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This paper introduces a new 2D representation of the orientation distribution

function for an arbitrary material texture. The approach is based on the

isometric square torus mapping of the Clifford torus, which allows for points on

the unit quaternion hypersphere (each corresponding to a 3D orientation) to be

represented in a periodic 2D square map. The combination of three such

orthogonal mappings into a single RGB (red–green–blue) image provides a

compact periodic representation of any set of orientations. Square torus

representations of five different orientation sampling methods are compared

and analyzed in terms of the Riesz s energies that quantify the uniformity of the

samplings. The effect of crystallographic symmetry on the square torus map is

analyzed in terms of the Rodrigues fundamental zones for the rotational

symmetry groups. The paper concludes with example representations of

important texture components in cubic and hexagonal materials. The new RGB

representation provides a convenient and compact way of generating training

data for the automated analysis of material textures by means of neural

networks.

1. Introduction

The texture of a polycrystalline material is typically described

by an orientation distribution function (ODF), which repre-

sents the volume fraction of the sample with a particular

orientation with respect to an external reference frame. In the

materials field, this is usually the sample frame described by

the RD–TD–ND directions (reference, transverse and normal

directions, respectively), whereas the geological community

typically selects a sample reference frame associated with the

growth history of the sample. Traditionally, the orientations

are parameterized by means of three Euler angles; in the

Bunge Euler convention, those angles are represented by the

triplet (’1, �, ’2) corresponding to rotations around the

Cartesian z, x0 and z00 axes, respectively. There are several

other frequently used rotation representations, including the

set of neo-Eulerian representations (Rodrigues–Frank,

homochoric or 3D stereographic vectors) and the quaternion

representation; for details of each of these we refer the

interested reader to Morawiec (2004). Details of the conver-

sions between the representations can be found in the work of

Rowenhorst et al. (2015).

Given the 3D nature of orientation space, the human brain’s

ability to interpret 3D structures correctly, and the widespread

availability of high-end computer graphics, several new

orientation visualization techniques have been proposed in

recent years (Berestova et al., 2018; Krakow et al., 2017;

Callahan et al., 2017a,b). In these articles, several orientation

representations, in particular the neo-Eulerian representa-

tions, are combined with graphical rendering software to
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produce 3D visualizations of textures as point clouds and

clusters, density functions, and emission maps, either

displaying the full orientation space or applying restrictions to

the Rodrigues fundamental zone for textures and to the

disorientation fundamental zone for multi-phase textures

(Callahan et al., 2017b).

Despite the elegance and widespread availability of these

3D renderings (e.g. in MTEX; Bachmann et al., 2010), they are

typically restricted to interactive environments where the user

can manipulate the viewing direction, zoom in on particular

regions of orientation space or change the orientation repre-

sentation mode, e.g. from Rodrigues–Frank vectors to homo-

choric or 3D stereographic vectors. Furthermore, none of

these 3D visualizations lend themselves to being analyzed with

machine learning techniques. The main goal of this paper is to

propose a 2D visualization of a texture that can be formatted

as a periodic RGB (red–green–blue) color image and is hence

suitable as training data for a classification neural network to

recognize texture components and/or texture fibers auto-

matically.

From a numerical point of view, the quaternion repre-

sentation provides an efficient and powerful way of working

with 3D rotations, for instance in combining rotations or

finding a geodesic path between two different orientations

(Hanson, 2006). In the following section, we will thus start

from the three-sphere, S3, i.e. the unit quaternion sphere, to

derive a 2D representation of 3D orientation space that can

potentially be used for the training of neural networks.

2. Mathematical background

2.1. Definitions

Following the original description in Section 4.4 of Alexa

(2022), we define the Clifford torus, also known as the

Euclidean two-torus, as the Cartesian product of two unit

circles which results in an object embedded in R4. Consider

the unit circle S1 parameterized by the angle � and defined as

the set of all points of the form ðcos �; sin �Þ with

S
1
ð�Þ � fðcos �; sin �Þ j 0 � � < 2�g: ð1Þ

Scaling the circle to a radius of � and taking the Cartesian

product of two such circles results in the Clifford torus,

Cð�; ’; �Þ � � S
1
ð�Þ � � S

1
ð’Þ

¼ f�ðcos �; sin �; cos ’; sin ’Þ j

0 � � < 2�; 0 � ’< 2�g: ð2Þ

For the special choice � ¼ 1=
ffiffiffi
2
p

, the Clifford torus

Cð�; ’; 1=
ffiffiffi
2
p
Þ becomes a sub-manifold of the unit three-

sphere, S3, because the norm of each point on the torus is

equal to 1. Putting x1 ¼ � cos � and x2 ¼ � sin �, we have

x2
1 þ x2

2 ¼
1
2
; similarly, for x3 ¼ � cos ’ and x4 ¼ � sin ’, we

have x2
3 þ x2

4 ¼
1
2
, so that x2

1 þ x2
2 þ x2

3 þ x2
4 ¼ 1.

The Clifford torus has the special property that it is flat, i.e.

there exists an isometry from the torus to a 2D square with

periodic boundaries; the edges of the square have length 2�

and cover the interval [� �, �]. The isometric mapping, which

can be shown to have a unit Jacobian, consists of taking the

ratios

x2

x1

¼ tan � and
x4

x3

¼ tan ’

and inverting the relations to the coordinates (X, Y) = (�, ’) in

the square,

ðX;YÞ ¼ atan2ðx2; x1Þ; atan2ðx4; x3Þ
� �

:

Here we use the traditional numerical two-argument version

of the arctangent function atan2ðy; xÞ � arctanðy=xÞ which

produces angles in the range [� �, �].

