research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl 2-(7-chloro-3-methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)acetate

crossmark logo

aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Morocco, bEcole Nationale Supérieure de Chimie, Université Ibn TofaÏl, Kénitra, Morocco, cDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: emessassi@yahoo.fr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 11 March 2024; accepted 21 March 2024; online 26 March 2024)

The quinoxaline moiety in the title mol­ecule, C13H13ClN2O3, is almost planar (r.m.s. deviation of the fitted atoms = 0.033 Å). In the crystal, C—H⋯O hydrogen bonds plus slipped π-stacking and C—H⋯π(ring) inter­actions generate chains of mol­ecules extending along the b-axis direction. The chains are connected by additional C—H⋯O hydrogen bonds. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.6%), H⋯O/O⋯H (22.7%) and H⋯Cl/Cl⋯H (13.1%) inter­actions.

1. Chemical context

Nitro­gen-based structures have attracted more attention in recent years because of their inter­esting properties in structural and inorganic chemistry (Faraj et al., 2022[Faraj, I., Oubella, A., Chkirate, K., Al Mamari, K., Hökelek, T., Mague, J. T., El Ghayati, L., Sebbar, N. K. & Essassi, E. M. (2022). Acta Cryst. E78, 864-870.]; Chkirate et al., 2022a[Chkirate, K. & Essassi, E. M. (2022a). Curr. Org. Chem. 26, 1735-1766.],b[Chkirate, K., Akachar, J., Hni, B., Hökelek, T., Anouar, E. H., Talbaoui, A., Mague, J. T., Sebbar, N. K., Ibrahimi, A. & Essassi, E. M. (2022b). J. Mol. Struct. 1247, 131188.], 2023[Chkirate, K., Ati, G. A., Karrouchi, K., Fettach, S., Chakchak, H., Mague, J. T., Radi, S., Adarsh, N. N., Abbes Faouzi, M. E., Essassi, E. M. & Garcia, Y. (2023). ChemBioChem, 24, e202300331.]; Al Ati et al., 2024[Al Ati, G., Chkirate, K., El-Guourrami, O., Chakchak, H., Tüzün, B., Mague, J. T., Benzeid, H., Achour, R. & Essassi, E. M. (2024). J. Mol. Struct. 1295, 136637.]). The family of quinoxalines, particularly those containing the 2-oxoquinoxaline moiety, is important in medicinal chemistry because of their wide range of pharmacological applications such as anti­bacterial activity (Chkirate et al., 2022c[Chkirate, K., Karrouchi, K., Chakchak, H., Mague, J. T., Radi, S., Adarsh, N. N., Li, W., Talbaoui, A., Essassi, E. M. & Garcia, Y. (2022c). RSC Adv. 12, 5324-5339.]) and as potential anti­cancer agents (Abad et al., 2023[Abad, N., Al-Ostoot, F. H., Ashraf, S., Chkirate, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswarig, B. M., Essassi, E. M. & Ramli, Y. (2023). Heliyon 9, e21312.]). In particular, 3-methyl-2-oxoquinoxaline is a cytotoxic (Missioui et al., 2022a[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022a). Arab. J. Chem. 15, 103595.]) and anti­convulsant agent (Ibrahim et al., 2013[Ibrahim, M. K., Abd-Elrahman, A. A., Ayyad, R. R. A., El-Adl, K., Mansour, A. M. & Eissa, I. H. (2013). Bull. Fac. Pharm. Cairo Univ. 51, 101-111.]) and has anti-COVID-19 and anti-Alzheimer's disease (Missioui et al., 2022b[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022b). J. Mol. Struct. 1247, 131420.]) activities. Given the wide range of therapeutic applications for such compounds, and in a continuation of the work already carried out on the synthesis of compounds from 2-oxoquinoxaline, a similar approach gave the title compound, ethyl 2-(7-chloro-3-methyl-2-oxoquinoxaline-1(2H)-yl)acetate C13H13ClN2O3 (I)[link]. Besides the synthesis, we also report the mol­ecular and crystalline structures along with a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The quinoxaline moiety is almost planar (r.m.s. deviation of the fitted atoms = 0.033 Å) with largest deviations being observed for atom C8 [0.072 (5) Å] to one side and atom N2 [−0.072 (5) Å] on the other side of the mean plane. The dihedral angle between the mean planes of the two six-membered rings making up the quinoxaline moiety is 2.1 (2)°. The ester group is rotated well out of the plane of the quinoxaline moiety, as indicated by the C8—N2—C10—C11 torsion angle of −88.2 (5)° (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, C2—H2⋯O2 and C10—H10A⋯O2 hydrogen bonds reinforced by C9—H9ACg1 inter­actions (Table 1[link]) and slipped π-stacking inter­actions between the C1/C6/N1/C7/C8/N2 and C1–C6 rings [centroid–centroid distance = 3.756 (3) Å, dihedral angle = 2.1 (2)°, slippage = 1.39 Å] lead to the formation of chains of mol­ecules extending along the b-axis direction (Fig. 2[link]). The chains are connected by C12—H12A⋯O1 and C13—H13A⋯O1 hydrogen bonds (Table 1[link]), which form the full three-dimensional structure (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C6/N1/C7/C8/N2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.39 3.211 (6) 145
C9—H9ACg1ii 0.98 2.73 3.591 (6) 147
C10—H10A⋯O2i 0.99 2.59 3.535 (7) 159
C12—H12A⋯O1iii 0.99 2.49 3.471 (9) 170
C13—H13A⋯O1iv 0.98 2.49 3.427 (7) 160
Symmetry codes: (i) [x, y-1, z]; (ii) [x, y+1, z]; (iii) [-x+1, -y+2, z-{\script{1\over 2}}]; (iv) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A portion of one chain viewed along the a-axis direction with C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by black and light blue dashed lines. Slipped π-stacking inter­actions are depicted by orange dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the c-axis direction with C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by black and light-blue dashed lines. Non-inter­acting hydrogen atoms and π-stacking inter­actions are omitted for clarity.

