hexagonal close-packed (h.c.p.) lattices with the following

stacking sequences: ABCABC for f.c.c. and ABAB for h.c.p.

(Conway & Sloane, 2013). Stacking faults – irregularities in

the stacking sequence – are very common defects in close-

packed structures due to a low energy difference between the

ideal structures (Bolhuis et al., 1997). A single inversion of the

f.c.c. stacking sequence ABCABCBACBA corresponds to a

�3-twinning boundary and results in two twinned f.c.c.

domains. Random stacking of hexagonal layers results in a so-

called ‘random h.c.p.’ (r.h.c.p.) structure containing the motifs

characteristic for both f.c.c. and h.c.p. structures. In reciprocal

space, the stacking faults produce strong diffuse scattering in

the stacking direction connecting the Bragg peaks in the form

of rods known as Bragg rods, as shown in Fig. 3(b). Such Bragg

rods are intensity modulations in reciprocal space along the

straight lines connecting the Bragg peaks with fixed h and k

indexes for which h� k 6¼ 3n; n 2 Z and any index l 2 R (in

h.c.p. notation). The Bragg peaks with indexes

h� k ¼ 3n; n 2 Z and l 2 Z are stacking-independent and are

isolated in reciprocal space (Petukhov et al., 2003). The

intensity profiles along the Bragg rods depend on the parti-

cular stacking sequence as described by Meijer et al. (2014). In

contrast to the isolated Bragg peaks that contribute to the

CCFs at certain q-values, the Bragg rods contribute to the

CFFs in a continuous q-range. Their contribution can be

evaluated using the scalar product and corresponding reci-

procal basis vectors as described in Appendix A.

3. Results

We demonstrate application of the AXCCA technique on

simulated and experimentally measured datasets. The simu-

lated datasets represent scattered intensity distributions in 3D

reciprocal space calculated for colloidal crystal grains of

different structures. The experimentally measured dataset is

the scattered intensity distribution from a similar colloidal

crystal studied previously (Shabalin et al., 2016; Meijer et al.,

2014). Each of the datasets initially consisted of 360 diffraction

patterns obtained by rotation of the sample in the range 0–

180� around the vertical axis with an angular step size of 0.5�.

The simulation parameters selected were similar to those used

in the experiment: X-ray energy E = 8 keV (� = 1.55 Å), a 2D

detector (512 � 512 pixels) with the pixel size 55 � 55 mm2

positioned downstream from the sample at the distance d =

5.1 m. The experimental dataset was collected at the P10

Coherence Application beamline at PETRA III synchrotron

using a MAXIPIX detector. The 2D patterns from each

dataset were interpolated onto a 3D orthogonal grid with a

voxel size of 0.4375 mm�1. We used the flat Ewald sphere

approximation because of small scattering angles (less than

0.25�, the corresponding q-values less than 200 mm�1).

3.1. Application to the simulated data

For simulations, we considered a spherical colloidal crystal

grain with an outer size of 3.6 mm consisting of monodisperse

silica spheres with a diameter of 230 nm. Different close-

packed structures typical for colloidal crystals were simulated:

ideal f.c.c. and h.c.p. lattices, two f.c.c. domains with a �3-

twinning boundary, as well as an r.h.c.p. lattice with the

stacking sequence ABCABCBCBCACBCBABAB matching

the one observed in the CDI reconstruction (Shabalin et al.,

2016) of the experimental data discussed below. The nearest-

neighbour distance for all the structures was equal to the

diameter of the constituting silica spheres (230 nm). The

simulated structures consist of corresponding stacking motifs

of the hexagonal layers, as shown in Figs. 4(a), 4(d), 4(g) and

4( j).

The 2D diffraction patterns from the structures were

simulated using the MOLTRANS software. On the simulated

diffraction patterns (see Fig. 4) one can observe concentric

rings of intensity due to the form factor of the colloidal

spheres and the Bragg peaks that originate from the structure

factor of the colloidal crystal lattice. In the diffraction patterns

for the structures with stacking faults [see Figs. 4(i) and 4(l)],

aside from the isolated Bragg peaks, the Bragg rods along the

qz direction that connect Bragg peaks can be clearly observed.