In materials texture analysis, it is common practice to

perform computations involving 3D orientations by means of

unit quaternions, q ¼ ðq0; qÞ 2 S3 � H, with q0 the scalar part

and q the vector part of the quaternion. Since unit quaternions

reside on S3 and the Clifford torus is a sub-manifold of the

three-sphere, the following question arises naturally: What

role can the Clifford torus play in the description of sets of 3D

orientations/rotations and, thus, the description of 3D materials

textures?

2.2. Projection of unit quaternions onto the Clifford torus

For a unit quaternion q with components (q0, q1, q2, q3), the

projection on the Clifford torus Cð�; ’; 1=
ffiffiffi
2
p
Þ results in the

point x with coordinates

x ¼
1
ffiffiffi
2
p

q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

0 þ q2
1

p ;
q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
0 þ q2

1

p ;
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
2 þ q2

3

p ;
q3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
2 þ q2

3

p

 !

: ð3Þ

The projected coordinates in the square torus are then readily

shown to be given by

ðX;ZY Þ ¼ arctan
x2

x1

; arctan
x4

x3

� �

¼ arctan
q1

q0

; arctan
q3

q2

� �

:

ð4Þ

The reason for the use of the symbol ZY will become clear

below. For a 3D rotation with unit rotation axis n̂ and rotation

angle !, the unit quaternion is given by

q ¼ cos
!

2
; n̂ sin

!

2

� �
:

Substitution of the quaternion components qi into equation

(4) then results in

ðX;ZYÞ ¼ arctan nx tan
!

2

� �
; arctan

nz

ny

� �

: ð5Þ

This can be converted to the Rodrigues–Frank representation

by noting that R = q=q0 = n̂ tanð!=2Þ, so that

ðX;ZY Þ ¼ arctan Rx; arctan
Rz

Ry

� �

: ð6Þ

The notation ZY reflects the fact that the ratio Rz/Ry is used to

determine the second square torus coordinate. Note that this

relation is not invertible, since there are only two degrees of

freedom on the square torus and 3D rotations require three

degrees of freedom. The representation in terms of the

research papers

2 of 11 Marc De Graef � Applications of the Clifford torus to material textures J. Appl. Cryst. (2024). 57



Rodrigues–Frank vector R suggests that the loss of informa-

tion during the projection onto the square torus occurs due to

the ratio of the Rz and Ry components in the ZY coordinate.

This, in turn, suggests that two other projections can be

defined by cyclic permutation of the vector components (q1,

q2, q3) of the quaternion in equation (3); starting from this

equation, we can derive two additional square torus projec-

tions via the relations

ðY;XZÞ ¼ arctan
q2

q0

; arctan
q1

q3

� �

¼ arctan Ry; arctan
Rx

Rz

� �

; ð7Þ

ðZ;YXÞ ¼ arctan
q3

q0

; arctan
q2

q1

� �

¼ arctan Rz; arctan
Ry

Rx

� �

: ð8Þ

We can think of the three coordinate pairs as three different

isometric projections of an orientation onto three orthogonal

square tori. We will label the square tori by their coordinate

symbols; when no coordinate label is present, the (X, ZY)

projection will be assumed. In terms of the Rodrigues–Frank

vector components, the cyclic permutations correspond to

120� rotations about the principal diagonal axis of the

Rodrigues reference frame.

Fig. 1 shows the square torus (X, ZY) in the range [� �, �]

along both horizontal and vertical axes; the left and right

vertical edges connect to each other, as do the top and bottom

edges. The shaded areas correspond to different sign combi-

nations of the quaternion components, with regions I–IV

corresponding to quaternions with a positive scalar part (the

default convention for 3D rotations) and a negative scalar part

for the outer regions. Rectangles with the same gray level are

exact copies of each other due to the double-cover nature of

S3.

2.3. Relation between the square torus map and the Euler

angle representation

The (Z, YX) square torus map is related to a projection of

Euler space along the � axis. The transformation relations

from the Rodrigues vector components to the Bunge Euler

angles are given by (Callahan et al., 2017a)

’1 ¼ atan2 � Ry þ RxRz; � Rx � RyRz

� �
;

� ¼ atan2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
x þ R2

y

� �
1þ R2

z

� �q

; 1 � R2
x � R2

y þ R2
z

� �

;

’2 ¼ atan2 � 2Rz; 1 � R2
z

� �
� ’1:

ð9Þ

For the (Z, YX) map, we have Rz ¼ tan Z and Ry=Rx ¼ tan YX

and, using the sum and difference formulas for the tangent

function, it is easy to show that

’1 ¼ YX � Z;

’2 ¼ � YX � Z;

so that

Z ¼ �
’1 þ ’2

2
;

YX ¼
’1 � ’2

2
:

This means that the (Z, YX) square torus map is identical to a

projection of Euler space along the � axis followed by a 45�

rotation, bringing the ’1 = ’2 diagonal parallel to the YX axis

of the square torus map. The two other maps, (X, ZY) and

(Y, XZ), do not appear to have simple interpretations in terms

of linear projections through Euler space; they are more

complicated nonlinear projections.

2.4. Zone-plate function representation

For a given set O ¼ fqi j i ¼ 1; . . . ;Ng of N unit quater-

nions, one can represent each quaternion by a narrow

symmetric normalized 2D Gaussian function at the position

(X, ZY) and add all Gaussians together to obtain a 2D

‘intensity’ landscape SðOÞ representing the set O. Several

versions of this landscape can be generated:

(i) SðOÞ. All orientations in the set are represented visually,

without application of symmetry or conversion to quaternions

with a positive scalar part.

(ii) SRFZðOÞ. All orientations are reduced to the Rodrigues

fundamental zone (RFZ) for the rotational point group

corresponding to the crystal structure (this implies that they

have a positive scalar part).

