

STRUCTURAL BIOLOGY COMMUNICATIONS

Received 26 May 2022
Accepted 25 July 2022

Edited by A. Nakagawa, Osaka University, Japan

Keywords: glutamyl-tRNA synthetases; undergraduate education and training; Seattle Structural Genomics Center for Infectious Disease; infectious diseases; Elizabethkingia meningosepticum; Elizabethkingia anopheles; emerging infectious diseases.

PDB references: glutamyl-tRNA synthetase from E. anopheles, 6 b1z; glutamyl-tRNA synthetase from E. meningosepticum, complex with glutamate, 6 brl

Supporting information: this article has supporting information at journals.iucr.org/f

OPEN \odot ACCESS
Published under a CC BY 4.0 licence

Crystal structures of glutamyl-tRNA synthetase from Elizabethkingia anopheles and E. meningosepticum

Lauryn Brooks, ${ }^{\text {a }}$ Sandhya Subramanian, ${ }^{\text {b,c }}$ David M. Dranow, ${ }^{\text {c,d }}$ Stephen J. Mayclin, ${ }^{\text {c }}$ Peter J. Myler ${ }^{\text {b,c,e }}$ and Oluwatoyin A. Asojo ${ }^{\text {a* }}$

Abstract

${ }^{\text {a }}$ Department of Chemistry and Biochemistry, Hampton University, Hampton, VA 23668, USA, ${ }^{\mathbf{b}}$ Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA, ${ }^{\text {c }}$ Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA, ${ }^{\text {d }}$ UCB-Bainbridge, Bainbridge Island, WA 98110, USA, and ${ }^{\text {e }}$ Departments of Pediatrics, Global Health, and Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA. *Correspondence e-mail: oluwatoyin.asojo@hamptonu.edu

Elizabethkingia bacteria are globally emerging pathogens that cause opportunistic and nosocomial infections, with up to 40% mortality among the immunocompromised. Elizabethkingia species are in the pipeline of organisms for high-throughput structural analysis at the Seattle Structural Genomics Center for Infectious Disease (SSGCID). These efforts include the structurefunction analysis of potential therapeutic targets. Glutamyl-tRNA synthetase (GluRS) is essential for tRNA aminoacylation and is under investigation as a bacterial drug target. The SSGCID produced, crystallized and determined highresolution structures of GluRS from E. meningosepticum (EmGluRS) and E. anopheles (EaGluRS). EmGluRS was co-crystallized with glutamate, while $E a$ GluRS is an apo structure. EmGluRS shares $\sim 97 \%$ sequence identity with EaGluRS but less than 39% sequence identity with any other structure in the Protein Data Bank. EmGluRS and EaGluRS have the prototypical bacterial GluRS topology. EmGluRS and EaGluRS have similar binding sites and tertiary structures to other bacterial GluRSs that are promising drug targets. These structural similarities can be exploited for drug discovery.

1. Introduction

Elizabethkingia are Gram-negative, obligate aerobic bacilli that were first described in 1959 by Elizabeth O. King. Elizabethkingia bacteria were previously classified as Chryseobacterium or Flavobacterium, so there is some variability in their nomenclature in the literature (Kim et al., 2005). Elizabethkingia are widely found in the environment, in soils, rivers and insect vectors, and have even been isolated from condensation water on the International Space Station (Li et al., 2003; Weon et al., 2008; Bevivino et al., 2014; Dziuban et al., 2018). While Elizabethkingia species rarely cause disease in the healthy, they are now globally recognized as causing opportunistic infections in neonates, the elderly and the immunocompromised, with mortality rates ranging from 18% to 40\% (Dziuban et al., 2018; Lin et al., 2019). Elizabethkingia infections usually lead to meningitis, sepsis, bacteremia, lower respiratory tract infection, pneumonia, pneumothorax, endocarditis, cellulitis, endophthalmitis, keratitis, wound infection after bone fractures, and urinary-tract infections (Singh et al., 2020; Lin et al., 2019; Jean et al., 2020).
E. anopheles was initially isolated from Anopheles mosquitoes and causes respiratory-tract illnesses in adults and neonatal meningitis in premature infants, with a notable outbreak in 2016 in Wisconsin (Figueroa Castro et al., 2017).

Table 1
Macromolecule-production information.