The azimuthally averaged intensities of the 3D scattered

intensity distributions for these structures are shown in

Fig. 5(a). The intensity profiles for the ideal f.c.c. and h.c.p.

lattices are quite different as they contain the characteristic

Bragg peaks for these structures. In contrast, the profile for

two twinned f.c.c. domains with a �3-boundary between them

is almost identical to the one for the perfect f.c.c. lattice. This is

an expected result because the major contribution to the

scattered intensity originates from the domains with the same

f.c.c. structure, whereas the contribution from the boundary is

negligible. The radial profile for the r.h.c.p. structure is

smoothed and contains mostly the peaks common for the f.c.c.
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Figure 3
Models of 3D reciprocal space for (a) h.c.p. and (b) r.h.c.p. lattices. The
black dot is the origin of reciprocal space, colored dots are the Bragg
peaks. The semitransparent sphere shows the sphere S of the radius q =
||q1|| = ||q2||, at which the CCF is calculated. In (a) the green dots are the
Bragg peaks intersecting the sphere S and, thus, contributing to the
corresponding CCF at the angle �. In (b), the orange rods represent the
Bragg rods. They contribute to the corresponding CCF at the angle � that
is dependent on the radius q of the sphere S.



and h.c.p. structures, making it hard to identify the exact

stacking sequence. It is even harder in the case of the

experimentally measured profile [shown in Fig. 5(a) for

comparison] due to lower contrast.

We calculated the CCFs for the pairs of points with the

same q-value q = ||q1|| = ||q2|| in the simulated 3D intensity

distributions for all four different structures (see Appendix B

for details of the calculation). We considered the CCFs for
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Figure 4
Simulation of 2D diffraction patterns from the structures: (a)–(c) f.c.c., (d)–( f ) h.c.p. (g)–(i) twinned f.c.c. domains and ( j)–(l) r.h.c.p. The first column
contains the simulated structures viewed along [110]f.c.c./[100]h.c.p., the stacking direction [111]f.c.c./[001]h.c.p. is along the z-axis. The red lines denote the
stacking sequence. The second column contains diffraction patterns simulated for an incident beam along the stacking direction [111]f.c.c./[001]h.c.p.. The
third column contains diffraction patterns simulated for an incident beam along the direction [110]f.c.c./[110]h.c.p..



intensities at q = 55 mm�1 that correspond to stacking inde-

pendent reflections present for all structures [see Fig. 5(a)].

This q-value corresponds to the 220 reflections from the f.c.c.

structure and to the 110 reflections from the h.c.p. structure.

Even though these reflections correspond to the same d-

spacing, the angles between the equivalent planes are different

for these structures. Therefore, the peaks in the CCFs appear

at different positions for different structures, as shown in

Fig. 5(b). The peak positions from the geometrical model (see

Appendix A) coincide with the peak positions in the calcu-

lated CCFs for the simulated structures as shown in Fig. 5(b).

The peak positions for an f.c.c. structure are clearly distinct

from those for an h.c.p. structure because of different

symmetry. The CCF for the twinned f.c.c. structure contains

additional peaks that are correlations between the peaks

originating from different domains. The position of additional

peaks is defined by the twinning transformation described in

Appendix A. This approach can be extended to other types of

twinning (e.g. �5 or �9). The CCF for the r.h.c.p. structure is

similar to the one for the twinned f.c.c. domains, but the

relative intensity of the peaks is different. This probably

indicates the presence of both h.c.p. and f.c.c. stacking motifs,

but more general conclusions can be made only analyzing the

CCFs calculated for different q-values as described below.

Additional information can be accessed if we review a set of

CCFs calculated for various q-values. We calculated the CCFs

in the range q = 25–115 mm�1 with a step size of 1 mm�1 (see

Fig. 6). As shown in this figure, the peaks for the simulated

structures have different positions in both radial and angular

directions, since they originate from different sets of equiva-

lent planes defined by the lattice symmetry. The peak positions

for these structures can be calculated from the geometrical

model of the reciprocal lattice as described in Appendix A.