4. Hirshfeld surface analysis

CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia, Crawley.]) was used to investigate and visualize the inter­molecular inter­actions of (I)[link]. The Hirshfeld surface plotted over dnorm in the range −0.2466 to 1.0065 a.u. is shown in Fig. 4[link]a. The electrostatic potential using the STO-3G basis set at the Hartree–Fock level of theory and mapped on the Hirshfeld surface over the range ±0.05 a.u. clearly shows the positions of close inter­molecular contacts in the compound (Fig. 4[link]b). The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region). In the standard dnorm surface (Fig. 5[link]), the C—H⋯O hydrogen bonds to the closest neighboring mol­ecules are depicted by green dashed lines.

[Figure 4]
Figure 4
(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm and (b) view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy using the STO-3 G basis set at the Hartree–Fock level of theory.
[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the compound mapped over dnorm.

The overall two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) is shown in Fig. 6[link]a, while those delineated into H⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C, Cl⋯C/C⋯Cl and N⋯C/C⋯N contacts are illustrated in Fig. 6[link]bi, respectively, together with their relative contributions to the Hirshfeld surface (HS). The most important inter­action is H⋯H, contributing 37.6% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.16 Å. The H⋯O/O⋯H inter­actions shown by the pair of characteristic wings in the fingerprint plot delineated into these contacts (22.7% contribution to the HS), Fig. 6[link]c, has the tips at de + di = 2.25 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯Cl/Cl⋯H, Fig. 6[link]d (13.1%), have the tips at de + di = 2.84 Å. The H⋯C/C⋯H contacts, Fig. 6[link]e (9.6%), have the tips at de + di = 2.94 Å. The H⋯N/N⋯H contacts, Fig. 6[link]f, contribute 4.9% to the HS and appear as a pair of scattered points of spikes with the tips at de + di = 2.53 Å. The C⋯C contacts, Fig. 6[link]g (4%), have the tips at de + di = 3.46 Å. Finally, the Cl⋯C/C⋯Cl and N⋯C/C⋯N contacts, Fig. 6[link]hi, contribute only 3.4% and 2.5%, respectively, to the HS and have a low-density distribution of points.