	EaGluRS	EmGluRS
Source organism	Elizabethkingia anopheles NUHP1	Elizabethkingia meningosepticum CCUG 26117
DNA source	Dr Yang Liang (Nanyang Technological University, Singapore) ATCC 13253	
Forward primer	''-CTCACCACCACCACCACCATATGGAAAAAGTACGGGTACGTTTTG-3' $^{\text {Reverse primer }}$	5'-ATCCTATCTTACTCACTTATTTTAAAGTTTCAATTGCTTTATTAATTC-3' $^{\text {Expression vector }}$
Expression host	pBG1861	BG1861
Complete amino-acid sequence	M. coli BL21(DE3)R3 Rosetta cells	E. coli BL21(DE3)R3 Rosetta cells
of the construct produced	DFILRIEDTDTQRYVPGSEEYIMEALEWIGMVPDESPKHGGP	DFILRIEDTDTQRYVPGSEEYIMEALEWIGMIPDESPKHGGP
	YAPYRQSERRDIYDRYTEQILKTDYAYLAFDTPEELDQIRAE	YAPYRQSERRAIYDKYTEQILKTDYAYLAFDTPEELDQIRAE
	FEARGDVFAYNYETRNRLRNSISLPEEEVKKLLEEKTPYVIR	YEAKGDVFAYNYETRHRLRNSISLPEDEVKKLLDEKTPYVIR
	FKMPLDRIINLNDIIRGKFSVNTNTLDDKVLVKNDGMPTYHF	FKMPLDRIINLNDIIRGKFSVNNTNTLDDKVLVKNDGMPTYHF
	ANIIDDHEMKITHVIRGEEWLPSMALHVLLYEAMGWDAPEFA	ANIIDDHEMKITHVIRGEEWLPSMALHVLLYEAMEWNAPEFA
	HLSLILKPEGKGKLSKRDGDKFGFPVFPLNFTDPATGNTSAG	HLSLILKPEGKGKLSKRDGDKFGFPVFPLNFTDPATGNTSAG
	YREEGYLPEAFINMVAMLGWSPADNKEIVSMDEMIKEFDLNK	YREEGYLPEAFINMVAMLGWSPADNKEIISMDEMIKEFDLHK
	VHKAGARFSAEKAKWFNQQYLQLMSNEAILPEFKKVLAENNV	VHKAGARFSAEKAKWFNQQYLQMMSNEAILPEFKTILSNNSI
	EVSDEKALKIIGLMKERATFVKDIYNDGKFFFHAPESFDEKA	EISDEKALRIIGLMKERATFIKDIYNDGKFFFHAPESYDEKA
	SKKAWSPETAVLMQELTEAISSLDFKAEIIKESIHHLAEAKG	AKKAWSPETAALMQEVNNAITTVDFKADTIKESLHHLTEEKG
	LGMGKVMMPLRLSLVGELKGPDVPDLMEMIGKEETISRINKA	LGMGKVMMPLRLSLVGELKGPDVPELMEIIGKEESVSRITKA
	IETLK	IETLK

Before 2016, it was believed that E. meningosepticum (formerly F. meningosepticum or C. meningosepticum) was the predominant human pathogen of the genus. A study of past Elizabethkingia outbreaks revealed that most nosocomial infections were caused by E. anopheles (Figueroa Castro et al., 2017). Routine phenotypic and biochemical tests often fail to distinguish between E. anopheles and E. meningosepticum. Additionally, the misidentification of E. anopheles is mainly attributed to the absence of updated MALDI-TOF referencespectrum databases; thus, genome sequencing is recommended for correct identification at the species and sublineage level (Nielsen et al., 2018). Antibiotics such as piperacillintazobactam and cotrimoxazole have proven efficacy against other Elizabethkingia species, while E. anopheles and E. meningosepticum cause multidrug-resistant infections (Patro et al., 2021; Baruah et al., 2020).