(iii) SþðOÞ or S� ðOÞ. All symmetrically equivalent orien-

tations are computed but only those with either a positive or a

negative scalar part are visualized on the square torus.
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Figure 1
A square torus diagram, delineating regions with different sign combi-
nations for the unit quaternion components. Rectangular regions with
identical gray shading are translationally identical but have opposite sign
for all quaternion components. Periodic boundary conditions apply in
both horizontal and vertical directions.



(iv) S�ðOÞ. All symmetrically equivalent orientations with

both positive and negative scalar quaternion parts are repre-

sented.

For each of these cases, one can apply a zone plate to the

square torus, i.e. the intensity at each point is multiplied by a

modulation function with spatially varying frequency content

(Öztireli, 2020). For orientation sets that are supposed to be

uniform in SO(3), the application of a zone plate sometimes

facilitates the interpretation of the intensity distribution and

makes it easier to spot non-uniformities. When a zone-plate

function is applied, we represent this by a subscript on the

intensity landscape, e.g. SRFZ
ZP ðOÞ or S�ZPðOÞ. In the following

section we will explore what these representations look like

for uniform samples of orientations, as well as for a number of

well known textures. It should be noted that application of a

zone-plate function in general destroys the equivalence of

regions with equal shading in Fig. 1.

Alexa (2022) suggested the following zone-plate function:

zðqÞ ¼
1

2
1þ cos½� dðq; qfÞ�
� �

; ð10Þ

where � is a constant that determines the number of oscilla-

tions of the zone-plate function in the interval [� �, �] and

d(p, q) is the natural metric on S3,

dðp; qÞ � arccos jhp; qij; ð11Þ

with hp, qi the standard dot product between two quaternions

projected onto the Clifford torus. qf is an arbitrary point on the

torus, so that the zone-plate function uses the geodesic

distance between q and qf along the surface of the torus. In this

paper, we select the reference point

qf ¼
1
ffiffiffi
2
p ½1; 0; 1; 0�

which is clearly located on the Clifford torus Cð�; ’; 1=
ffiffiffi
2
p
Þ and

causes z(q) to be symmetric with respect to the point

(X, ZY) = (0, 0), as shown in Fig. 2; in this figure, we have set

� = 40 and subdivided the interval [� �, �] into an equidistant

grid of 1001 points along both axes.

3. Uniform and random samplings of SO(3)

In this section, we explore a number of different orientation

sampling approaches and their representation on the square

torus using a zone-plate function. The following sampling

approaches are used to generate orientation sets:

(i) OU. Each quaternion is composed of four components,

each uniformly sampled on the interval [� 1, 1] using the

Mersenne twister algorithm (Matsumoto & Nishimura, 1998),

and the quaternion is subsequently normalized.

(ii) OM. Each unit quaternion is generated using the

Marsaglia sampling approach (Marsaglia, 1972). Draw two

uniform random numbers x1 and y1 from [� 1, 1] until s1 =

x2
1 þ y2

1 � 1. Repeat for x2, y2 until s2 = x2
2 þ y2

2 � 1. Then

replace s2 by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � s1Þ=s2

p
and form the unit quaternion q =

[x1, y1, x2s2, y2s2].

(iii) OS. In the Shoemake algorithm (Shoemake, 1992),

three random numbers are generated using the Mersenne

twister algorithm: u1 is selected uniformly from the interval

[0, 1] and u2 and u3 are selected uniformly from the interval

[0, 2�]. Setting a =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u1

p
and b =

ffiffiffiffiffi
u1
p

, the random unit

quaternion is then generated as q = ½a sin u2; a cos u2;

b sin u3; b cos u3�.

(iv) OC. Cubochoric sampling (Roşca et al., 2014) is used to

generate a uniform 3D grid of points inside a cube of edge

length �2=3. Each of these points is then mapped using an

equal-volume mapping onto the northern hemisphere of S3

(the northern hemisphere corresponds to quaternions with

positive scalar part), resulting in a uniform sampling of SO(3).

(v) OSF. Super-Fibonacci sampling (Alexa, 2022) is a rela-

tively new sampling approach that relies on two irrational

numbers (�,  ). One potential choice is related to the golden

ratio (positive root of �2 = � + 1) and the super-golden ratio

(positive root of  3 =  2 + 1). Another choice, producing a

uniform set of quaternions with a lower dispersion, sets

� ¼
ffiffiffi
2
p

and  as the positive root of  4 =  + 4 !

 = 1.53375117. To generate N uniformly distributed quater-

nions, the algorithm is as follows: for i 2 [0, . . . , N � 1], set

s = i + 1/2, t = s/n, d = 2�s, r ¼
ffiffi
t
p

, R ¼
ffiffiffiffiffiffiffiffiffiffi
1 � t
p

, � = d/� and

� = d/ . The quaternion qi is then formed as qi =

½r sin �; r cos �;R sin �;R cos��.

For each of these five sampling approaches, an orientation

set of 106 samples was generated and represented using the

zone-plate function approach. For each orientation in the set,

the quaternion was projected onto the Clifford torus and, at

the corresponding point (X, Y) in the square torus, a narrow

unit-amplitude 2D Gaussian kernel was added to the intensity

plot and multiplied by the zone-plate function value for that

point. The resulting intensity plots are shown in Fig. 3. Due to

the discrete grid nature of cubochoric sampling, the number of

sampling points for the set OC in general cannot be set arbi-

trarily; however, in the absence of crystal symmetry, a

sampling of the cubochoric grid with 100 equidistant points on
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Figure 2
The zone-plate function [equation (10)] superimposed on the square
torus diagram. Parameters are defined in the text.



the side results in a sampling of orientation space with

precisely 106 points.

For the set OU, the zone-plate function SðOUÞ shown in

Fig. 3(a) shows a regular pattern of excess intensities corre-

sponding to (X, Y) values close to �/4 and 3�/4, indicating that

the uniform sampling approach based on the Mersenne twister

does not produce a uniform orientation sampling. For the

Marsaglia generator, the function SðOMÞ shown in Fig. 3(b)

shows a better uniformity than the uniform sampling

approach, but there is an excess intensity for orientations near

X = ��/2. The Shoemake algorithm produces a smoothly

varying zone-plate representation [Fig. 3(c)], indicating that

the sampling is uniform. The cubochoric sampling approach

shows a relatively smooth zone-plate function SþðOCÞ

[Fig. 3(d)], but there are highly localized excess intensities

(arrowed) for Y = ��/4 and Y = �3�/4. These are probably

due to the fact that the cubochoric sampling algorithm relies

on sampling of six pyramidal volumes that together make up

the cube [see Fig. 1 in the report by Roşca et al. (2014)]; where

the pyramids meet (along the body diagonals of the cube) the

sampling is apparently not as uniform as elsewhere inside the

cube. However, the overall zone plate for the cubochoric

sampling approach is significantly smoother than that for the

uniform and Marsaglia sampling methods, indicating that the

orientation set OC represents a more uniform sampling of

SO(3). Finally, the zone-plate function SðOSFÞ in Fig. 3(e)

shows that the super-Fibonacci sampling approach produces a

smooth intensity profile with no obvious non-uniformities.

The uniformity of a sampling of points on the sphere Sn can

be quantified using the concept of Riesz energy (Hardin &

Saff, 2004). For a set O of N orientations represented by unit

quaternions, the Riesz energy EsðOÞ is defined as

EsðOÞ � 2
X

1�i<j�N

1
P3

k¼0ðqi;k � qj;kÞ
2

� �s=2
:

This expression can be interpreted as a generalized Coulomb

energy for a collection of points on the sphere S3 and reduces

to the standard Coulomb energy for s = 1. The sum covers the

entire three-sphere, not just the northern hemisphere S3
þ. The

optimal Riesz energies for uniform coverage of any hyper-

sphere are well known (Hardin & Saff, 2004); the values for

the three-sphere for an orientation set with N elements are

given by

E
opt
1 ¼

8N2

3�
; E

opt
2 ¼ N2; E

opt
3 ¼

2N2 ln N

3�
:

Table 1 lists the optimal values for an orientation data set of

2 � 106 unit quaternions (counting q and � q as distinct

points) along with the relative values rs ¼ EsðOÞ=Eopt
s for each

of the orientation sets of Fig. 3; for an optimal sampling, all

three ratios should be equal to unity. Both uniform and

Marsaglia sampling have ratios that are significantly different

from unity, in particular the r3 value, which is more sensitive

than the other two in terms of local sampling non-uniformities.

The Shoemake algorithm produces r1 and r2 ratios that are

very close to unity, but has an r3 value nearly twice the optimal

value; this indicates that globally this sampling has excellent

uniformity but on a local scale the sampling is not as optimal

as the cubochoric and super-Fibonacci sampling approaches.

The latter two are comparable in their ri values, which are all

relatively close to unity, indicating that there is no significant

over-sampling of sub-regions of orientation space. The visua-

lization of the orientation data sets in terms of the zone-plate

function is qualitatively consistent with the Riesz energy

ratios, so the zone-plate images can be used as a visual

substitute for the more accurate computation of the Riesz

energies.

4. Material textures and the square torus representation

4.1. Fundamental zone representations

In this section we review how orientation information

restricted to an RFZ is represented in the square torus. The

example orientation data sets used in Sections 4.2 and 4.3 are

taken from the supplementary material of Callahan et al.

(2017b). In the context of material textures, the two additional

square tori (Y, XZ) and (Z, YX) become relevant since

they project the orientation data along different directions.

One can think of a texture representation as an intensity
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Figure 3
Zone-plate representations of samples of 106 orientations using (a)
uniform sampling SðOUÞ, (b) Marsaglia sampling SðOMÞ, (c) Shoemake
sampling SðOSÞ, (d) cubochoric sampling (northern hemisphere of S3

only) SðOCÞ and (e) super-Fibonacci sampling SðOSFÞ.

Table 1
Riesz energy ratios for the five orientation sampling sets of Fig. 3.

Each set contains 2 � 106 samples (both q and � q are included in the Riesz
summations). The first row shows the actual energies Es for the optimal

sampling. The ratios rs are equal to unity for the optimal sampling.

Sampling r1 (E1) r2 (E2) r3 (E3)

Optimal 3 395 305 452 627.101 4 000 000 000 000.000 12 315 331 182 477.914
OU 1.007 179 463 867 1.052 447 214 340 2.966 778 018 561

OM 1.011 244 456 259 1.051 526 042 008 2.474 120 685 576
OS 0.999 999 863 775 1.000 006 692 433 1.969 498 539 602
OC 0.999 946 255 258 0.993 015 676 166 1.019 190 812 726
OSF 0.999 957 141 142 0.994 310 813 958 1.063 893 792 814



distribution on three adjacent faces of a cube with edge length

2�, or as a periodic RGB color image.