We note that the peak positions were determined for the

structures with the unit-cell parameters corresponding to the

nearest neighbor distance of 230 nm (the size of the silica

spheres). In an arbitrary experiment, the unit-cell parameters

can be used as the fitting parameters to fit the peak positions in

the experimental CCFs (Carnis et al., 2021; Schlotheuber né

Brunner et al., 2021).

For the ideal f.c.c. and h.c.p. structures, the positions of all

brightest peaks in the CCFs coincide with the positions

obtained from the geometrical model [see Figs. 6(a) and 6(b)].

Additionally, there are low-intensity peaks at the q-values

between the bright peaks that are not explained with this

model [see, for example, additional peaks at q = 36 mm�1 in

Fig. 6(a)]. They originate from the correlations between the

Bragg peaks of different orders. Basically, different orders

contribute to the scattered intensities at different q-values, but

due to the broadening of the Bragg peaks and the absence of

noise in the simulated data, their tails contribute to the CCFs.

These are not observed in the experimental data due to noise

and other artifacts, but can also be considered in the simple

geometrical model.

For the twinned f.c.c. structure, the map contains many

additional peaks that reflect correlations between the Bragg

peaks that originate from different domains. As discussed

above, the peak positions are defined by the twinning trans-

formation and can be taken into account as described in

Appendix A. For the r.h.c.p. structure, the map contains peaks

characteristic for both h.c.p. and f.c.c. structures. It is rather an

expected result as soon as the r.h.c.p. structure contains

stacking sequences that can be attributed to both h.c.p. and

f.c.c. structures. Besides the isolated peaks, the CCFs for the

r.h.c.p. and twinned-f.c.c. structures contain also intensity in

the form of ‘arcs’ connecting the peaks. They originate from

the Bragg rods characteristic for stacking disordered struc-

tures with planar defects. Their contribution to the CCFs can

be calculated following the procedure described in Appendix

A and shown in Fig. 6(d).
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Figure 5
(a) Azimuthally averaged values of the 3D intensity distributions simulated for the following structures: (1) f.c.c. (2) h.c.p. (3) twinned f.c.c. domains and
(4) r.h.c.p. and from the experimentally measured sample (5), for comparison. The vertical red dashed line is at q = 55 mm�1 corresponding to 220f.c.c./
110h.c.p. Bragg peaks, for which the CCFs shown in (b) were calculated. (b) CCFs C(q, �) calculated at q = 55 mm�1 for the simulated 3D diffraction
patterns for the following structures: (1) f.c.c. (2) h.c.p. (3) two twinned f.c.c. domains and (4) r.h.c.p., and from the experimentally measured sample (5),
for comparison. The arrows show the peak positions calculated for the corresponding structures by a geometrical model.



Despite similar intensity profiles, different structures result

in different angular distribution of the Bragg peaks. The

AXCCA technique allows us to reveal the angular correla-

tions between the Bragg peaks and to determine qualitatively

the sample structure even when the azimuthally integrated

intensity profiles are almost identical.

3.2. Application to the experimental data

The experimentally measured sample was a colloidal crystal

grain with an outer size of about 2 � 3 � 4 mm3 consisting of

silica spheres with a diameter of about 230 nm prepared as

described by Shabalin et al. (2016) and Meijer et al. (2014). The

collected scattered intensity distribution in 3D reciprocal

space contains several orders of Bragg peaks and Bragg rods

[see Fig. 7(a)]. An in-plane cut through the origin of reciprocal

space [see Fig. 7(b)] reveals the sixfold symmetry character-

istic for hexagonal layers of close-packed nanoparticles. Two

out-of-plane cuts shown in Figs. 7(c) and 7(d) contain the

Bragg rods connecting the Bragg peaks indicating the stacking

disorder of the nanoparticle layers. Note that the experi-

mentally measured diffraction patterns have significantly

lower contrast compared with the simulated ones. This can be

attributed to the polydispersity of the colloidal particles, the

partial coherence of the incident X-rays and other experi-

mental artifacts that are not taken into account in the simu-

lations.

The experimental CCFs calculated in the range q = 25–

115 mm�1 with a step size of 1 mm�1 are shown in Fig. 8(a).