The Seattle Structural Genomics Center for Infectious Disease (SSGCID) includes E. anopheles and E. meningosepticum among the priorities for rational drug discovery. These efforts include the identification and structure-function characterization of proteins, such as glutamyl-tRNA synthetase (GluRS), as possible targets for drug repurposing and identification. GluRS catalyzes tRNA aminoacylation: the binding of glutamate to tRNA. GluRS and other aminoacyltRNA synthetases are crucial for bacterial survival and are promising targets for drug discovery for infectious diseases (Kwon et al., 2019; Lee et al., 2018; Moen et al., 2017). Here, the production, crystallization and high-resolution structures of GluRS from E. meningosepticum (EmGluRS) and E. anopheles (EaGluRS) are reported.

2. Materials and methods

2.1. Macromolecule production

Cloning, expression and purification followed standard protocols as described previously (Bryan et al., 2011; Choi et al., 2011; Serbzhinskiy et al., 2015). The full-length GluRS
genes from E. anopheles (EaGluRS; UniProt A0A077E909) and E. meningosepticum (EmGluRS; UniProt R9CN54) encoding amino acids $1-503$ were PCR-amplified from gDNA using the primers given in Table 1. Each gene was cloned using ligation-independent cloning (LIC) encoding a noncleavable hexahistidine tag (MAHHHHHH-ORF; Aslanidis \& de Jong, 1990; Choi et al., 2011). Plasmid DNA was transformed into chemically competent Escherichia coli BL21(DE3)R3 Rosetta cells. The plasmid containing His-EaGluRS or His-EmGluRS was tested for expression, and 21 of culture were grown using auto-induction medium (Studier, 2005) in a LEX Bioreactor (Epiphyte Three) as described previously (Serbzhinskiy et al., 2015). The expression clones ElanA.01348.a.B1.41090 and ElmeA.01348.a.B1.GE41608 are available at https:// www.ssgcid.org/available-materials/expression-clones/.

His-EaGluRS and His-EmGluRS were purified in a two-step protocol consisting of an immobilized metal $\left(\mathrm{Ni}^{2+}\right)$ affinity chromatography (IMAC) step and size-exclusion chromatography (SEC). All chromatography runs were performed on an ÄKTApurifier 10 (GE Healthcare) using automated IMAC and SEC programs (Bryan et al., 2011). Thawed bacterial pellets ($\sim 25 \mathrm{~g}$) were lysed by sonication in 200 ml buffer consisting of $25 \mathrm{~m} M$ HEPES $\mathrm{pH} 7.0,500 \mathrm{~m} M$ $\mathrm{NaCl}, 5 \%$ glycerol, 0.5% CHAPS, $30 \mathrm{~m} M$ imidazole, $10 \mathrm{~m} M$ $\mathrm{MgCl}_{2}, 1 \mathrm{~m} M$ TCEP, $250 \mu \mathrm{~g} \mathrm{ml}^{-1}$ AEBSF, 0.025% sodium azide. After sonication, the crude lysate was clarified with 20 ml (25 units μ^{-1}) benzonase and incubated while mixing at room temperature for 45 min . The lysate was clarified by centrifugation at $10000 \mathrm{rev} \mathrm{min}^{-1}$ for 1 h using a Sorvall centrifuge (Thermo Scientific). The clarified supernatant was then passed over an Ni-NTA HisTrap FF 5 ml column (GE Healthcare) which was pre-equilibrated with loading buffer composed of $25 \mathrm{~m} M$ HEPES pH $7.0,500 \mathrm{~m} M \mathrm{NaCl}, 5 \%$ glycerol, $30 \mathrm{~m} M$ imidazole, $1 \mathrm{~m} M$ TCEP, 0.025% sodium azide. The column was washed with 20 column volumes (CV) of loading buffer and was eluted with loading buffer plus $250 \mathrm{~m} M$ imidazole in a linear gradient over 7 CV . Peak fractions were pooled and concentrated to 5 ml . A SEC column (Superdex

Table 2
Crystallization.