[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯C/C⋯H, (f) H⋯N/N⋯H, (g) C⋯C, (h) Cl⋯C/C⋯Cl and (i) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, updated May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the 2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetyl fragment yielded multiple matches. Of these, two had a substituent on C11 comparable to (I)[link] (Fig. 7[link]). The first compound (II) (refcode DEZJAW; Missioui et al., 2018[Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180882.]) carries a hydroxyl group on C11, while the second one (III) (refcode UGAMEY; Missioui et al., 2023[Missioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023). IUCrData, 8, x230357.]) carries a p-tolyl­azane substituent. The acetic acid part in DEZJAW forms a dihedral angle of −93.62 (11)° with 3-methyl-2-oxoquinoxaline unit. In UGAMEY, the dihedral angles between the mean planes of the N-(p-tol­yl)acetyl­amide (two positions with occupancies 0.50:0.50) and 3-methyl-2-oxoquinoxaline rings are 104.1 (2) and −71.0 (2)°. As previously mentioned, the ethyl acetate group in (I)[link] is also almost perpendicular to the 3-methyl-2-oxoquinoxaline unit [dihedral angle of −88.2 (5)°], which is approximately the same as in DEZJAW, and in between the two values in UGAMEY.

[Figure 7]
Figure 7
Structures similar to (I)[link]: (II) (CSD refcode DEZJAW) and (III) (CSD refcode UGAMEY) obtained during the database search. The search fragment is indicated in blue.

6. Synthesis and crystallization

1.00 g (6.24 mmol) of 7-chloro-3-methyl­quinoxalin-2(1H)-one was dissolved in 25 mL of di­methyl­formamide and 1.15 g (6.24 mmol) of ethyl 2-chloro­acetate were added, followed by 1.0 g (7.5 mmol) of potassium bicarbonate, and a spatula tip of BTBA (benzyl­tri­butyl­ammonium chloride) was used as a phase-transfer catalyst. The reaction was stirred for 2 h under reflux at 353 K. When the starting reagents had completely reacted, 500 mL of distilled water were added and a few minutes later the product precipitated. This was filtered off, dried and recrystallized from hot ethanol solution to yield light-yellow plate-like crystals of the title compound. 1H NMR (300 MHz, CDCl3) δ ppm: 1.21 (t, 3H, CH3, J = 6 Hz); 2.07 (s, 3H, CH3); 4.16 (quin, 2H, CH2); 4.59 (s, 2H, CH2); 7.18–7.87 (m, 3H, CHarom). 13C NMR (75 MHz, CDCl3) δ ppm: 14.1 (CH3); 21.3 (CH3); 51.6(CH2); 61.0 (CH2); 123.3–125.7 (CHarom); 131.2–155.6 (Cq); 155.7 (C=O); 167.6 (C=O).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as an inversion twin. Hydrogen atoms were were included as riding contributions in idealized positions and refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula C13H13ClN2O3
Mr 280.70
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 150
a, b, c (Å) 22.8042 (11), 4.7826 (2), 11.7421 (6)
V3) 1280.63 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.71
Crystal size (mm) 0.21 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.60, 0.72
No. of measured, independent and observed [I > 2σ(I)] reflections 22953, 2495, 2468
Rint 0.050
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.160, 1.09
No. of reflections 2495
No. of parameters 175
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.27, −0.32
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.17 (4)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT . Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Ethyl 2-(7-chloro-3-methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)acetate top
Crystal data top
C13H13ClN2O3Dx = 1.456 Mg m3
Mr = 280.70Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pca21Cell parameters from 9927 reflections
a = 22.8042 (11) Åθ = 7.8–72.1°
b = 4.7826 (2) ŵ = 2.71 mm1
c = 11.7421 (6) ÅT = 150 K
V = 1280.63 (10) Å3Column, colourless
Z = 40.21 × 0.14 × 0.13 mm
F(000) = 584
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
2495 independent reflections
Radiation source: INCOATEC IµS micro–focus source2468 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 7.3910 pixels mm-1θmax = 72.6°, θmin = 3.9°
φ and ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 55
Tmin = 0.60, Tmax = 0.72l = 1414
22953 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0982P)2 + 1.0105P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2495 reflectionsΔρmax = 1.27 e Å3
175 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: dualAbsolute structure parameter: 0.17 (4)
Special details top

