

Received 6 March 2024 Accepted 19 March 2024

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

**Keywords:** crystal structure; quinoxaline; alkylation; hydrogen bond; *π*-stacking.

CCDC reference: 2142451

**Supporting information:** this article has supporting information at journals.iucr.org/e



Published under a CC BY 4.0 licence

# Synthesis, crystal structure and Hirshfeld surface analysis of 2-phenyl-3-(prop-2-yn-1-yloxy)quinoxaline

### Nadeem Abad,<sup>a,b</sup> Joel T. Mague,<sup>c</sup> Abdulsalam Alsubari,<sup>d</sup>\* El Mokhtar Essassi,<sup>b</sup> Mehrdad Pourayoubi,<sup>e</sup> Abdullah Yahya Abdullah Alzahrani<sup>f</sup> and Youssef Ramli<sup>a,g</sup>\*

<sup>a</sup>Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, <sup>b</sup>Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco, <sup>c</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, <sup>d</sup>Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, <sup>e</sup>Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, <sup>f</sup>Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia, and <sup>g</sup>Mohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco. \*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

In the title compound,  $C_{17}H_{12}N_2O$ , the quinoxaline moiety shows deviations of 0.0288 (7) to -0.0370 (7) Å from the mean plane (r.m.s. deviation of fitted atoms = 0.0223 Å). In the crystal, corrugated layers two molecules thick are formed by  $C-H\cdots N$  hydrogen bonds and  $\pi$ -stacking interactions.

#### 1. Chemical context

Quinoxaline derivatives are described extensively among the heterocycles being investigated for the discovery and development of new biologically active molecules. Numerous studies have been published regarding this class of compounds, revealing that quinoxaline is present in a number of well-established drugs with diverse therapeutic activities as well as industrial properties (e.g. Lgaz et al., 2015). In recent decades, the medicinal chemistry of quinoxaline and its derivatives have received great attention due to their wide spectrum of biological activities, in particular analgesic, antidiabetic, antiviral, antibacterial, antioxidant, anti-inflammatory, antidepressant, and anti-tubercular (Ramli & Essassi, 2015). Our interest in quinoxalines results from their simple synthesis and the ease with which X-ray quality crystals can be grown. Following this line of research, and as a continuation of our work in this area (e.g. Missioui et al., 2022), based on the therapeutic significance of this scaffold for potential applications in medicinal chemistry, we report herein the synthesis of a new quinoxaline derivative by an alkylation reaction of 3phenylquinoxalin-2(1H)-one using 3-bromoprop-1-yne as an alkylating reagent and potassium carbonate in the presence of tetra-n-butylammonium bromide as catalyst in phase-transfer catalysis (Fig. 1). A Hirshfeld surface analysis was performed to analyze the intermolecular interactions.





Synthesis of the title compound.

#### 2. Structural commentary

In the title molecule, the fused bicyclic ring system is not entirely planar, as indicated by the dihedral angle of 2.25 (6)° between its constituent rings and by the deviations from the mean plane through the ten atoms, which range from 0.0288 (7) Å (C8) to -0.0370 (7) Å (C2) (r.m.s. deviation of fitted atoms = 0.0223 Å). The plane of the benzene ring C12– C17 is inclined to the above plane by 34.04 (4)°, while the methylene carbon of the propynyl group (C9) lies virtually in the plane of the quinoxaline unit, as indicated by the C9-O1-C7-N1 torsion angle of 0.65 (13)°. However, the propynyl group is almost perpendicular to the above plane, as indicated by the C7-O1-C9-C10 torsion angle of -87.0 (1)° (Fig. 2).



Figure 2

Molecular structure of the title molecule with labeling scheme and 50% probability ellipsoids.

| Hydrogen-bond geometry (Å, °). | Table 1                        |  |
|--------------------------------|--------------------------------|--|
|                                | Hydrogen-bond geometry (Å, °). |  |

| $D - H \cdots A$          | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------|------|-------------------------|--------------|---------------------------|
| $C11 - H11 \cdots N2^{i}$ | 0.95 | 2.44                    | 3.3164 (14)  | 153                       |
| Summer and as (i) as as   | . 1  |                         |              |                           |

Symmetry code: (i) x, y + 1, z.

#### 3. Supramolecular features

In the crystal, the molecules are connected into chains extending along the *b*-axis direction by C11–H11···N2 hydrogen bonds (Table 1 and Fig. 3). The chains are linked into corrugated layers two molecules thick by offset  $\pi$ -stacking interactions between the C1–C6 and C1/C6/N1/C7/C8/N2 rings [centroid–centroid distance = 3.6716 (8) Å; dihedral angle = 2.25 (4)°, slippage = 1.262 Å] across inversion centers (Fig. 3).

To quantify the extent of each type of intermolecular interaction in the crystal packing, a Hirshfeld surface analysis was performed using CrystalExplorer (Version 21.5; Spackman et al., 2021). Descriptions of the surfaces generated and their interpretation have been published (Tan et al., 2019). Fig. 4 shows the  $d_{norm}$  surface with Fig. 4a showing two neighboring molecules illustrating the C-H···N hydrogen bond and Fig. 4b one neighbor illustrating the  $\pi$ -stacking. From Fig. 4*a*, it is clear that the  $C-H \cdot \cdot \cdot N$  hydrogen bond is the only intermolecular hydrogen bond in the structure. Fig. 5a shows the surface mapped over shape-index while Fig. 5b shows it mapped over curvature. In both of these, the characteristic features of intermolecular  $\pi$ -stacking interactions are quite evident. Fig. 6 presents the 2D fingerprint plots with Fig. 6a giving the total of all intermolecular interactions and Fig. 6b-6e showing those delineated into  $H \cdots H$ ,  $C \cdots H/$  $H \cdots C$ ,  $N \cdots H/H \cdots N$  and  $C \cdots C$  interactions. These are the major interactions and contribute 42.8%, 36.8%, 8.3% and 6.3% to the total, respectively. In the absence of  $C-H\cdots\pi(ring)$  interactions, the large contribution of  $C\cdots H/$  $H \cdot \cdot \cdot C$  interactions may seem unusual, but *PLATON* (Spek, 2020) indicates that there are at least six and as many as ten





Packing viewed along the *a*-axis direction with  $C-H\cdots N$  hydrogen bonds and  $\pi$ -stacking interactions shown, respectively, by black and orange dashed lines. Non-interacting hydrogen atoms are omitted for clarity.

# research communications



#### Figure 4

The Hirshfeld surface plotted over  $d_{\text{norm}}$  in the range -0.2356 to 1.4819 in arbitrary units) with (a) two neighboring hydrogen bonded molecules and (b) one neighboring  $\pi$ -stacked molecule.



The Hirshfeld surface plotted over (a) shape-index and (b) curvature.



#### Figure 6

2D fingerprint plots for (a) all intermolecular interactions, and delineated into (b)  $H \cdots H$ , (c)  $N \cdots H/H \cdots N$ , (d)  $C \cdots H/H \cdots C$  and (e)  $C \cdots C$  interactions.

such contacts with distances slightly shorter than to slightly longer than the sum of the respective van der Waals radii.

#### 4. Database survey

A search of the Cambridge Structural Database (CSD, updated to January 2024; Groom *et al.*, 2016) using fragment **A** (Fig. 7, R = any atom), yielded seven hits similar to the title molecule, *viz*. FACPEI with R = benzyl (Abad *et al.*, 2020), 3-(2-0x0-3-phenylquinoxalin-1(2H)-yl)propyl (KOPKAF; Abad *et al.*, 2024) and 2-(2-0x00xazolidin-3-yl)ethyl [monoclinic form (UREREP01; Daouda *et al.*, 2020) and orthorhombic form (UREREP; Daouda *et al.*, 2011)]. The last three are **B** (BZOQUX10; Oberti *et al.*, 1978), **C** (YEFDUK; Moreau *et al.*, 2012) and **D** (VAQNAE; Kumar *et al.*, 2012). The quinoxaline moiety is closest to planar in BZOQUX10

Figure 5

## research communications



Figure 7 Search fragment (A), BZOQUX10 (B), VAQNAE (C) and YEFDUK (D).

[dihedral angle between constituent planes =  $1.13 (1)^{\circ}$ ], while in UREREP it is furthest from planar [dihedral angle between constituent planes =  $3.34 (16)^{\circ}$ ]. These two compounds also exhibit the smallest [ $30.60 (1)^{\circ}$ ] and largest [ $38.72 (16)^{\circ}$ ] angles of inclination of the phenyl group. The other structures show intermediate values for both angles, except for YEFDUK and VAQNAE where this angle is less than 5° because the phenyl ring is part of a six- or five-membered ring fused to the nitrogen-containing heterocycle.

#### 5. Synthesis and crystallization

3-Phenylquinoxalin-2(1*H*)-one (1 g, 4.5 mmol), 3-bromoprop-1-yne (0.96 mL, 9 mmol), and potassium carbonate (0.931 g, 6.75 mmol) with an amount of catalytic tetra-*n*-butylammonium bromide (0.29 g, 0.9 mmol) were stirred in *N*,*N*dimethylformamide (DMF) (20 mL) for 48 h (Fig. 1). The solution was filtered, and the solvent was removed under vacuum. Dichloromethane (20 mL) was added, and the solution was filtered. The residue was chromatographed on a silica gel column (hexane/ethyl acetate: 9.5/0.5, as mobile phase) to give two fractions. The first fraction was purified by recrystallization in ethanol to afford colorless crystals with a yield of 28.3% (*O*-alkylated isomer, title compound) while recrystallization of the second fraction gave a yellowish powder with a yield of 53.5% (*N*-alkylated isomer).

**O**-alkylated isomer: Yield: 28.3%, m.p. = 370–372 K, <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 2.55 (*t*, 1H, *CH*, *J* = 3Hz); 5.265 (*d*, 2H, O–*CH*<sub>2</sub>, *J* = 3Hz); 7.55–8.20 (*m*, 9H, *CH*<sub>arom</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 53.93 (O–*C*H<sub>2</sub>); 74.85 (*C*H); 78.57 (–*C*); 126.85, 127.22, 128.31, 129.06, 129.75, 129.82, 129.86 (*C*H<sub>arom</sub>); 136.77, 139.35, 139.49, 146.29 (*C*q); 154.11 (*C*q–O).

*N*-alkylated isomer: Yield 53.5%, m.p. = 385–387 K, <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 2.35 (*t*, H, CH, J = 3Hz); 5.155

| Experimental details.                                                    |                                          |
|--------------------------------------------------------------------------|------------------------------------------|
| Crystal data                                                             |                                          |
| Chemical formula                                                         | $C_{17}H_{12}N_2O$                       |
| Mr                                                                       | 260.29                                   |
| Crystal system, space group                                              | Triclinic, $P\overline{1}$               |
| Temperature (K)                                                          | 120                                      |
| a, b, c (Å)                                                              | 8.4614 (14), 9.0947 (15),<br>9.5360 (16) |
| $\alpha, \beta, \gamma$ (°)                                              | 87.739 (2), 72.963 (2), 69.028 (2)       |
| $V(\dot{A}^3)$                                                           | 653.39 (19)                              |
| Z                                                                        | 2                                        |
| Radiation type                                                           | Μο Κα                                    |
| $\mu (\text{mm}^{-1})$                                                   | 0.08                                     |
| Crystal size (mm)                                                        | $0.34 \times 0.33 \times 0.14$           |
| Data collection                                                          |                                          |
| Diffractometer                                                           | Bruker SMART APEX CCD                    |
| Absorption correction                                                    | Multi-scan (SADABS; Krause et al., 2015) |
| $T_{\min}, T_{\max}$                                                     | 0.91, 0.99                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 12629, 3456, 2869                        |
| R <sub>int</sub>                                                         | 0.026                                    |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                        | 0.684                                    |
| Refinement                                                               |                                          |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.044, 0.139, 1.17                       |
| No. of reflections                                                       | 3456                                     |
| No. of parameters                                                        | 181                                      |
| H-atom treatment                                                         | H-atom parameters constrained            |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$    | 0.42, -0.24                              |

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2019/1* (Sheldrick, 2015*a*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

(*d*, 2H, N- $CH_2$ , J = 3Hz); 7.41–8.36 (*m*, 9H,  $CH_{arom}$ ); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 31.69 (N- $CH_2$ ); 73.19 (*C*H); 76.96

(-C); 114.07, 124.15, 128.13, 129.61, 130.45, 130.53, 130.63  $(CH_{arom})$ ; 131.87, 133.31, 135.78, 153.72 (Cq); 153.98 (C=0).

#### 6. Refinement

Table 2

Experimental details

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms.

#### Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

#### References

- Abad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M. & Ramli, Y. (2020). *J. Mol. Struct.* **1221**, 128727.
- Abad, N., Mague, J. T., Alsubari, A., Essassi, E. M., Alzahrani, A. Y. A. & Ramli, Y. (2024). *Acta Cryst.* E80, 300–304.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). *APEX3* and *SAINT*, Bruker AXS, Madison, Wisconsin, USA.

- Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235.
- Daouda, B., Doumbia, M. L., Hökelek, T., Zemmouri, F., Claude, K. A. L., Douira, A., Sebbar, N. K. & Essassi, E. M. (2020). J. Mar. Chim. Heterocycl. 19, 55–69.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kumar, K. S., Adepu, R., Kapavarapu, R., Rambabu, D., Krishna, G. R., Reddy, C. M., Priya, K. K. K., Parsa, V. L. & Pal, M. (2012). *Tetrahedron Lett.* 53, 1134–1138.
- Lgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). *Der. Pharma Chem.* **7**, 36–45.

- Missioui, M., Said, M., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). *Arab. J. Chem.* **15**, 103595.
- Moreau, S., Desplat, V., Savrimoutou, S., Massip, S., Deleris, G. & Guillon, J. (2012). Compte Rend. Chim. 15, 753–757.
- Oberti, R., Coda, A., Incoccia, L. & Comin, F. (1978). Acta Cryst. B34, 1544–1548.
- Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.

# supporting information

Acta Cryst. (2024). E80, 383-387 [https://doi.org/10.1107/S2056989024002585]

Synthesis, crystal structure and Hirshfeld surface analysis of 2phenyl-3-(prop-2-yn-1-yloxy)quinoxaline

## Nadeem Abad, Joel T. Mague, Abdulsalam Alsubari, El Mokhtar Essassi, Mehrdad Pourayoubi, Abdullah Yahya Abdullah Alzahrani and Youssef Ramli

**Computing details** 

2-Phenyl-3-(prop-2-yn-1-yloxy)quinoxaline

Crystal data

 $C_{17}H_{12}N_{2}O$   $M_{r} = 260.29$ Triclinic, *P*1 *a* = 8.4614 (14) Å *b* = 9.0947 (15) Å *c* = 9.5360 (16) Å *a* = 87.739 (2)° *β* = 72.963 (2)° *γ* = 69.028 (2)° *V* = 653.39 (19) Å<sup>3</sup>

#### Data collection

| Bruker SMART APEX CCD                               | 12629 measured reflections                                      |
|-----------------------------------------------------|-----------------------------------------------------------------|
| diffractometer                                      | 3456 independent reflections                                    |
| Radiation source: fine-focus sealed tube            | 2869 reflections with $I > 2\sigma(I)$                          |
| Graphite monochromator                              | $R_{\rm int} = 0.026$                                           |
| Detector resolution: 8.3333 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 29.1^\circ, \ \theta_{\rm min} = 2.2^\circ$ |
| $\varphi$ and $\omega$ scans                        | $h = -11 \rightarrow 11$                                        |
| Absorption correction: multi-scan                   | $k = -12 \rightarrow 12$                                        |
| (SADABS; Krause et al., 2015)                       | $l = -13 \rightarrow 12$                                        |
| $T_{\min} = 0.91, \ T_{\max} = 0.99$                |                                                                 |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.139$ S = 1.173456 reflections 181 parameters 0 restraints Primary atom site location: dual Z = 2 F(000) = 272  $D_x = 1.323 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6800 reflections  $\theta = 2.2-29.1^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 120 KThick plate, colourless  $0.34 \times 0.33 \times 0.14 \text{ mm}$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0919P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.42$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.24$  e Å<sup>-3</sup>

#### Special details

**Experimental**. The diffraction data were obtained from 3 sets of 400 frames, each of width  $0.5^{\circ}$  in  $\omega$ , collected at  $\varphi = 0.00$ , 90.00 and 180.00° and 2 sets of 800 frames, each of width  $0.45^{\circ}$  in  $\varphi$ , collected at  $\omega = -30.00$  and 210.00°. The scan time was 10 sec/frame.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative F<sup>2</sup>. The threshold expression of F<sup>2</sup> > 2sigma(F<sup>2</sup>) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

|     | X            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| 01  | 0.70891 (9)  | 0.56445 (8)  | 0.38257 (7)  | 0.02033 (18)                |
| N1  | 0.46180 (11) | 0.60416 (9)  | 0.30849 (8)  | 0.01784 (19)                |
| N2  | 0.63397 (10) | 0.29963 (9)  | 0.16411 (8)  | 0.01617 (19)                |
| C1  | 0.46804 (12) | 0.39265 (11) | 0.15776 (10) | 0.0163 (2)                  |
| C2  | 0.38348 (13) | 0.33437 (11) | 0.07839 (10) | 0.0202 (2)                  |
| H2  | 0.443192     | 0.233469     | 0.026117     | 0.024*                      |
| C3  | 0.21438 (13) | 0.42397 (12) | 0.07686 (11) | 0.0221 (2)                  |
| Н3  | 0.157226     | 0.384741     | 0.023461     | 0.027*                      |
| C4  | 0.12524 (13) | 0.57396 (12) | 0.15423 (11) | 0.0227 (2)                  |
| H4  | 0.007481     | 0.633952     | 0.154015     | 0.027*                      |
| C5  | 0.20634 (13) | 0.63425 (11) | 0.22970 (10) | 0.0206 (2)                  |
| Н5  | 0.145802     | 0.736230     | 0.279815     | 0.025*                      |
| C6  | 0.37993 (12) | 0.54442 (11) | 0.23271 (10) | 0.0168 (2)                  |
| C7  | 0.61911 (12) | 0.51363 (11) | 0.31114 (9)  | 0.0161 (2)                  |
| C8  | 0.71038 (12) | 0.35506 (10) | 0.23996 (9)  | 0.0153 (2)                  |
| C9  | 0.62072 (14) | 0.72174 (11) | 0.45585 (10) | 0.0220 (2)                  |
| H9A | 0.664895     | 0.726667     | 0.540217     | 0.026*                      |
| H9B | 0.491675     | 0.744261     | 0.494533     | 0.026*                      |
| C10 | 0.65155 (13) | 0.84189 (11) | 0.35597 (10) | 0.0203 (2)                  |
| C11 | 0.67695 (14) | 0.94264 (12) | 0.27984 (11) | 0.0260 (2)                  |
| H11 | 0.697268     | 1.023246     | 0.218929     | 0.031*                      |
| C12 | 0.88656 (12) | 0.24852 (11) | 0.24864 (10) | 0.0164 (2)                  |
| C13 | 0.93639 (13) | 0.24226 (12) | 0.37693 (10) | 0.0217 (2)                  |
| H13 | 0.860641     | 0.313948     | 0.459583     | 0.026*                      |
| C14 | 1.09717 (14) | 0.13079 (12) | 0.38327 (11) | 0.0251 (2)                  |
| H14 | 1.129576     | 0.125487     | 0.471192     | 0.030*                      |
| C15 | 1.21016 (13) | 0.02769 (12) | 0.26279 (12) | 0.0259 (2)                  |
| H15 | 1.320346     | -0.047128    | 0.267536     | 0.031*                      |
| C16 | 1.16184 (13) | 0.03400 (12) | 0.13478 (11) | 0.0243 (2)                  |
| H16 | 1.239339     | -0.036390    | 0.051699     | 0.029*                      |
| C17 | 1.00061 (13) | 0.14291 (11) | 0.12807 (10) | 0.0198 (2)                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| H17    | 0.967552                               | 0.14            | 45639      | 0.040722    | 0.024*      |             |  |
|--------|----------------------------------------|-----------------|------------|-------------|-------------|-------------|--|
| Atomic | Atomic displacement parameters $(Å^2)$ |                 |            |             |             |             |  |
|        | $U^{11}$                               | U <sup>22</sup> | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |  |
| 01     | 0.0248 (4)                             | 0.0157 (3)      | 0.0240 (4) | -0.0084 (3) | -0.0109 (3) | 0.0001 (3)  |  |
| N1     | 0.0202 (4)                             | 0.0157 (4)      | 0.0170 (4) | -0.0062 (3) | -0.0051 (3) | 0.0012 (3)  |  |
| N2     | 0.0171 (4)                             | 0.0152 (4)      | 0.0165 (4) | -0.0063 (3) | -0.0050 (3) | 0.0025 (3)  |  |
| C1     | 0.0164 (4)                             | 0.0157 (4)      | 0.0162 (4) | -0.0062 (3) | -0.0042 (3) | 0.0038 (3)  |  |
| C2     | 0.0216 (5)                             | 0.0182 (5)      | 0.0222 (5) | -0.0084 (4) | -0.0072 (4) | 0.0013 (4)  |  |
| C3     | 0.0223 (5)                             | 0.0253 (5)      | 0.0238 (5) | -0.0121 (4) | -0.0102 (4) | 0.0049 (4)  |  |
| C4     | 0.0170 (5)                             | 0.0259 (5)      | 0.0234 (5) | -0.0058 (4) | -0.0069 (4) | 0.0067 (4)  |  |
| C5     | 0.0198 (5)                             | 0.0182 (5)      | 0.0198 (4) | -0.0031 (4) | -0.0049 (4) | 0.0025 (4)  |  |
| C6     | 0.0181 (4)                             | 0.0165 (4)      | 0.0151 (4) | -0.0062 (4) | -0.0041 (3) | 0.0024 (3)  |  |
| C7     | 0.0193 (5)                             | 0.0155 (4)      | 0.0143 (4) | -0.0079 (4) | -0.0044 (3) | 0.0024 (3)  |  |
| C8     | 0.0171 (4)                             | 0.0146 (4)      | 0.0144 (4) | -0.0066 (3) | -0.0041 (3) | 0.0026 (3)  |  |
| С9     | 0.0307 (5)                             | 0.0184 (5)      | 0.0189 (4) | -0.0114 (4) | -0.0068 (4) | -0.0011 (4) |  |
| C10    | 0.0202 (5)                             | 0.0182 (5)      | 0.0218 (4) | -0.0055 (4) | -0.0064 (4) | -0.0028 (4) |  |
| C11    | 0.0289 (6)                             | 0.0208 (5)      | 0.0276 (5) | -0.0092 (4) | -0.0074 (4) | 0.0020 (4)  |  |
| C12    | 0.0170 (4)                             | 0.0140 (4)      | 0.0203 (4) | -0.0072 (3) | -0.0066 (4) | 0.0033 (3)  |  |
| C13    | 0.0230 (5)                             | 0.0217 (5)      | 0.0202 (4) | -0.0065 (4) | -0.0081 (4) | 0.0016 (4)  |  |
| C14    | 0.0277 (5)                             | 0.0247 (5)      | 0.0286 (5) | -0.0095 (4) | -0.0171 (4) | 0.0056 (4)  |  |
| C15    | 0.0204 (5)                             | 0.0205 (5)      | 0.0385 (6) | -0.0054 (4) | -0.0142 (4) | 0.0049 (4)  |  |
| C16    | 0.0203 (5)                             | 0.0188 (5)      | 0.0292 (5) | -0.0025 (4) | -0.0064 (4) | -0.0018 (4) |  |
| C17    | 0.0210 (5)                             | 0.0174 (4)      | 0.0218 (4) | -0.0065 (4) | -0.0081 (4) | 0.0012 (4)  |  |

### Geometric parameters (Å, °)

| 01—C7    | 1.3544 (11)                             | C8—C12    | 1.4832 (12) |
|----------|-----------------------------------------|-----------|-------------|
| 01—С9    | 1.4493 (12)                             | C9—C10    | 1.4648 (13) |
| N1—C7    | 1.2976 (12)                             | С9—Н9А    | 0.9900      |
| N1—C6    | 1.3751 (12)                             | C9—H9B    | 0.9900      |
| N2-C8    | 1.3158 (11)                             | C10—C11   | 1.1874 (14) |
| N2—C1    | 1.3733 (11)                             | C11—H11   | 0.9500      |
| C1—C2    | 1.4094 (12)                             | C12—C17   | 1.3961 (13) |
| C1—C6    | 1.4145 (13)                             | C12—C13   | 1.3991 (12) |
| C2—C3    | 1.3741 (13)                             | C13—C14   | 1.3922 (14) |
| С2—Н2    | 0.9500                                  | C13—H13   | 0.9500      |
| C3—C4    | 1.4110 (15)                             | C14—C15   | 1.3831 (16) |
| С3—Н3    | 0.9500                                  | C14—H14   | 0.9500      |
| C4—C5    | 1.3709 (14)                             | C15—C16   | 1.3895 (14) |
| C4—H4    | 0.9500                                  | C15—H15   | 0.9500      |
| C5—C6    | 1.4105 (13)                             | C16—C17   | 1.3876 (13) |
| С5—Н5    | 0.9500                                  | C16—H16   | 0.9500      |
| С7—С8    | 1.4525 (13)                             | C17—H17   | 0.9500      |
| C7—O1—C9 | 117.08 (7)                              | Q1—C9—C10 | 111 63 (8)  |
| C7—N1—C6 | 117.06 (8)                              | 01—C9—H9A | 109.3       |
|          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |             |

| C8—N2—C1          | 118 73 (8)             | С10—С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.3       |
|-------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $N_2 - C_1 - C_2$ | 110.75 (0)             | 01 - C9 - H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.3       |
| $N_2 = C_1 = C_2$ | 119.43(8)              | $C_{10}$ $C_{0}$ HOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.3       |
| 12 - 01 - 00      | 120.70(0)<br>110.92(8) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5       |
| $C_2 = C_1 = C_0$ | 119.03 (0)             | $H_{A}$ $C_{A}$ $H_{B}$ $H_{B}$ $C_{A}$ $H_{B}$ $C_{A}$ $H_{B}$ $C_{A}$ $H_{B}$ $C_{A}$ $H_{B}$ $C_{A}$ $H_{B}$ $H_{B$ | 100.0       |
| $C_{3}$           | 119.79 (9)             | C10  C11  U11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 177.21 (10) |
| $C_3 = C_2 = H_2$ | 120.1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180.0       |
| C1 - C2 - H2      | 120.1                  | C17 - C12 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.09 (8)  |
| $C_2 = C_3 = C_4$ | 120.30 (9)             | C17 - C12 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.53 (8)  |
| С2—С3—Н3          | 119.8                  | C13—C12—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.21 (8)  |
| С4—С3—Н3          | 119.8                  | C14—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.89 (9)  |
| C5—C4—C3          | 120.87 (9)             | C14—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1       |
| C5—C4—H4          | 119.6                  | C12—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1       |
| C3—C4—H4          | 119.6                  | C15—C14—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.63 (9)  |
| C4—C5—C6          | 119.81 (9)             | C15—C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7       |
| С4—С5—Н5          | 120.1                  | C13—C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7       |
| С6—С5—Н5          | 120.1                  | C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.73 (9)  |
| N1—C6—C5          | 120.06 (9)             | C14—C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1       |
| N1—C6—C1          | 120.56 (8)             | C16—C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1       |
| C5—C6—C1          | 119.38 (9)             | C17—C16—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.12 (9)  |
| N1—C7—O1          | 120.57 (8)             | C17—C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9       |
| N1—C7—C8          | 123.68 (8)             | C15—C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9       |
| O1—C7—C8          | 115.75 (8)             | C16—C17—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.54 (8)  |
| N2—C8—C7          | 119.21 (8)             | С16—С17—Н17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7       |
| N2—C8—C12         | 116.98 (8)             | С12—С17—Н17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7       |
| C7—C8—C12         | 123.80 (8)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| C8—N2—C1—C2       | -179.28 (8)            | C1—N2—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.53 (13)  |
| C8—N2—C1—C6       | -0.75 (13)             | C1—N2—C8—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 177.76 (7)  |
| N2-C1-C2-C3       | 177.16 (8)             | N1-C7-C8-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.22 (14)   |
| C6—C1—C2—C3       | -1.38 (14)             | O1—C7—C8—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -177.66 (7) |
| C1—C2—C3—C4       | 0.06 (14)              | N1-C7-C8-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -177.02 (8) |
| C2—C3—C4—C5       | 1.26 (15)              | O1—C7—C8—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.10 (13)   |
| C3—C4—C5—C6       | -1.21 (15)             | C7—O1—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -87.00 (10) |
| C7—N1—C6—C5       | 177.76 (7)             | N2-C8-C12-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.33 (12)  |
| C7—N1—C6—C1       | -1.98 (14)             | C7—C8—C12—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -147.42 (9) |
| C4—C5—C6—N1       | -179.86 (8)            | N2-C8-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -141.76 (9) |
| C4—C5—C6—C1       | -0.13 (14)             | C7—C8—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.49 (13)  |
| N2-C1-C6-N1       | 2.63 (14)              | C17—C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.54 (14)  |
| C2-C1-C6-N1       | -178.84 (8)            | C8—C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 174.53 (8)  |
| N2-C1-C6-C5       | -177.10 (8)            | C12-C13-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.21 (15)   |
| C2-C1-C6-C5       | 1.42 (14)              | C13—C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.83 (16)  |
| C6—N1—C7—O1       | 179.51 (7)             | C14—C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.23 (15)  |
| C6—N1—C7—C8       | -0.37 (14)             | C15—C16—C17—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.90 (14)   |
| C9—O1—C7—N1       | 0.65 (13)              | C13—C12—C17—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.51 (14)  |
| C9—O1—C7—C8       | -179.47 (7)            | C8—C12—C17—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -175.76 (8) |

### Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | H···A | D····A      | <i>D</i> —H··· <i>A</i> |
|----------------------------|-------------|-------|-------------|-------------------------|
| C11—H11····N2 <sup>i</sup> | 0.95        | 2.44  | 3.3164 (14) | 153                     |

Symmetry code: (i) x, y+1, z.