	His-EaGluRS	His-EmGluRS
Method	Sitting-drop vapor diffusion	Sitting-drop vapor diffusion
Plate type	96 -well, Compact 300, Rigaku	96-well, Compact 300 , Rigaku
Temperature (K)	290	290
Protein concentration $\left(\mathrm{mg} \mathrm{ml}^{-1}\right)$	18.25	16.23
Buffer composition of protein solution	$25 \mathrm{~m} M$ HEPES pH 7.0, $500 \mathrm{~m} M \mathrm{NaCl}, 5 \%$ glycerol, $2 \mathrm{~m} M$ DTT, 0.025% sodium azide	
Composition of reservoir solution	$\mathrm{JBScreen} \mathrm{JCSG++} \mathrm{HTS} \mathrm{A5:} 0.2 M$ magnesium formate,	MCSG1 E10: 200 m M ammonium tartarate dibasic,
	$20 \%(w / v)$ PEG 3350	$20 \%(w / v)$ PEG 3350
Volume and ratio of drop	$0.4 \mu \mathrm{l}$ protein plus $0.4 \mu \mathrm{l}$ reservoir $(1: 1)$	$0.4 \mu \mathrm{l}$ protein plus $0.4 \mu \mathrm{l}$ reservoir $(1: 1)$
Volume of reservoir $(\mu \mathrm{l})$	80	80
Cryoprotectant	20% ethylene glycol	None

Table 3
Data collection and processing.
Values in parentheses are for the outer shell.

	EaGluRS	EmGluRS
Ligand	-	Glutamic acid
Diffraction source	$\begin{aligned} & \text { Beamline 21-ID-F, } \\ & \text { APS } \end{aligned}$	$\begin{aligned} & \text { Beamline 21-ID-F, } \\ & \text { APS } \end{aligned}$
Wavelength (A)	0.97872	0.97872
Temperature (K)	100	100
Detector	$\begin{aligned} & \text { Rayonix MX-300 } \\ & \text { CCD } \end{aligned}$	$\begin{aligned} & \text { Rayonix MX-300 } \\ & \text { CCD } \end{aligned}$
Crystal-to-detector distance (mm)	200	240
Rotation range per image (${ }^{\circ}$)	1	1
Total rotation range (${ }^{\circ}$)	150	150
Space group	$P 2_{1} 2_{1} 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$
a, b, c (A)	47.17, 99.78, 132.59	43.26, 111.89, 130.17
Mosaicity (${ }^{\circ}$)	0.198	0.183
Resolution range (\AA)	50-1.60 (1.64-1.60)	50-2.00 (2.05-2.00)
Total No. of reflections	503995 (37374)	265391 (19568)
No. of unique reflections	83273 (6107)	43563 (3169)
Completeness (\%)	99.7 (100.0)	99.8 (99.9)
Multiplicity	6.05 (6.12)	6.09 (6.17)
$\langle I / \sigma(I)\rangle$	26.5 (3.5)	17.7 (3.2)
$R_{\text {ri.im. }}$	0.039 (0.50)	0.069 (0.62)
Overall B factor from Wilson plot $\left(\AA^{2}\right)$	20.1	31.1

75, GE Healthcare) was equilibrated with a running buffer consisting of $25 \mathrm{~m} M$ HEPES pH $7.0,500 \mathrm{~m} M \mathrm{NaCl}, 5 \%$ glycerol, $2 \mathrm{~m} M$ DTT, 0.025% sodium azide. The peak fractions were collected and analyzed using SDS-PAGE for the protein of interest. Both proteins eluted as a single large peak at a molecular mass of $\sim 50 \mathrm{kDa}$, suggesting a monomeric enzyme. The peak fractions were pooled and concentrated to $36.5 \mathrm{mg} \mathrm{ml}^{-1}$ (His-EaGluRS) and $16.23 \mathrm{mg} \mathrm{ml}^{-1}$ (HisEmGluRS) using an Amicon purification system (Millipore). Aliquots of $200 \mu \mathrm{l}$ were flash-frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ until use.

2.2. Crystallization

Purified His-EaGluRS and His-EmGluRS were screened for crystallization in 96-well plates against JBScreen JCSG++ HTS (Jena Bioscience) and MCSG1 (Molecular Dimensions) crystal screens. Equal volumes of protein solution $(0.4 \mu \mathrm{l})$ and precipitant solution were set up at 290 K against reservoir ($80 \mu \mathrm{l}$) in sitting-drop vapor-diffusion format. The crystals were flash-cooled by harvesting them and plunging them directly into liquid nitrogen with or without additional cryo-

Table 4
Structure solution and refinement.
Values in parentheses are for the outer shell.