Experimental. The diffraction data were obtained from 16 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 5 to 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22614 (6)0.1052 (3)0.52846 (14)0.0525 (4)
O10.47152 (17)0.8955 (8)0.5839 (3)0.0431 (9)
O20.3705 (2)0.8166 (9)0.3693 (4)0.0522 (10)
O30.4279 (2)0.5252 (9)0.2694 (3)0.0510 (10)
N10.3653 (2)0.7081 (9)0.7912 (4)0.0376 (9)
N20.40226 (18)0.5540 (8)0.5727 (3)0.0341 (8)
C10.3515 (2)0.4330 (10)0.6175 (4)0.0328 (9)
C20.3181 (2)0.2376 (10)0.5565 (4)0.0357 (10)
H20.3293860.1824540.4819380.043*
C30.2688 (2)0.1272 (10)0.6067 (5)0.0394 (11)
C40.2514 (3)0.1981 (12)0.7161 (5)0.0442 (11)
H40.2177560.1150430.7496330.053*
C50.2844 (3)0.3931 (11)0.7754 (5)0.0444 (12)
H50.2730740.4440110.8504450.053*
C60.3340 (2)0.5161 (10)0.7271 (4)0.0364 (10)
C70.4108 (2)0.8277 (10)0.7453 (4)0.0365 (10)
C80.4309 (2)0.7692 (10)0.6277 (4)0.0346 (10)
C90.4464 (3)1.0300 (12)0.8123 (5)0.0448 (12)
H9A0.4466341.2114260.7734750.067*
H9B0.4866580.9604150.8190870.067*
H9C0.4293151.0514430.8883560.067*
C100.4272 (2)0.4636 (11)0.4646 (4)0.0370 (10)
H10A0.4184540.2626100.4535860.044*
H10B0.4703350.4848050.4678590.044*
C110.4041 (2)0.6255 (10)0.3634 (4)0.0352 (10)
C120.4143 (4)0.6646 (14)0.1619 (5)0.0614 (18)
H12A0.4490040.7696490.1348770.074*
H12B0.3817530.7988830.1732240.074*
C130.3973 (3)0.4535 (14)0.0764 (6)0.0529 (14)
H13A0.4303530.3268740.0626970.079*
H13B0.3866310.5471990.0051480.079*
H13C0.3637030.3462760.1046230.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0496 (7)0.0478 (7)0.0602 (8)0.0075 (5)0.0026 (6)0.0130 (7)
O10.0500 (19)0.042 (2)0.0375 (17)0.0019 (15)0.0010 (15)0.0006 (16)
O20.073 (3)0.045 (2)0.0387 (19)0.022 (2)0.0015 (18)0.0020 (17)
O30.086 (3)0.0414 (19)0.0255 (17)0.021 (2)0.0055 (16)0.0018 (15)
N10.051 (2)0.0289 (19)0.0324 (19)0.0053 (18)0.0003 (17)0.0023 (16)
N20.045 (2)0.0297 (18)0.0272 (18)0.0082 (16)0.0025 (16)0.0030 (16)
C10.041 (2)0.025 (2)0.033 (2)0.0080 (17)0.0022 (18)0.0004 (17)
C20.046 (2)0.031 (2)0.031 (2)0.0069 (19)0.0023 (17)0.0051 (18)
C30.045 (3)0.028 (2)0.045 (3)0.0014 (18)0.004 (2)0.001 (2)
C40.049 (3)0.040 (3)0.044 (3)0.004 (2)0.004 (2)0.003 (2)
C50.058 (3)0.040 (3)0.036 (3)0.002 (2)0.008 (2)0.000 (2)
C60.049 (3)0.030 (2)0.030 (2)0.007 (2)0.0062 (18)0.0018 (18)
C70.049 (3)0.032 (2)0.028 (2)0.010 (2)0.008 (2)0.0016 (19)
C80.042 (2)0.029 (2)0.032 (2)0.004 (2)0.0002 (18)0.0014 (18)
C90.061 (3)0.037 (3)0.036 (3)0.001 (2)0.004 (2)0.006 (2)
C100.045 (2)0.038 (3)0.028 (2)0.008 (2)0.0005 (19)0.003 (2)
C110.045 (2)0.030 (2)0.030 (2)0.0013 (19)0.0002 (19)0.0033 (18)
C120.109 (6)0.043 (3)0.032 (3)0.008 (3)0.001 (3)0.003 (2)