4.1.1. Cyclic point-group symmetry. For the cyclic rota-

tional point groups 2 (C2), 3 (C3), 4 (C4) and 6 (C6), the RFZ

corresponds to the region between two parallel planes normal

to the Rz axis [for the monoclinic point group 2 (C2), with b as

the unique axis, the planes are normal to the Ry axis] at a

distance of � tanð�=2nÞ from the origin, where n is the order

of the rotation axis. Points inside this region are of the form

ðX;ZYÞ ¼ arctan Rx; arctan
Rz

Ry

� �

ð12Þ

with Rz 2 ½� tanð�=2nÞ; tanð�=2nÞ� for n = 3, 4 and 6, and of

the form

ðX;ZYÞ ¼ arctan Rx; arctan
Rz

Ry

� �

ð13Þ

with Ry 2 ½� 1; 1� for n = 2. Producing a uniform sampling of

these RFZs results in non-uniform distributions in the square

torus because there are more points far away from the origin

than nearby.

The zone-plate functions for the cyclic rotational point

groups are shown in the top row in Fig. 4. The orientation sets

were generated by the super-Fibonacci algorithm and subse-

quently reduced to the Rodrigues fundamental zone, i.e. the

intensity plots are of the type SRFZðOSFÞ. Note that for 2 (C2),

the denser (brighter) regions are shifted up by half a unit due

to the selection of the b axis as the unique monoclinic axis.

Along the horizontal axis, orientations span the range

[� �/2, �/2], whereas in the vertical direction the entire range

[� �, �] is used. As the order of the rotation axis increases, the

intensity becomes more focused near the points (��/2, 0).

4.1.2. Dihedral, tetrahedral and octahedral point-group

symmetry. For the dihedral point groups 222 (D2), 32 (D3),

422 (D4) and 622 (D6) and for the two cubic groups 23 (T) and

432 (O), the RFZs are finite and bounded by planar facets.

Fig. 5 shows the projections of the RFZ edges onto the square

torus along with a volume rendering of the RFZ; all inset

images have the same scale and the Rz axis is vertical in all

cases. The corresponding zone plates SRFZðOSFÞ for these

point groups are shown in the bottom row of Fig. 4.

A few general trends can be observed in the zone plates for

the four dihedral groups:

(i) The projected RFZ outlines in Fig. 5 have the same

horizontal width and stretch across the entire vertical

dimension for all four dihedral groups. One can think of the

projected outline as a distorted 2D net corresponding to the

polyhedral RFZ shape. For instance, for point group 422 (D4)

the central square in the outline corresponds to the square

face normal to the x axis in Rodrigues space and the entire

polyhedron is ‘unfolded’ in the vertical (z) direction to

produce the distorted octagons above and below (labeled ‘top’

and ‘bottom’ in Fig. 5). The other vertical facets give rise to the

curved areas at the Y = 0 line as well as the top and bottom Y =

�� regions of the square torus. The RFZ facets perpendicular

to the y axis are projected onto the vertical X = ��/2 edges of

the outline.

(ii) The zone-plate plots in Fig. 4 show that the intensity

becomes more concentrated along the Y = 0 and Y = �� lines

as the rotational order increases. This is because the ‘thick-

ness’ of the RFZ along the z axis (Fig. 5) decreases [recall that

the top and bottom facets are at a distance tanð�=2nÞ from the

origin] and this results in fewer projected orientations near the

Y = ��/2 lines.

For the cubic rotational groups 23 (T) and 432 (O), the

width of the zone plate corresponding to the RFZs is narrower

than that for the dihedral groups. For the tetrahedral group 23

(T), the vertical edges of the region with non-zero intensity

correspond to the single intersection points of the octahedral

RFZ (Fig. 5) with the y axis; those orientations are completely

degenerate in the square torus representation. For both cubic

groups, the zone-plate intensity shown in Fig. 4 reaches a

maximum near the horizontal projections of the RFZ edges.

4.2. Basic texture-type representations

In this section, we use two basic texture components, the

cube or {100}h001i texture and the Goss texture {110}h001i, to
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Figure 4
Zone-plate representations SRFZðOSFÞ of uniform samplings of the
Rodrigues fundamental zone for the rotational point groups. Thin white
lines represent the projections of the edges of the RFZ onto the square
torus, as shown more clearly in Fig. 5.

Figure 5
Outlines of the projections of the finite Rodrigues fundamental zones
(shown as volume renders in the insets) for the rotational point groups
indicated in the top left. Each square has coordinate ranges [� �, �] along
both axes. The RFZ renderings use a common length scale.



demonstrate how these orientation sets are represented using

the square torus and/or the zone-plate intensity map.

Synthetic cube and Goss textures were generated using the

EMsampleRFZ program which is part of the EMsoft open

source package for electron scattering simulations (Singh et

al., 2017). Each orientation set contains 1 000 000 unique

orientations clustered around the respective texture compo-

nent mean orientations, i.e. the origin of Rodrigues space for

the cube texture and the point ½tanð�=8Þ; 0; 0� for the Goss

texture {i.e. texture component (100)[011]}. The orientations

were generated using von Mises–Fisher sampling with half-

widths of 5� for the Goss texture and 10� for the cube texture.

Fig. 6 shows the two orientation distributions represented as

point clouds in the cubic RFZ (left-most column); note that

the cluster spans the RFZ boundaries for the Goss texture.

Figs. 6(a) and 6(c) show the square torus (ST) representations

for both textures, SRFZðOCubeÞ and SRFZðOGossÞ, along with

the RFZ outlines. All orientations were reduced to the

fundamental zone before being projected onto the square

torus. In both cases, the representations contain vertical lines

due to the ‘unfolding’ of the fundamental zone along the

vertical direction of the ST map. In Figs. 6(b) and 6(d) the

cubic rotational symmetry operations were applied to the

orientation set (including the equivalence of quaternions q

and � q) before projection; the resulting ST maps correspond

to S�ðOCubeÞ and S�ðOGossÞ. Note that the Goss map is

identical to the cube map, but is shifted diagonally by a vector

(X, Y) = (�/8, � �/8).

Figs. 6(e) and 6( f) show RGB representations of the three

square torus maps, with (X, ZY) mapped onto the red channel,

(Y, XZ) onto green and (Z, YX) onto blue. For the cube

texture in Fig. 6(e), the three maps are identical so that the

RGB image becomes a grayscale image. For the Goss texture

in Fig. 6( f), on the other hand, the three projections differ

from each other and the resulting RGB image shows distinct

clusters in each color.

Because of the asymmetric way in which the Rx and (Ry, Rz)

components of a Rodrigues vector contribute to the coordi-

nates (X, Y) in the square torus [equation (6)], different

symmetrically equivalent texture components will have

different ST representations. Figs. 7(a) and 7(b) show the ST

representations of the Goss texture components centered on

the points ½0; tanð�=8Þ; 0� and ½0; 0; tanð�=8Þ�, respectively,

and Fig. 7(c) shows the sum of all three Goss maps for equal

weights.

Fig. 8 shows the square torus representations for several

common rolling texture components for face-centered cubic

(f.c.c.), body-centered cubic (b.c.c.) and hexagonal close-

packed (h.c.p.) crystal structures, as indicated in the figure

caption. For cubic symmetry, both f.c.c. and b.c.c., the intensity

distributions show three different basic components: a nearly
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Figure 6
Cube (top row) and Goss (bottom row) textures represented on the
square torus. The left-most column shows the two textures represented as
point clusters in the cubic Rodrigues fundamental zone. The second
column shows the square torus projections for the RFZ only, whereas in
the third column the cubic symmetry operators, including the equivalence
of q and � q, have been applied to the orientation data set. In the final
column, three square torus map projections are combined into an RGB
image.

Figure 7
(a) ½0; tanð�=8Þ; 0� and (b) ½0; 0; tanð�=8Þ� Goss textures represented on
the square torus. An equally weighted mixture of the Goss texture along
the three coordinate directions results in the superposition shown in
panel (c). Each component corresponds to a Watson sample with
1 000 000 orientations and a concentration of � = 262.8, corresponding to
�� = 5�.

Figure 8
Example square torus representations of common texture components
for the f.c.c., b.c.c. and h.c.p. crystal structures. F.c.c.: (a) ð110Þ½112� (brass),
(b) ð112Þ½111� (copper), (c) ð123Þ½634� (S). B.c.c.: (d) (001)[110] (rotated
cube), (e) ð112Þ½110� (inverse brass), ( f ) ð111Þ½112�. H.c.p.: (g) (00.1)[10.0],
(h) (00.1)[11.0], (i) (11.3)[10.0].



circular peak [colored red in Fig. 8(a)] or a circular peak [red

in Fig. 8(d)], a horizontally elongated peak (horizontal ellipse,

green) and a vertically elongated peak (vertical ellipse,

yellow). The texture components differ in the relative posi-

tioning of these three basic elements. In Fig. 8(d), the ellipses

overlap, giving rise to a cross-like appearance (blue).

The size of the intensity peaks increases nonlinearly with

the angular range �� (or, equivalently, the concentration

parameter � of the Watson distribution used to generate the

samples). This is illustrated in Fig. 9, which shows the f.c.c.

ð112Þ½111� (copper) texture component for �� = 5�, 10� and

20�; the corresponding concentration values � for the Watson

distribution are shown below the intensity maps.

4.3. Experimental texture representations

In this section we consider several experimental data sets

obtained using the electron backscatter diffraction (EBSD)

technique. The first data set consists of three separate EBSD

scans of a polycrystalline sample of the orthorhombic mineral

forsterite (Mg2SiO4, space group No. 62, Pbnm, also known as

olivine). The three data sets (courtesy of Dr K. Marquardt,

University of Oxford, UK) were acquired at a beam energy of

20 keVand have a combined total of 7 039 154 sampling points

covering an area of about 7 mm2 with a step size of 1 mm. The

zone-plate and square torus representations of this orientation

data set are shown in Figs. 10(a) and 10(b), respectively. The

intensity distributions are very nearly uniform with a few

higher-intensity clusters (one is circled in the square torus

map), indicating that the texture of this sample is nearly

random. There are eight equivalent higher-intensity cluster

regions due to the order of the rotational point group (4) and

the equivalence of q and � q (2).

To quantify the slight non-uniformity of this orientation set,

a maximum likelihood estimation was performed of the mean

orientation quaternion � and concentration parameter � for

the Watson distribution on the three-sphere S3, under appli-

cation of the rotational symmetry group 222 and the double-

cover property; the details of the fitting algorithm are

described by Chen et al. (2015). The fitted mean orientation is

given by the unit quaternion,

� ¼ ½0:60487215; 0:56496267; � 0:38239564; 0:41075593�;

corresponding to the Rodrigues vector

R ¼ ½0:93401998; � 0:63219249; 0:67907894�;

and square torus coordinates (X, Y) = (0.75129592,

2.3204532); this point is indicated by a small white dot in

Fig. 10(b). This corresponds to a rotation of 105.56� around

the [0.70946461, � 0.48020196, 0.51581597] axis in the (RD,

TD, ND) sample reference frame. The Watson concentration

parameter is given by � = 2.1 (or 58.4�), indicating a very weak

and broad clustered texture. This is in agreement with a T-

matrix analysis (Mardia & Jupp, 2009), which results in the

eigenvalues �i = [0.613515, 0.142532, 0.126213, 0.117740]; the

largest eigenvalue is only about four times larger than the

others, which indicates a weakly clustered distribution.

For the synthetic orientation sets from Section 4.2 (and also

in Fig. 9), the concentration parameters are one to two orders

of magnitude larger than for the forsterite data set and the

clustering around the mean orientation is clearly observed in

the square torus representation. For the cube texture of

Fig. 6(a), the eigenvalues of the T-matrix are �i = [0.983452,

0.005506, 0.005516, 0.005525]; the ratio of the first two

eigenvalues is 178.6, indicating a strongly clustered texture,

in agreement with the Watson distribution � value of 91.2.

These results indicate that simple visual observation of the

square torus representation can reveal even very small non-

uniformities in the orientation distribution function.

The second experimental example is based on a Ti–6Al–4V

rolled-plate textured sample containing both � (h.c.p.) and �

(b.c.c.) phases (Callahan et al., 2017b). An EBSD scan of a

2.25 mm2 region with step size 0.5 mm acquired at 20 keV

beam energy resulted in an orientation data set of 9 � 106

sampling points. As reported by Callahan et al. (2017b), the

microstructure shows microtextured regions along the rolling

direction with similar grain orientations, with a strong

preference for [11.0] directions to be aligned along the sample

normal direction. Fig. 11 shows the square torus RFZ repre-

sentations for the � [panel (a)] and � [panel (d)] phases, as

well as the fully symmetrized versions of the orientation data
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Figure 9
Square torus representation of the cubic ð112Þ½111� copper texture
component as a function of the concentration parameter � of the Watson
distribution. �� is the corresponding angular spread of the distribution. Figure 10

(a) Zone-plate and (b) square torus representations of the combined
orientations from three EBSD scans (7 039 154 scan points in total) of a
polycrystalline forsterite sample with random texture. The small white
dot in the upper right portion of the RFZ outline represents the
projection of the mean orientation quaternion � for a Watson distribu-
tion fit to the orientation set (see text). The circled area in panel (b)
highlights a cluster of higher intensity. (Data sets courtesy K. Marquardt,
University of Oxford.)



sets [panels (b) and (e)]. Note the two red lines superimposed

on features of the maps; the lines are perpendicular to each

other, which suggests that there may be a preferred orienta-

tion relation between the two phases. This is indeed the case

and Callahan et al. (2017b) showed that the two phases have

the Burgers orientation relation between them. Figs. 11(c) and

11( f) show the RGB torus maps for the two phases.

4.4. Fiber textures

4.4.1. F.c.c. fibers. Consider the � fiber in an f.c.c. material.

Its orientations are located around the line (’1, �/4, �/2) in

Euler space, with ’1 2 [0, �/2]. The corresponding unit

quaternions are obtained by setting

� ¼
1

2
’1 þ

�

2

� �
; � ¼

1

2
’1 �

�

2

� �
; c ¼ cos

�

8
; s ¼ sin

�

8
;

and then forming the quaternion as q = ½c cos �; � s cos �;

� s sin �; � c sin ��, resulting in

q ¼
�

cos
�

8
cos �; � sin

�

8
sin �; sin

�

8
cos �; � cos

�

8
sin �

�
;

with � = (2’1 + �)/4. Conversion to the square torus coordi-

nates (X, Y) using equation (4) results in

ðX;YÞ ¼ � arctan tan
�

8
tan �

� �
; � arctan cot

�

8
tan �

� �h i
:

The square torus coordinates for the Goss point (0, 45�, 90�)

are then (X, Y) = (� 0.392699, � 1.1781), and for the point

where the � fiber branches off (’1 = 35.26�) we have (X, Y) =

(� 0.674817, � 1.35956); these points are indicated on the

schematic diagram in Fig. 12(a).

For the � fiber, the S and C texture components are

ð213Þ½364� and ð112Þ½111�, respectively, leading to the square

torus coordinates

ðX;YÞS ¼ ð� 0:602717; � 1:55608Þ

and

ðX;YÞC ¼ ð� 0:654502; � 1:70169Þ:

Fig. 12(a) shows these points, along with curved line segments

corresponding to quaternion spherical linear interpolation

(SLERP) between pairwise end points B–S and S–C. Note that

the line (’1, �/4, �/2) in Euler space maps onto the sigmoidal

line from lower left to upper right shown in Fig. 12(a).

Superimposed on the line are the locations for which ’1 is a

multiple of �/2. Note that the range of ’1 is equivalent to

[0, 4�], in agreement with the fact that the true periodicity of
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Figure 11
Ti-� (top row) and Ti-� (bottom row), (a) and (d) square torus repre-
sentations using the respective fundamental zones, (b) and (e) symme-
trized with (q, � q) double-cover equivalence and (c) and ( f ) RGB
representations.

Figure 12
(a) A square torus representation of the line (’1, �/4, �/2) in Euler space; the f.c.c. � fiber is highlighted in orange and the two segments of the � fiber in
red. (b) In inverted contrast, all cubic symmetry operators are applied, as well as the (q, � q) double-cover property, for the � and � fibers. See text for
additional explanation.



Euler space in the context of a quaternion mapping has all

three Euler angles in the range [0, 4�] (Callahan et al., 2017b).

Application of the cubic symmetry elements and the (q, � q)

double-cover property to the � and � fiber segments results in

the square torus map shown in inverted contrast in Fig. 12(b);

there are 48 equivalent locations for the fiber segments. Note

that in some cases the � fiber maps onto a single point instead

of a line segment.

4.4.2. B.c.c. fibers. Consider the �, � and � fibers in a b.c.c.

material. In Euler space, all orientations lie along the

following lines:

� fiber! 0;�; �=4ð Þ; � 2 0; �=2½ �; ð14Þ

� fiber! ’1; arccosð1=
ffiffiffi
3
p
Þ; �=4

h i
; ’1 2 0; �=2½ �; ð15Þ

� fiber! �=2;�; �=4ð Þ; � 2 0; �=2½ �: ð16Þ

After conversion to the square torus coordinates, we find

that the � fiber is represented by the curve

ðX;YÞ ¼ atan2 � sin
�

2
; cos

�

2

� �

; atan2 � cos
�

2
; sin

�

2

� �� �

between the points (X, Y) = (0, � �/2) for � = 0 and (� �/4,

� �/4) for � = �/2.

For the � fiber we find

ðX;YÞ ¼

�

atan2 � cos
�

8
sin

�

2
; sin

�

8
cos

�

2

� �

;

atan2 � cos
�

8
cos

�

2
; � sin

�

8
sin

�

2

� ��

:

This curve intersects the X = 0 axis at the point (0, � �/2) and

curves downwards towards the point ð� 3�=8; � 5�=8Þ for � =

�/2.

The � fiber sits in between the two curves and is represented

by

ðX;YÞ ¼
�
atan2 � �� cos �� ; �þ cos �þ

� �
;

atan2 � �þ sin �þ; �� sin ��
� ��

;

where �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�

ffiffiffi
3
p
Þ=6

p
and �� = (� � 4’1)/8.

The intersection points of the � fiber with the � and � fibers

have coordinates

�
1

2
arcsec

ffiffiffi
3
p
;

1

2
arcsec

ffiffiffi
3
p
� �

� �� �

¼ ð� 0:477658; � 1:09314Þ

for the � fiber and

�

� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3þ 2
ffiffiffi
2
p
Þ ð2 �

ffiffiffi
3
p
Þ

q

;

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3þ 2
ffiffiffi
2
p
Þ ð2þ

ffiffiffi
3
p
Þ

q

� �

�

¼ ð� 0:895934; � 1:78201Þ

for the � fiber. All the relevant points for the �, � and � b.c.c.

fibers are shown in Fig. 13(a), which displays the lower left

quadrant of the square torus map. The full square torus map

for these b.c.c. fiber textures is shown in Fig. 13(b). In these

plots, the free angle, ’1 or �, is swept through the entire range

[0, 4�] to cover both q and � q quaternions.

4.5. Experimental fiber texture example

As an example of a square torus representation of an

experimental fiber texture, we consider a strong � fiber in an

electric steel; the data set consists of 28 306 orientations. When

projected onto the (�, ’2) plane, the resulting distribution is a

sharp nearly symmetric Gaussian with an FWHM of 2.1�

around the point ð�; ’2Þ ¼ ½arccosð1=
ffiffiffi
3
p
Þ; �=4�. Fig. 14(a)

shows the RGB square torus map for this data set after

application of the (q, � q) double-cover property; the intensity

along the curves is nearly constant, in agreement with the

nearly uniform distribution of the ’1 angle in the interval

[0, 2�]. After application of the cubic rotational symmetry

elements, the resulting RGB map is shown in Fig. 14(b).

5. Discussion and conclusions

In this paper, we have introduced a new 2D representation of

material textures in terms of three isometric projections from
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Figure 13
(a) A square torus representation of the �, � and � b.c.c. fiber textures in
the lower left quadrant of the square torus map. (b) The full angular
ranges of ’1 and �, as well as the (q, � q) double-cover property, are
applied to the three fibers. See text for additional explanation.

Figure 14
(a) An RGB square torus map representation of a strong � fiber in an
electrical steel [(q, � q) double-cover applied]. (b) All cubic rotational
symmetry operators are applied to the experimental data. There are
28 306 data points in this data set.



the Clifford torus Cð�; ’; 1=
ffiffiffi
2
p
Þ, a sub-manifold of the three-

sphere S3, onto square torus maps which are subsequently

arranged in the red, green and blue channels of a periodic

RGB image. Two of the maps are nonlinear projections

involving the components of the Rodrigues–Frank vector. The

third projection, which also involves Rodrigues–Frank vector

components, was shown to be equivalent to a linear projection

through Bunge Euler space along the � direction onto the

(’1, ’2) plane. Each 3D orientation, which has three degrees

of freedom, is projected onto three periodic square torus maps

and is represented in these maps by a narrow Gaussian peak;

the superposition of all these peaks generates an intensity map

that can optionally be modulated by a zone-plate function.

The zone-plate function representation is particularly useful

to determine visually whether or not a set of orientations

uniformly covers orientation space. For the orientation

sampling algorithms of Section 3, the analysis in terms of the

Riesz s energies provides some insight into the quality of the

samples, i.e. how close to optimal the orientation sample is. For

the Shoemake sampling, which has r1 and r2 values that are

closer to unity than any of the other sampling methods, the

value of r3, for s = 3, is nearly twice the optimal value. For

increasing values of s, the Riesz energies become increasingly

more sensitive to the local arrangements of sampling points,

with only the nearest neighbors contributing in the limit s!

1. For the orientation sampling OS, the Riesz energies indi-

cate that, on a global level, the sampling is very close to

optimal, but at the local level there are some deviations from

optimal. Whether or not these deviations are important

depends on the application of the sampling. If the orientation

set is to be used as an initial sampling for dictionary indexing,

for instance (Singh & De Graef, 2016), then the local non-

optimality is unimportant, since the indexing will typically be

followed by an orientation refinement step where the orien-

tations are allowed to wander away from the initial orienta-

tions.

Different from more conventional 3D representations of

material textures, the RGB square torus map representation

opens a unique path to the use of neural networks to automate

the analysis of material textures, in particular to determine the

mixture of texture components that are present in the orien-

tation distribution. The use of ST maps in this context is the

topic of ongoing investigations.
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