	EaGluRS	EmGluRS
Ligand	-	Glutamic acid
Resolution range (\AA)	50-1.60 (1.64-1.60)	50-2.00 (2.05-2.00)
Completeness (\%)	97.2	99.8 (99.9)
σ Cutoff	$0.00 \sigma(F)$	$1.35 \sigma(F)$
No. of reflections, working set	81099 (5241)	43551 (2922)
No. of reflections, test set	1941 (125)	1997 (136)
Final $R_{\text {cryst }}$	0.178 (0.211)	0.168 (0.213)
Final $R_{\text {free }}$	0.211 (0.261)	0.214 (0.255)
Cruickshank DPI	0.094	0.411
No. of non-H atoms		
Protein	3838	3947
Ion	1	-
Ligand	76	12
Solvent	579	404
Total	4494	4373
R.m.s. deviations		
Bond lengths (\AA)	0.006	0.012
Angles (${ }^{\circ}$)	0.76	1.09
Average B factors (\AA^{2})		
Protein	31.6	37.1
Ion	21.8	-
Ligand	55.0	51.8
Water	40.7	44.6
Ramachandran plot		
Most favored (\%)	98	99
Allowed (\%)	2	1

protection depending on whether the precipitant solution had been supplemented with 20% ethylene glycol (Table 2).

2.3. Data collection and processing

Data were collected at 100 K on beamline 21-ID-F at the Advanced Photon Source, Argonne National Laboratory (Table 3). Data were integrated with $X D S$ and reduced with XSCALE (Kabsch, 2010). Raw X-ray diffraction images for 6 b 1 z are available at the Integrated Resource for Reproducibility in Macromolecular Crystallography at https:// www.proteindiffraction.org (https://doi.org/10.18430/M36B1Z).

2.4. Structure solution and refinement

The structure of EmGluRS was determined by molecular replacement with Phaser (McCoy et al., 2007) from the CCP4 suite of programs (Collaborative Computational Project, 1994; Krissinel et al., 2004; Winn et al., 2011) using domains of PDB entries 4gr1 (Janes \& Schulz, 1990), 2ja2 (G. P. Bourenkov,

Figure 1
Structures of EmGluRS and EaGluRS. (a) The EmGluRS monomer has a Rossmann fold (orange), a zinc-binding domain (green) and an anticodonbinding domain (blue). The Rossmann fold and zinc-binding domain make up the N-terminal tRNA synthetase binding domain that binds the glutamate (spheres). (b) Superposed structures of EmGluRS (gray) and EaGluRS (cyan). The Mg^{2+} ion in EaGluRS is shown as a green sphere, the glutamate molecule is shown as spheres (C atoms in gray, O atoms in red and N atoms in blue) and formate and ethylene glycol from crystallization are shown as sticks. (c) Ribbon diagram calculated by ENDScript. The circumference of the ribbon (sausage) represents the relative structural conservation compared with other GluRS structures (these structures are indicated in Supplementary Fig. S2). Thinner ribbons represent more highly conserved regions, while thicker ribbons represent less conserved regions. (d) Solvent-accessible surface area of EmGluRS colored by sequence conservation, with red indicating identical residues. (e) Superposed structures of PaGluRS (PDB entry 5tgt, yellow), EmGluRS (gray) and EaGluRS (cyan). The sequence alignment of $P a$ GluRS is shown in Fig. 3.

(a)

6b1z
(b)

Figure 2
LigPlot representations of (a) glutamate binding and (b) Mg^{2+} ion binding in EmGluRS and EaGluRS, respectively.

 EmGlurs DAPEFAHLSLILKPEGKGKLSKRDGDKFGFPVFPLNFTDSATGNTSAGYREEGYLPEAF

EaGlurs	elel	T	$\begin{gathered} \alpha 10 \\ \text { eelelee } \end{gathered}$	$\begin{gathered} \eta 6 \\ \text { eel } \end{gathered}$			elee	$\alpha 11$ reeeleel	ee
		310	320	30		340	o	350	36
Glurs	NMVA	ASpapn	IVSMDEMTKE	FDINKV	HKA ${ }_{\text {c }}$	S	AEKAK	Nopyio	
Glurs	NMVAM	WSPADN	IVSMDEMIKE	FDINK*	HKAGAR	SA	AEKAK	FNQQYLQL	SNEA
aglurs	VY	CWSMPDE	KFTLAEMIEH	FDLSRU	SLGGPI	DL	Lekus		SEEFA
Paglurs	elelel		beell	ele		elelelelel			elele

EaGluRS	$\begin{gathered} \alpha 16 \\ \text { eeeceleee } \end{gathered}$	$\begin{gathered} \alpha 17 \\ \text { eeceeleeleeel } \end{gathered}$	$\begin{gathered} \alpha 18 \\ \text { eeeeleeceel } \end{gathered}$	
	43 ?	440 450	460	\star
EaGlurs	SPETA. VIMQELTEAI	SLDFKAFITKESThimas		E凩K GP
EmGlurs	SPETA. .VIMQELTEAIS	SLDFKAEIIKESIHHLAEA	LGMGKVMMPIRLSIVG	ELK GP
Paglurs	DETQVRQVLQLVLWK凹ES	LRQWEKERITGCIQAVAEHL	LKLRDVNPLMFPAITG	HASSV
Paglurs	eleleceleele $\alpha 14$	eleelelecele	$\begin{gathered} \text { leelelelelele } \\ \alpha 16 \end{gathered}$	

Figure 3
Structural and primary-sequence alignment of EaGluRS, EmGluRS and PaGluRS. The secondary-structure elements are as follows: α-helices are shown as large coils, 3_{10}-helices are shown as small coils labeled η, β-strands are shown as arrows labeled β and β-turns are labeled TT. Identical residues are shown on a red background, with conserved residues in red and conserved regions in blue boxes. This figure was generated using ESPript (Gouet et al., 1999, 2003).
N. Strizhov, L. A. Shkolnaya, M. Bruning, H. D. Bartunik, unpublished work) and $2 q m z$ (Y. Fu, L. Buryanovskyy \& Z. Zhang, unpublished work) as search models. The structure of EaGluRS was solved using MR-Rosetta (Terwilliger et al., 2012) with PDB entry 2ja2 as the search model. Both structures were refined with phenix.refine (Adams et al., 2011) followed by manual structure rebuilding using Coot (Emsley \& Cowtan, 2004; Emsley et al., 2010). The quality of each structure was checked using MolProbity (Williams et al., 2018). A representative quality of electron density is illustrated in Supplementary Fig. S1. Data-reduction and refinement statistics are shown in Table 4. Coordinates and structure factors have been deposited with the Worldwide PDB (wwPDB) as entries 6 b 1 z and 6 brl.

3. Results and discussion

The structures of Elizabethkingia GluRSs reported here share $\sim 97 \%$ sequence identity. EmGluRS and EaGluRS are monomeric enzymes that assemble with a prototypical GluRS topology with an N-terminal tRNA synthetase class I (E and Q) catalytic domain and a C-terminal anticodon-binding domain (Fig. 1). The tRNA synthetase class I (E and Q) catalytic domain consists of a Rossmann-fold domain (Aravind et al., 2002) containing a glutamate-binding domain and a zinc-binding domain (Fig. 1). There is a glutamate molecule in the glutamate-binding domain of EmGluRS and a divalent ion $\left(\mathrm{Mg}^{2+}\right)$ in the zinc-binding domain of $E a$ GluRS (Fig. 1). The EmGluRS and EaGluRS structures are very similar and have a root-mean-squared difference of $\sim 1.3 \AA$ for the alignment of all main-chain C^{α} atoms.

ENDScript (Gouet et al., 2003; Robert \& Gouet, 2014) analyses revealed that despite having $<40 \%$ sequence similarity, EmGluRS and EaGluRS share significant secondarystructural similarity with other bacterial GluRSs and other aminoacyl-tRNA synthetases, including some that have shown promise as drug targets (Supplementary Fig. S2). The N-terminal tRNA synthetase binding domains of all of these proteins have a sizeable accessible glutamate-binding site that is evident in the surface plot (Fig. 1d). The glutamate-binding region is highly conserved, as indicated by the red color in the ribbon and surface ENDScript plots (Figs. 1c and 1d). PDBeFold analysis (http://www.ebi.ac.uk/msd-srv/ssm/; Krissinel \& Henrick, 2004) using default thresholds of 70% validated the ENDScript analysis, showing well conserved bacterial GluRSs (Supplementary Table S1). The amino-acid residues involved in glutamate binding in EmGluRS and in cation binding in EaGluRS are indicated in the LigPlot diagrams (Laskowski \& Swindells, 2011; Wallace et al., 1995; Fig. 2).

It has previously been shown that bacterial GluRSs are promising targets for drug discovery (Kwon et al., 2019; Lee et al., 2018; Moen et al., 2017). Intriguingly, the glutamatebinding cavity has been probed to develop promising inhibitors for Pseudomonas aeruginosa GluRS (PaGluRS; Hu et al., 2015). PaGluRS has a similar structural topology to EaGluRS and EmGluRS (Fig. 3a). The residues that bind glutamate in
the binding cavity are identical (Fig. 3b) despite the low sequence identity (37.9%) between $P a$ GluRS and $E a$ GluRS and EmGluRS. Additionally, residues in proximity to the glutamate-binding cavity are also well conserved. These residues are also conserved in other bacterial GluRSs (Supplementary Fig. S2). These observations suggest that the lessons learned from rational inhibitory design for $P a$ GluRS and other bacterial GluRSs can also be applied to EaGluRS and EmGluRS.

4. Conclusion

We report the production, crystallization and structures of GluRS from E. meningosepticum (EmGluRS) and E. anopheles (EaGluRS). EmGluRS and EaGluRS are prototypical bacterial GluRSs with well conserved glutamatebinding cavities. Their structural similarity to the well studied P. aeruginosa GluRS and the lessons learned from other bacterial GluRSs can be exploited to develop potential inhibitors for these emerging infectious agents.

Acknowledgements

This manuscript was generated as an educational collaboration between Hampton University (a Historically Black College and University) and the SSGCID.

Funding information

The SSGCID is funded by Federal funds from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) and the Department of Health and Human Services under Contract No. HHSN272201700059C from 1 September 2017. SSGCID was funded under NIAID Contract Nos. HHSN272201200025C from 1 September 2012 to 31 August 2017 and HHSN272200700057C from 28 September 2007 to 27 September 2012. LB is a member of the inaugural Hampton University Chemistry Education and Mentorship Coursebased Undergraduate Research (HU-ChEM CURES) funded by the NIGMS (grant No. 1U01GM138433 to OAA). LB is also a URISE scholar funded by the NIGMS (grant No. T34GM136489 to OAA).

References

Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Echols, N., Headd, J. J., Hung, L.-W., Jain, S., Kapral, G. J., Grosse Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. \& Zwart, P. H. (2011). Methods, 55, 94-106.

Aravind, L., Anantharaman, V. \& Koonin, E. V. (2002). Proteins, 48, 1-14.
Aslanidis, C. \& de Jong, P. J. (1990). Nucleic Acids Res. 18, 6069-6074.
Baruah, F. K., Borkakoty, B., Ahmed, A. \& Bora, P. (2020). J. Glob. Infect. Dis. 12, 225-227.
Bevivino, A., Paganin, P., Bacci, G., Florio, A., Pellicer, M. S., Papaleo, M. C., Mengoni, A., Ledda, L., Fani, R., Benedetti, A. \& Dalmastri, C. (2014). PLoS One, 9, e105515.

Bryan, C. M., Bhandari, J., Napuli, A. J., Leibly, D. J., Choi, R., Kelley, A., Van Voorhis, W. C., Edwards, T. E. \& Stewart, L. J. (2011). Acta Cryst. F67, 1010-1014.
Choi, R., Kelley, A., Leibly, D., Nakazawa Hewitt, S., Napuli, A. \& Van Voorhis, W. (2011). Acta Cryst. F67, 998-1005.
Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.
Dziuban, E. J., Franks, J. L., So, M., Peacock, G. \& Blaney, D. D. (2018). Clin. Infect. Dis. 67, 144-149.

Emsley, P. \& Cowtan, K. (2004). Acta Cryst. D60, 2126-2132.
Emsley, P., Lohkamp, B., Scott, W. G. \& Cowtan, K. (2010). Acta Cryst. D66, 486-501.
Figueroa Castro, C. E., Johnson, C., Williams, M., VanDerSlik, A., Graham, M. B., Letzer, D., Ledeboer, N., Buchan, B. W., Block, T., Borlaug, G. \& Munoz-Price, L. S. (2017). Open Forum Infect. Dis. 4, ofx251.
Gouet, P., Courcelle, E., Stuart, D. I. \& Métoz, F. (1999). Bioinformatics, 15, 305-308.
Gouet, P., Robert, X. \& Courcelle, E. (2003). Nucleic Acids Res. 31, 3320-3323.
Hu, Y., Guerrero, E., Keniry, M., Manrrique, J. \& Bullard, J. M. (2015). SLAS Discov. 20, 1160-1170.

Janes, W. \& Schulz, G. E. (1990). J. Biol. Chem. 265, 10443-10445.
Jean, S.-S., Chang, Y.-C., Lin, W.-C., Lee, W.-S., Hsueh, P.-R. \& Hsu, C.-W. (2020). J. Clin. Med. 9, 275.

Kabsch, W. (2010). Acta Cryst. D66, 125-132.
Kim, K. K., Kim, M. K., Lim, J. H., Park, H. Y. \& Lee, S.-T. (2005). Int. J. Syst. Evol. Microbiol. 55, 1287-1293.

Krissinel, E. \& Henrick, K. (2004). Acta Cryst. D60, 2256-2268.
Krissinel, E. B., Winn, M. D., Ballard, C. C., Ashton, A. W., Patel, P., Potterton, E. A., McNicholas, S. J., Cowtan, K. D. \& Emsley, P. (2004). Acta Cryst. D60, 2250-2255.

Kwon, N. H., Fox, P. L. \& Kim, S. (2019). Nat. Rev. Drug Discov. 18, 629-650.
Laskowski, R. A. \& Swindells, M. B. (2011). J. Chem. Inf. Model. 51, 2778-2786.
Lee, E.-Y., Kim, S. \& Kim, M. H. (2018). Biochem. Pharmacol. 154, 424-434.

Li, Y., Kawamura, Y., Fujiwara, N., Naka, T., Liu, H., Huang, X., Kobayashi, K. \& Ezaki, T. (2003). Syst. Appl. Microbiol. 26, 523528.

Lin, J.-N., Lai, C.-H., Yang, C.-H. \& Huang, Y.-H. (2019). Microorganisms, 7, 295.
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. \& Read, R. J. (2007). J. Appl. Cryst. 40, 658-674.
Moen, S. O., Edwards, T. E., Dranow, D. M., Clifton, M. C., Sankaran, B., Van Voorhis, W. C., Sharma, A., Manoil, C., Staker, B. L., Myler, P. J. \& Lorimer, D. D. (2017). Sci. Rep. 7, 223.

Nielsen, H. L., Tarpgaard, I. H., Fuglsang-Damgaard, D., Thomsen, P. K., Brisse, S. \& Dalager-Pedersen, M. (2018). JMM Case Rep. 5, e005163.
Patro, P., Das, P. \& Padhi, P. (2021). J. Lab. Phys. 13, 70-73.
Robert, X. \& Gouet, P. (2014). Nucleic Acids Res. 42, W320-W324.
Serbzhinskiy, D. A., Clifton, M. C., Sankaran, B., Staker, B. L., Edwards, T. E. \& Myler, P. J. (2015). Acta Cryst. F71, 594-599.
Singh, S., Sahu, C., Singh Patel, S., Singh, S. \& Ghoshal, U. (2020). New Microbes New Infect. 38, 100798.
Studier, F. W. (2005). Protein Expr. Purif. 41, 207-234.
Terwilliger, T. C., DiMaio, F., Read, R. J., Baker, D., Bunkóczi, G., Adams, P. D., Grosse-Kunstleve, R. W., Afonine, P. V. \& Echols, N. (2012). J. Struct. Funct. Genomics, 13, 81-90.

Wallace, A. C., Laskowski, R. A. \& Thornton, J. M. (1995). Protein Eng. Des. Sel. 8, 127-134.
Weon, H. Y., Kim, B. Y., Yoo, S. H., Kwon, S. W., Stackebrandt, E. \& Go, S. J. (2008). Int. J. Syst. Evol. Microbiol. 58, 470-473.
Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S. \& Richardson, J. S. (2018). Protein Sci. 27, 293-315.
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. \& Wilson, K. S. (2011). Acta Cryst. D67, 235-242.