C130.056 (3)0.054 (3)0.049 (3)0.008 (3)0.012 (3)0.000 (3)
Geometric parameters (Å, º) top
Cl1—C31.739 (5)C5—C61.395 (8)
O1—C81.220 (6)C5—H50.9500
O2—C111.194 (7)C7—C81.482 (6)
O3—C111.320 (6)C7—C91.487 (7)
O3—C121.460 (7)C9—H9A0.9800
N1—C71.302 (7)C9—H9B0.9800
N1—C61.385 (7)C9—H9C0.9800
N2—C81.379 (6)C10—C111.514 (7)
N2—C11.397 (7)C10—H10A0.9900
N2—C101.456 (6)C10—H10B0.9900
C1—C21.402 (7)C12—C131.475 (9)
C1—C61.405 (7)C12—H12A0.9900
C2—C31.375 (7)C12—H12B0.9900
C2—H20.9500C13—H13A0.9800
C3—C41.387 (8)C13—H13B0.9800
C4—C51.386 (8)C13—H13C0.9800
C4—H40.9500
C11—O3—C12118.0 (4)N2—C8—C7115.5 (4)
C7—N1—C6118.5 (4)C7—C9—H9A109.5
C8—N2—C1121.7 (4)C7—C9—H9B109.5
C8—N2—C10116.4 (4)H9A—C9—H9B109.5
C1—N2—C10121.9 (4)C7—C9—H9C109.5
N2—C1—C2122.3 (4)H9A—C9—H9C109.5
N2—C1—C6117.6 (4)H9B—C9—H9C109.5
C2—C1—C6120.1 (5)N2—C10—C11113.4 (4)
C3—C2—C1118.8 (4)N2—C10—H10A108.9
C3—C2—H2120.6C11—C10—H10A108.9
C1—C2—H2120.6N2—C10—H10B108.9
C2—C3—C4122.4 (5)C11—C10—H10B108.9
C2—C3—Cl1118.5 (4)H10A—C10—H10B107.7
C4—C3—Cl1119.1 (4)O2—C11—O3126.2 (5)
C5—C4—C3118.4 (5)O2—C11—C10124.6 (5)
C5—C4—H4120.8O3—C11—C10109.1 (4)
C3—C4—H4120.8O3—C12—C13109.3 (5)
C4—C5—C6121.3 (5)O3—C12—H12A109.8
C4—C5—H5119.3C13—C12—H12A109.8
C6—C5—H5119.3O3—C12—H12B109.8
N1—C6—C5118.4 (4)C13—C12—H12B109.8
N1—C6—C1122.6 (5)H12A—C12—H12B108.3
C5—C6—C1118.9 (5)C12—C13—H13A109.5
N1—C7—C8123.3 (4)C12—C13—H13B109.5
N1—C7—C9120.1 (4)H13A—C13—H13B109.5
C8—C7—C9116.6 (5)C12—C13—H13C109.5
O1—C8—N2122.1 (4)H13A—C13—H13C109.5
O1—C8—C7122.3 (5)H13B—C13—H13C109.5
C8—N2—C1—C2172.3 (4)C2—C1—C6—C52.5 (7)
C10—N2—C1—C26.5 (7)C6—N1—C7—C80.1 (7)
C8—N2—C1—C67.0 (6)C6—N1—C7—C9178.6 (4)
C10—N2—C1—C6174.2 (4)C1—N2—C8—O1172.2 (4)
N2—C1—C2—C3179.8 (4)C10—N2—C8—O16.7 (7)
C6—C1—C2—C30.9 (7)C1—N2—C8—C710.5 (6)
C1—C2—C3—C41.2 (8)C10—N2—C8—C7170.6 (4)
C1—C2—C3—Cl1177.7 (3)N1—C7—C8—O1175.5 (5)
C2—C3—C4—C51.7 (8)C9—C7—C8—O15.8 (7)
Cl1—C3—C4—C5177.1 (4)N1—C7—C8—N27.2 (7)
C3—C4—C5—C60.1 (9)C9—C7—C8—N2171.5 (4)
C7—N1—C6—C5178.5 (4)C8—N2—C10—C1188.2 (5)
C7—N1—C6—C14.0 (7)C1—N2—C10—C1190.7 (5)
C4—C5—C6—N1179.6 (5)C12—O3—C11—O22.6 (9)
C4—C5—C6—C12.0 (8)C12—O3—C11—C10176.1 (5)
N2—C1—C6—N10.7 (6)N2—C10—C11—O22.8 (7)
C2—C1—C6—N1180.0 (4)N2—C10—C11—O3178.5 (4)
N2—C1—C6—C5178.2 (4)C11—O3—C12—C13131.7 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C6/N1/C7/C8/N2 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.393.211 (6)145
C9—H9A···Cg1ii0.982.733.591 (6)147
C10—H10A···O2i0.992.593.535 (7)159
C12—H12A···O1iii0.992.493.471 (9)170
C13—H13A···O1iv0.982.493.427 (7)160
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+2, z1/2; (iv) x+1, y+1, z1/2.
 