Owing to the lower contrast of the diffraction patterns, these

correlation maps also have lower contrast compared with the

simulated ones. Moreover, the measured intensity in the

locations of form factor minima does not contain any struc-

tural information leading to the absence of peaks in the CCFs

at the corresponding q-values (e.g. at q = 38 mm�1). We

assumed the colloidal crystal has a close-packed structure and

calculated the peak positions in the CCFs according to the

geometrical model for the same structures as for the simulated

data: ideal f.c.c., h.c.p. and twinned f.c.c. Also, we calculated

the positions of the ‘arcs’ corresponding to the correlations

between the Bragg rods. The experimental CCFs with the

indicated peak positions are shown in Figs. 8(b)–8(d).

Most of the peaks present in the experimental CCFs have

the peak positions characteristic for an h.c.p. structure [see

Fig. 8(c)], indicating that this stacking motif is a predominant

one. Several peaks do not match the positions for the h.c.p.

structure, but their positions are characteristic of an f.c.c.

structure [see Fig. 8(b)], suggesting the presence of such
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Figure 6
2D correlation maps C(q, �) calculated in the q-range from 25 to 115 nm�1 for the simulated scattered intensities in 3D from (a) f.c.c. (b) h.c.p. (c)
twinned f.c.c. and (d) r.h.c.p. structures. The CCFs are stacked together along the vertical axis q. The markers in (a)–(c) indicate the peak positions for the
corresponding structures calculated from the geometrical model (see Appendix A). Note that in (c) there are only the peaks corresponding to the inter-
domain correlations between the twin domains. The intra-domain correlations from each domain also produce peaks corresponding to an f.c.c. structure
shown in (a). In (d) the dashed lines indicate the correlations between the Bragg rods. Only correlations within 10l (black lines), 20l (red lines) and 21l
(blue lines) Bragg rod families are shown. Correlations between the Bragg rods from different families as well as for higher order families have been
omitted for clarity.



stacking motif in the sample as well. The peaks characteristic

for twinned f.c.c. domains are not present in the experimental

CCFs [compare with Fig. 6(c)], indicating the absence of such

motifs in the sample. In addition, there are ‘arcs’ characteristic

for correlations between the Bragg rods similar to those for

the simulated r.h.c.p. structure.

Indeed, the stacking sequence revealed in the reconstructed

real space structure is ABCABCBCBCACBCBABAB

(Shabalin et al., 2016). This sequence, in general, can be

described as a random h.c.p. structure with many stacking

faults. However, we can distinguish h.c.p. and f.c.c. motifs in

the sequence that produces the corresponding peaks in the

CCFs.

3.3. Comparison of AXCCA applied to the intensity distribu-
tion in 3D reciprocal space and with the randomly oriented
2D diffraction patterns

As mentioned in Section 2.1, the CCFs calculated for the

intensity distribution in 3D reciprocal space should be similar

to the many averaged 2D diffraction patterns obtained from

different random angular orientations of the same sample.

Such a dataset of 2D diffraction patterns could be collected in

an XFEL experiment performed in the single-particle imaging

(SPI) experiment, if the same crystalline structure was injected

into the X-ray beam many times with random orientations. To

prove the similarity of the CCFs obtained from the 3D

intensity distribution and the averaged 2D diffraction patterns

in random orientations, we simulated 5 � 104 diffraction

patterns from the randomly oriented colloidal crystal with the

f.c.c. structure using the MOLTRANS software as described in

Section 3.1. The angular orientations were uniformly distrib-

uted in 3D. The CCFs were calculated for q-values in the range

q = 25–115 mm�1 using equation (3) for each diffraction

pattern separately and then averaged over all patterns.

The resulting CCFs averaged over all 5 � 104 patterns are

shown in Fig. 9(b) and can be compared to those calculated for

the intensity distribution in 3D reciprocal space as described

in Section 3.1 and shown in Fig. 9(a). As we can see from these

figures, the CCF maps are almost identical and contain peaks
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Figure 7
(a) Isosurface of the measured intensities in 3D reciprocal space. (b) Horizontal cut through the origin of reciprocal space. The Bragg peaks are
attributed to an h.c.p. lattice. The red lines show the cuts in the panels (c) and (d). (c) Vertical cut through the 100 and 100 reflections, and the origin of
reciprocal space. (d) Vertical cut through the 010 and 110 reflections with an offset of 30.5 nm�1 along qy from the origin of reciprocal space. The Bragg
rods connecting the Bragg peaks of the 10l, 20l and 21l families are indicated with red arrows.



at the same positions. Small deviations probably originate

from interpolation of the scattered intensities onto the 3D grid

in the second case.

In contrast, the CCF maps averaged over 5 � 102 2D

patterns, shown in Fig. 9(c), contain only a fraction of the

peaks present in the CCF map calculated for the 3D intensity

distribution. This is because such a small number of patterns

does not fully cover all possible orientations. Indeed, to

contribute to the CCF, a pair of Bragg peaks should be present

in a single 2D diffraction pattern. Thus, it requires a certain

number of randomly oriented diffraction patterns to catch all

possible pairs of the Bragg peaks.

To estimate the number of 2D diffraction patterns in

random orientations required to obtain a CCF map similar to

the one calculated from the 3D scattered intensity distribu-

tion, we calculated the Pearson correlation coefficient

(Kendall & Stuart, 1973) r(N) between the CCF maps aver-

aged over different numbers of 2D patterns and the one from

the 3D intensity distribution defined as

rðNÞ ¼
hC3Dðq;�ÞCNðq;�Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC 2

3Dðq;�Þi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hC 2
Nðq;�Þi

p ; ð5Þ

where C3D(q, �) are the CCFs calculated for the intensity

distribution in 3D reciprocal space, and CN(q, �) are the CCFs

calculated for the randomly oriented 2D diffraction patterns

and averaged over N patterns. The averaging was performed

over all q-values in the range q = 25–115 mm�1 and angles � =

0–180� for which the CCFs were calculated. We note that the

calculated CCFs have zero mean value with averaging over

angle � at the fixed q-value that allows direct application of

the Pearson correlation coefficient.

The evolution of the correlation coefficient with the number

of diffraction patterns is shown in Fig. 9(d). When the number

of patterns used is below 102, the correlation coefficient is

close to zero, indicating that the CCFs do not contain any

features corresponding to the structural information. With

further increase in the number of patterns used, the correla-

tion coefficient grows indicating the successive appearance of

the structured features in the CCF map. At about 3 � 103

patterns it reaches a plateau, while with further increase in the

number of patterns it grows only a little bit to the value of 0.95

for 5 � 104 patterns. We suggest that all features in the CCF

map appear already at 3 � 103 patterns, while further increase

in the number of patterns leads to only minor changes in the

relative intensities of the correlation peaks.

Thus, the CCFs calculated from the 2D diffraction patterns

obtained for different random orientations of the sample are

similar to the CCFs calculated from the scattered intensity

distribution in 3D reciprocal space measured for the sample,

when the number of 2D patterns is high enough. In the

particular case under consideration, the number of required
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Figure 8
2D correlation maps C(q, �) for the experimentally measured intensity distribution in 3D reciprocal space. (a) Initial correlation map. The markers in
(b)–(c) indicate the peak positions for (b) f.c.c. and (c) h.c.p. structures calculated from the geometrical model. In (d) the dashed lines indicate the
correlations between the Bragg rods simulated for the r.h.c.p. structure. Only correlations within 10l (black lines), 20l (red lines) and 21l (blue lines)
Bragg rod families are shown. Correlations between the Bragg rods from different families as well as for higher order families have been omitted for
clarity.



randomly oriented 2D diffraction patterns is about two orders

of magnitude higher than the number of systematically

measured 2D patterns (e.g. by rotation of the sample) required

for reconstruction of the intensity distribution in 3D reciprocal

space.

Note that the number of randomly oriented 2D diffraction

patterns required to obtain the CCF map similar to the one

calculated from the 3D intensity distribution is individual for

each sample under study. The number of required patterns

depends on the probability to catch at least a pair of the Bragg

peaks into a single 2D pattern that, in turn, depends on the

angular size and separation of the Bragg peaks in 3D reci-

procal space. Therefore, for bulk crystals with many scatterers

and small periodicity, the required number of 2D patterns may

be sufficiently higher.

The important point here is the distribution of the angular

orientations of the sample, for which 2D diffraction patterns

are obtained. Only uniform angular distribution allows us to

obtain CCFs similar to those from the 3D intensity distribu-

tion, because the 2D patterns in this case cover all pairs of the

points in reciprocal space with equal probability. If the angular

distribution is not uniform, some correlations will be enhanced

while others will be weakened.

To show this, we simulated 2D diffraction patterns from a

colloidal crystal with the f.c.c. structure using the

MOLTRANS software. We simulated two datasets, obtained
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Figure 9
2D correlation maps C(q, �) calculated for (a) the simulated scattered intensities in 3D reciprocal space and (b)–(e) 2D diffraction patterns from a
randomly oriented sample averaged over (b) 5 � 104 and (c) 5 � 102 patterns. The scattered intensity distribution in 3D reciprocal space and the 2D
diffraction patterns were simulated for the same colloidal crystal with an f.c.c. structure. (d) Pearson correlation coefficient r(N) between the CCF maps
averaged over different numbers of 2D diffraction patterns and the CCF map calculated for the intensity distribution in 3D reciprocal space for the same
sample. (e)–( f ) 2D correlation maps C(q, �) calculated for 2D diffraction patterns obtained by rotation of the sample with an f.c.c. structure around the
(e) [111]f.c.c. and ( f ) [110]f.c.c. axes.



by rotation of the sample around the [111]f.c.c. and [110]f.c.c.

axes in the range 0–180� with an angular step size of 0.5�. The

CCFs were calculated for the 2D diffraction patterns in the q-

range 25–115 mm�1 with the step size of 1 mm�1 and then

averaged over all angular positions of the sample. The

resulting CCFs calculated for these two datasets are shown in

Figs. 9(e) and 9( f). They are different from each other and

from the CCF map obtained for the 3D intensity distribution

shown in Fig. 9(a). The difference can be explained as follows.

A pair of the Bragg peaks gives rise to a peak in the CCFs only

if both Bragg peaks are present in the same 2D diffraction

pattern. When the diffraction patterns are collected by rota-

tion of the sample around one of its crystallographic axes, each

diffraction pattern contains different pairs of the Bragg peaks.

The exact set of the Bragg peak pairs present in the dataset is

defined by the selected crystallographic axis. Thus, the datasets

collected by rotation around different crystallographic axes

contain different pairs of the Bragg peaks that give rise to the

peaks in the CCF maps. The present peaks in the CCF maps in

this case have higher intensity compared with those in the

CCF maps obtained for the randomly distributed 2D patterns.

This is because, in the latter case, the CCFs are averaged over

many patterns, most of which do not contain any correlations

at a certain q-value. The diffraction patterns obtained by the

rotation around one crystallographic axis are an extreme case,

but any other distribution with a preferred direction would

result in similar deviations.

4. Conclusions

We proposed to apply the AXCCA technique to the scattered

intensity distribution in 3D reciprocal space. Here, we

demonstrated an application of the AXCCA for qualitative

determination of the crystalline structure of a colloidal crystal,

including the present planar defects. AXCCA provides a

complementary view on the structure when CDI reconstruc-

tion does not work (Schlotheuber né Brunner et al., 2021). The

results can be interpreted by means of a simple geometrical

model of the crystalline lattice and defects. Direct sensitivity

to the angles in reciprocal space provides additional infor-

mation about the structure compared with the conventional

radial intensity profile analysis.

The application of AXCCA to the 3D scattered intensity

distribution measured from a single sample by its rotation

made it possible to avoid averaging of the revealed structure

over many realizations with possibly different defects present.

Moreover, the systematic measurement allowed us to signifi-

cantly reduce the number of measurements needed to obtain

orientationally averaged CCFs, compared with measurements

from random orientations. We also showed that averaging

over 2D diffraction patterns measured during rotation around

the fixed axis does not provide the same CCFs as the assembly

of intensity distributions in 3D reciprocal space. We think that

it is an essential part of the proposed method.

The method described here works well for the colloidal

samples with the large unit cell. For such samples, a single

rotation around one axis is sufficient to collect scattered

intensities in whole reciprocal space. The same method can be

applied as well for the crystal grains with the unit cell of a few

Ångstroms. In this case, due to the Ewald sphere curvature,

one will need to apply two rotations around two orthogonal

axes to cover full reciprocal space of the crystal grain. The

described formalism will be applicable also in this case.

This approach was already successfully applied for the

analysis of the averaged structures and defects in single

colloidal grains of gold and magnetite nanocrystals (Carnis et

al., 2021; Schlotheuber né Brunner et al., 2021). We expect that

it will find applications for understanding the structure of

colloidal grains and single crystals in future.

APPENDIX A
Geometrical interpretation of the CCFs

Here, we follow the discussion provided by Niozu et al. (2020)

and apply it to our structures. Any reciprocal lattice vector can

be represented as a linear combination of the basis vectors

ghkl ¼ hb1 þ kb2 þ lb3. Let us denote a family of equivalent

crystallographic directions as Ghkl. Each crystallographic

direction that fulfills the diffraction selection rules for a given

lattice symmetry corresponds to the position of a Bragg peak

in reciprocal space. Using the coordinates of the reciprocal

lattice vectors ghkl and gh0k0l0 we can calculate the angle �
between a certain pair of the Bragg peaks corresponding to

these vectors. This Bragg peaks pair would contribute at the

angle � to the CCF C(q1, q2, �) calculated for q1 = ||ghkl|| and

q2 = ||gh0k0l0||. To evaluate all contributions for a certain fixed q1

and q2, we should consider all Bragg peaks that appear in

reciprocal space at these q-values. Then, all angles � can be

calculated using the scalar product

ghkl � gh0k0l0 ¼ kghklkkgh0k0l0 k cosð�Þ; ð6Þ

if one considers all possible pairs of the vectors ghkl and gh0k0l0

from certain families of equivalent crystallographic directions

Ghkl and Gh0k0l0, respectively, corresponding to the q-values q1

and q2. Note, in some cases, several families Ghikili
may

contribute at the same q-value. Then, an extended set of the

vectors [iGhikili
should be considered.

Several crystalline domains in the sample would result in

two types of correlation: intra-domain correlations between

the Bragg peaks originating from a single domain and inter-

domain correlations between the Bragg peaks originating

from different domains. The intra-domain correlation contri-

bution to the CCFs can be evaluated as described above. To

evaluate the contribution of the inter-domain correlations, one

should consider the relative orientation of the domains. The

orientation can be taken into account by introducing an

orthogonal transformation matrix T that transforms the basis

vectors of one domain into the basis vectors of another. Then,

the inter-domain correlations contribute to the CCF C(q1, q2,

�) at the angles � that can be found using the scalar product

ghkl � Tgh0k0 l0 ¼ kghklkkgh0k0 l0 k cosð�Þ; ð7Þ
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if one considers all possible pairs of the vectors ghkl and gh0k0l0

from certain families of equivalent crystallographic directions

Ghkl and Gh0k0l0 corresponding to the q-values q1 and q2.

For example, for f.c.c. and h.c.p. lattices discussed in this

paper, the reciprocal basis vectors can be defined as follows:

bf:c:c:
1 ¼ 2�

af:c:c:

1ffiffi
2
p ;� 1ffiffi

6
p ; 1ffiffi

3
p

	 


bf:c:c:
2 ¼ 2�

af:c:c:
� 1ffiffi

2
p ;� 1ffiffi

6
p ; 1ffiffi

3
p

	 


bf:c:c:
3 ¼ 2�

af:c:c:
0; 2ffiffi

6
p ; 1ffiffi

3
p

	 


8>>>><
>>>>:

and

bh:c:p:
1 ¼ 2�

ah:c:p:

2ffiffi
3
p ; 0; 0
	 


bh:c:p:
2 ¼ 2�

ah:c:p:

1ffiffi
3
p ; 1; 0
	 


bh:c:p:
3 ¼ 2�

ah:c:p:
0; 0;

ffiffi
3
pffiffi

2
p

	 
 ;

8>>>><
>>>>:

ð8Þ

where af:c:c: ¼
ffiffiffi
2
p

d and ah:c:p: ¼ d are the f.c.c. and h.c.p. lattice

parameters corresponding to the same nearest-neighbor

distance d. The orientation of the f.c.c. basis is selected in such

a way that the stacking directions [001]h.c.p./[111]f.c.c. coincide

as well as the angular orientation of the hexagonal planes

(001)h.c.p./(111)f.c.c. (i.e. [100]h.c.p.jj[111]f.c.c.).

For the simplest f.c.c. twinning with a �3-boundary

discussed in this paper, the transformation matrix T corre-

sponds to a reflection of the f.c.c. lattice across the (111)f.c.c.

plane and can be written in the following form:

T ¼

1 0 0

0 1 0

0 0 �1

0
@

1
A: ð9Þ

The Bragg rods originating from the stacking disorder of the

hexagonal layers in close-packed structures are intensity

modulations along the straight lines normal to the hexagonal

layers and along the stacking direction. Their positions are

defined by the reciprocal lattice and, using the h.c.p. reciprocal

basis vectors from equation (8), can be described by

ghkðlÞ ¼ ghk0 þ g?ðlÞ, where ghk0 is a vector from a certain in-

plane Bragg peaks family G
h:c:p:
hk0 and

g?ðlÞ ¼ lb
h:c:p:
3 ; l 2 ð�1;1Þ is a vector along the Bragg rod,

normal to the planes. Note the Bragg rods are present only for

stacking-dependent families G
h:c:p:
hk0 for which

h� k 6¼ 3n; n 2 Z (Petukhov et al., 2003).

The parameter l corresponding to a certain q-value can be

easily calculated for any Bragg rod corresponding to a certain

in-plane reciprocal lattice vector ghk0 as

l ¼
q2 � kghk0k

2
� �1=2

kb3k
: ð10Þ

Then, a pair of Bragg rods, corresponding to different in-plane

vectors ghk0 and gh0k00 contributes to the CCF C(q1, q2, �) at

the angle � that can be calculated using the scalar product

ghkðl1Þ � gh0k0 ðl2Þ ¼ kghkðl1Þkkgh0k0 ðl2Þk cosð�Þ; ð11Þ

where ghkðliÞ ¼ ghk0 þ g?ðliÞ, ghk0 is a vector of a certain family

G
h:c:p:
hk0 , g?ðliÞ ¼ lib

h:c:p:
3 and parameter li corresponding to the

q-value qi is defined by equation (10).

APPENDIX B
Definition of the cross-correlation function for the
intensities defined on a grid

Taking into account that the experimental data are typically

defined on a grid in reciprocal space, equation (2) can be

represented as

Cðq1; q2;�Þ ¼

X
q i;q j2G

~IIðqiÞ
~IIðqjÞ

X
q i;q j2G

1
; ð12Þ

where

G¼fjkqik�q1j<"g \ fjkqjk�q2j<"g \ fj�ij ��j<d�g;

qi and qj are the points close to the spheres of the radii q1, q2 in

reciprocal space, respectively; �ij is the relative angle between

these points. Parameters " and d� define the radial and

angular averaging windows, respectively. The sum is calculated

over all pairs of points qi, qj with the corresponding relative

angle �. The average intensity used for the intensity correc-

tion in this case is

hIðqÞi ¼

P
kqik�qj j<" I qið ÞP
kqik�qj j<" 1

: ð13Þ

Given the desired resolution of 1 mm�1, in this work the radial

averaging window " was selected to be 0.5 mm�1. The angular

resolution of � was experimentally set to 0.5� that allows us to

resolve all peaks in the resulting CCFs. The angular averaging

window d� was correspondingly set to 0.25�.
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A., Butkowski, L., Büttner, T., Calero, J., Castro-Carballo, E.,
Cattalanotto, G., Charrier, J., Chen, J., Cherepenko, A., Cheskidov,
V., Chiodini, M., Chong, A., Choroba, S., Chorowski, M., Churanov,
D., Cichalewski, W., Clausen, M., Clement, W., Cloué, C., Cobos, J.
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Roggli, M., Rothenburg, J., Rusiński, E., Rybaniec, R., Sahling, H.,
Salmani, M., Samoylova, L., Sanzone, D., Saretzki, F., Sawlanski,
O., Schaffran, J., Schlarb, H., Schlösser, M., Schlott, V., Schmidt, C.,
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