Funding information

The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbad, N., Al-Ostoot, F. H., Ashraf, S., Chkirate, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswarig, B. M., Essassi, E. M. & Ramli, Y. (2023). Heliyon 9, e21312.  CSD CrossRef PubMed Google Scholar
First citationAl Ati, G., Chkirate, K., El-Guourrami, O., Chakchak, H., Tüzün, B., Mague, J. T., Benzeid, H., Achour, R. & Essassi, E. M. (2024). J. Mol. Struct. 1295, 136637.  CSD CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT . Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationChkirate, K., Akachar, J., Hni, B., Hökelek, T., Anouar, E. H., Talbaoui, A., Mague, J. T., Sebbar, N. K., Ibrahimi, A. & Essassi, E. M. (2022b). J. Mol. Struct. 1247, 131188.  CSD CrossRef Google Scholar
First citationChkirate, K., Ati, G. A., Karrouchi, K., Fettach, S., Chakchak, H., Mague, J. T., Radi, S., Adarsh, N. N., Abbes Faouzi, M. E., Essassi, E. M. & Garcia, Y. (2023). ChemBioChem, 24, e202300331.  CSD CrossRef PubMed Google Scholar
First citationChkirate, K. & Essassi, E. M. (2022a). Curr. Org. Chem. 26, 1735–1766.  CrossRef CAS Google Scholar
First citationChkirate, K., Karrouchi, K., Chakchak, H., Mague, J. T., Radi, S., Adarsh, N. N., Li, W., Talbaoui, A., Essassi, E. M. & Garcia, Y. (2022c). RSC Adv. 12, 5324–5339.  CSD CrossRef CAS PubMed Google Scholar
First citationFaraj, I., Oubella, A., Chkirate, K., Al Mamari, K., Hökelek, T., Mague, J. T., El Ghayati, L., Sebbar, N. K. & Essassi, E. M. (2022). Acta Cryst. E78, 864–870.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbrahim, M. K., Abd-Elrahman, A. A., Ayyad, R. R. A., El-Adl, K., Mansour, A. M. & Eissa, I. H. (2013). Bull. Fac. Pharm. Cairo Univ. 51, 101–111.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMissioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023). IUCrData, 8, x230357.  Google Scholar
First citationMissioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180882.  Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022a). Arab. J. Chem. 15, 103595.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022b). J. Mol. Struct. 1247, 131420.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia, Crawley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds