CRYSTALLOGRAPHIC COMMUNICATIONS

[^0]Received 6 March 2024
Accepted 19 March 2024

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; quinoxaline; alkylation; hydrogen bond; π-stacking.

CCDC reference: 2142451

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Synthesis, crystal structure and Hirshfeld surface analysis of 2-phenyl-3-(prop-2-yn-1-yloxy)quinoxaline

Nadeem Abad, ${ }^{\text {a,b }}$ Joel T. Mague, ${ }^{\text {c }}$ Abdulsalam Alsubari, ${ }^{\text {d* }}$ El Mokhtar Essassi, ${ }^{\text {b }}$ Mehrdad Pourayoubi, ${ }^{\mathrm{e}}$ Abdullah Yahya Abdullah Alzahrani ${ }^{\mathrm{f}}$ and Youssef Ramlia, ${ }^{\text {a, } \boldsymbol{g}_{*}}$

${ }^{\text {a Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V }}$ University in Rabat, Morocco, ${ }^{\text {b Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V }}$ University, Rabat, Morocco, ${ }^{\text {c }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, ${ }^{\text {d Laboratory of }}$ Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, ${ }^{\text {e }}$ Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, ${ }^{\text {f }}$ Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia, and ${ }^{\mathbf{g}}$ Mohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco. *Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$, the quinoxaline moiety shows deviations of 0.0288 (7) to -0.0370 (7) \AA from the mean plane (r.m.s. deviation of fitted atoms $=0.0223 \AA$). In the crystal, corrugated layers two molecules thick are formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and π-stacking interactions.

1. Chemical context

Quinoxaline derivatives are described extensively among the heterocycles being investigated for the discovery and development of new biologically active molecules. Numerous studies have been published regarding this class of compounds, revealing that quinoxaline is present in a number of well-established drugs with diverse therapeutic activities as well as industrial properties (e.g. Lgaz et al., 2015). In recent decades, the medicinal chemistry of quinoxaline and its derivatives have received great attention due to their wide spectrum of biological activities, in particular analgesic, antidiabetic, antiviral, antibacterial, antioxidant, anti-inflammatory, antidepressant, and anti-tubercular (Ramli \& Essassi, 2015). Our interest in quinoxalines results from their simple synthesis and the ease with which X-ray quality crystals can be grown. Following this line of research, and as a continuation of our work in this area (e.g. Missioui et al., 2022), based on the therapeutic significance of this scaffold for potential applications in medicinal chemistry, we report herein the synthesis of a new quinoxaline derivative by an alkylation reaction of 3-phenylquinoxalin-2(1H)-one using 3-bromoprop-1-yne as an alkylating reagent and potassium carbonate in the presence of tetra- n-butylammonium bromide as catalyst in phase-transfer catalysis (Fig. 1). A Hirshfeld surface analysis was performed to analyze the intermolecular interactions.

Figure 1
N-alkylated isomer
Synthesis of the title compound.

2. Structural commentary

In the title molecule, the fused bicyclic ring system is not entirely planar, as indicated by the dihedral angle of $2.25(6)^{\circ}$ between its constituent rings and by the deviations from the mean plane through the ten atoms, which range from 0.0288 (7) $\AA(\mathrm{C} 8)$ to $-0.0370(7) \AA(\mathrm{C} 2)$ (r.m.s. deviation of fitted atoms $=0.0223 \AA$). The plane of the benzene ring C12C17 is inclined to the above plane by $34.04(4)^{\circ}$, while the methylene carbon of the propynyl group (C9) lies virtually in the plane of the quinoxaline unit, as indicated by the $\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$ torsion angle of $0.65(13)^{\circ}$. However, the propynyl group is almost perpendicular to the above plane, as indicated by the $\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$ torsion angle of -87.0 (1) ${ }^{\circ}$ (Fig. 2).

Figure 2
Molecular structure of the title molecule with labeling scheme and 50% probability ellipsoids.

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.95	2.44	$3.3164(14)$	153

Symmetry code: (i) $x, y+1, z$.

3. Supramolecular features

In the crystal, the molecules are connected into chains extending along the b-axis direction by $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 2$ hydrogen bonds (Table 1 and Fig. 3). The chains are linked into corrugated layers two molecules thick by offset π-stacking interactions between the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{N} 1 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{N} 2$ rings [centroid-centroid distance $=3.6716(8) \AA$; dihedral angle $=2.25(4)^{\circ}$, slippage $=1.262 \AA$] across inversion centers (Fig. 3).

To quantify the extent of each type of intermolecular interaction in the crystal packing, a Hirshfeld surface analysis was performed using CrystalExplorer (Version 21.5; Spackman et al., 2021). Descriptions of the surfaces generated and their interpretation have been published (Tan et al., 2019). Fig. 4 shows the $d_{\text {norm }}$ surface with Fig. $4 a$ showing two neighboring molecules illustrating the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and Fig. $4 b$ one neighbor illustrating the π-stacking. From Fig. $4 a$, it is clear that the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is the only intermolecular hydrogen bond in the structure. Fig. $5 a$ shows the surface mapped over shape-index while Fig. $5 b$ shows it mapped over curvature. In both of these, the characteristic features of intermolecular π-stacking interactions are quite evident. Fig. 6 presents the 2D fingerprint plots with Fig. $6 a$ giving the total of all intermolecular interactions and Fig. $6 b-6 \mathrm{e}$ showing those delineated into $\mathrm{H} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{C}, \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C} \cdots \mathrm{C}$ interactions. These are the major interactions and contribute $42.8 \%, 36.8 \%, 8.3 \%$ and 6.3% to the total, respectively. In the absence of $\mathrm{C}-\mathrm{H} \cdots \pi$ (ring) interactions, the large contribution of $\mathrm{C} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{C}$ interactions may seem unusual, but PLATON (Spek, 2020) indicates that there are at least six and as many as ten

Figure 3
Packing viewed along the a-axis direction with $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and π-stacking interactions shown, respectively, by black and orange dashed lines. Non-interacting hydrogen atoms are omitted for clarity.

Figure 4
The Hirshfeld surface plotted over $d_{\text {norm }}$ in the range -0.2356 to 1.4819 in arbitrary units) with (a) two neighboring hydrogen bonded molecules and (b) one neighboring π-stacked molecule.

Figure 5

The Hirshfeld surface plotted over (a) shape-index and (b) curvature.

Figure 6
2D fingerprint plots for (a) all intermolecular interactions, and delineated into (b) $\mathrm{H} \cdots \mathrm{H},(c) \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N},(d) \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ and (e) $\mathrm{C} \cdots \mathrm{C}$ interactions.
such contacts with distances slightly shorter than to slightly longer than the sum of the respective van der Waals radii.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to January 2024; Groom et al., 2016) using fragment A (Fig. 7, $R=$ any atom), yielded seven hits similar to the title molecule, viz. FACPEI with $R=$ benzyl (Abad et al., 2020), 3-(2-oxo-3-phenylquinoxalin-1(2H)-yl)propyl (KOPKAF; Abad et al., 2024) and 2-(2-oxooxazolidin-3-yl)ethyl [monoclinic form (UREREP01; Daouda et al., 2020) and orthorhombic form (UREREP; Daouda et al., 2011)]. The last three are B (BZOQUX10; Oberti et al., 1978), C (YEFDUK; Moreau et al., 2012) and D (VAQNAE; Kumar et al., 2012). The quinoxaline moiety is closest to planar in BZOQUX10

A

B

D

Figure 7
Search fragment (A), BZOQUX10 (B), VAQNAE (C) and YEFDUK (D).
[dihedral angle between constituent planes $\left.=1.13(1)^{\circ}\right]$, while in UREREP it is furthest from planar [dihedral angle between constituent planes $\left.=3.34(16)^{\circ}\right]$. These two compounds also exhibit the smallest $\left[30.60(1)^{\circ}\right]$ and largest $\left[38.72(16)^{\circ}\right]$ angles of inclination of the phenyl group. The other structures show intermediate values for both angles, except for YEFDUK and VAQNAE where this angle is less than 5° because the phenyl ring is part of a six- or five-membered ring fused to the nitrogen-containing heterocycle.

5. Synthesis and crystallization

3-Phenylquinoxalin-2(1 H)-one ($1 \mathrm{~g}, 4.5 \mathrm{mmol}$), 3-bromoprop1 -yne ($0.96 \mathrm{~mL}, 9 \mathrm{mmol}$), and potassium carbonate $(0.931 \mathrm{~g}$, 6.75 mmol) with an amount of catalytic tetra- n-butylammonium bromide ($0.29 \mathrm{~g}, 0.9 \mathrm{mmol}$) were stirred in $N, N-$ dimethylformamide (DMF) (20 mL) for 48 h (Fig. 1). The solution was filtered, and the solvent was removed under vacuum. Dichloromethane (20 mL) was added, and the solution was filtered. The residue was chromatographed on a silica gel column (hexane/ethyl acetate: $9.5 / 0.5$, as mobile phase) to give two fractions. The first fraction was purified by recrystallization in ethanol to afford colorless crystals with a yield of 28.3% (O-alkylated isomer, title compound) while recrystallization of the second fraction gave a yellowish powder with a yield of 53.5% (N-alkylated isomer).
O-alkylated isomer: Yield: 28.3%, m.p. $=370-372 \mathrm{~K},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: $2.55(t, 1 \mathrm{H}, C H, J=3 \mathrm{~Hz}$); $5.265\left(d, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=3 \mathrm{~Hz}\right) ; 7.55-8.20\left(m, 9 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: $53.93\left(\mathrm{O}-\mathrm{CH}_{2}\right) ; 74.85$ $(C H) ; 78.57(-C) ; 126.85,127.22,128.31,129.06,129.75,129.82$, $129.86\left(\mathrm{CH}_{\text {arom }}\right) ; 136.77,139.35,139.49,146.29(\mathrm{Cq}) ; 154.11$ ($\mathrm{Cq}-\mathrm{O}$).
N-alkylated isomer: Yield 53.5%, m.p. $=385-387 \mathrm{~K}, \quad{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: $2.35(t, \mathrm{H}, \mathrm{CH}, J=3 \mathrm{~Hz}) ; 5.155$

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
$M_{\text {r }}$	260.29
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	120
$a, b, c(\AA)$	$\begin{aligned} & 8.4614(14), 9.0947(15), \\ & 9.5360(16) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	87.739 (2), 72.963 (2), 69.028 (2)
$V\left(\mathrm{~A}^{3}\right)$	653.39 (19)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.08
Crystal size (mm)	$0.34 \times 0.33 \times 0.14$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.91, 0.99
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	12629, 3456, 2869
$R_{\text {int }}$	0.026
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.684
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.044, 0.139, 1.17
No. of reflections	3456
No. of parameters	181
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.42,-0.24$
Computer programs: APEX3 and SAIN SHELXL2019/1 (Sheldrick, 2015a), D SHELXTL (Sheldrick, 2008).	ker, 2016), SHELXT (Sheldrick, 2015a ND (Brandenburg \& Putz, 2012) an

$\left(d, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}, J=3 \mathrm{~Hz}\right) ; 7.41-8.36\left(m, 9 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 31.69\left(\mathrm{~N}-\mathrm{CH}_{2}\right) ; 73.19(\mathrm{CH})$; 76.96
(-C); 114.07, 124.15, 128.13, 129.61, 130.45, 130.53, 130.63 $\left(C_{\text {arom }}\right) ; 131.87,133.31,135.78,153.72(C q) ; 153.98(C=\mathrm{O})$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

Abad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M. \& Ramli, Y. (2020). J. Mol. Struct. 1221, 128727.
Abad, N., Mague, J. T., Alsubari, A., Essassi, E. M., Alzahrani, A. Y. A. \& Ramli, Y. (2024). Acta Cryst. E80, 300-304.

Brandenburg, K. \& Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2016). APEX3 and SAINT, Bruker AXS, Madison, Wisconsin, USA.

Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. \& Ng, S. W. (2011). Acta Cryst. E67, o1235.

Daouda, B., Doumbia, M. L., Hökelek, T., Zemmouri, F., Claude, K. A. L., Douira, A., Sebbar, N. K. \& Essassi, E. M. (2020). J. Mar. Chim. Heterocycl. 19, 55-69.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Kumar, K. S., Adepu, R., Kapavarapu, R., Rambabu, D., Krishna, G. R., Reddy, C. M., Priya, K. K. K., Parsa, V. L. \& Pal, M. (2012). Tetrahedron Lett. 53, 1134-1138.
Lgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. \& Oudda, H. (2015). Der. Pharma Chem. 7, 36-45.

Missioui, M., Said, M., Demirtaş, G., Mague, J. T., Al-Sulami, A., AlKaff, N. S. \& Ramli, Y. (2022). Arab. J. Chem. 15, 103595.
Moreau, S., Desplat, V., Savrimoutou, S., Massip, S., Deleris, G. \& Guillon, J. (2012). Compte Rend. Chim. 15, 753-757.
Oberti, R., Coda, A., Incoccia, L. \& Comin, F. (1978). Acta Cryst. B34, 1544-1548.
Ramli, Y. \& Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Tan, S. L., Jotani, M. M. \& Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.

supporting information

Acta Cryst. (2024). E80, 383-387 [https://doi.org/10.1107/S2056989024002585]
Synthesis, crystal structure and Hirshfeld surface analysis of 2-
phenyl-3-(prop-2-yn-1-yloxy)quinoxaline
Nadeem Abad, Joel T. Mague, Abdulsalam Alsubari, El Mokhtar Essassi, Mehrdad Pourayoubi, Abdullah Yahya Abdullah Alzahrani and Youssef Ramli

Computing details

2-Phenyl-3-(prop-2-yn-1-yloxy)quinoxaline

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=260.29$
Triclinic, $P \overline{1}$
$a=8.4614$ (14) \AA
$b=9.0947$ (15) \AA
$c=9.5360(16) \AA$
$\alpha=87.739(2)^{\circ}$
$\beta=72.963(2)^{\circ}$
$\gamma=69.028(2)^{\circ}$
$V=653.39(19) \AA^{3}$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.91, T_{\text {max }}=0.99$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.139$
$S=1.17$
3456 reflections
181 parameters
0 restraints
Primary atom site location: dual

$$
Z=2
$$

$F(000)=272$
$D_{\mathrm{x}}=1.323 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6800 reflections
$\theta=2.2-29.1^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Thick plate, colourless
$0.34 \times 0.33 \times 0.14 \mathrm{~mm}$

12629 measured reflections
3456 independent reflections
2869 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0919 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \AA^{-3}$

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at $\varphi=$ $0.00,90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at $\omega=-30.00$ and 210.00°. The scan time was $10 \mathrm{sec} /$ frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R -factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger. H -atoms attached to carbon were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$). All were included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}^{*} / U_{\text {eq }}$
O1	$0.70891(9)$	$0.56445(8)$	$0.38257(7)$	$0.02033(18)$
N1	$0.46180(11)$	$0.60416(9)$	$0.30849(8)$	$0.01784(19)$
N2	$0.63397(10)$	$0.29963(9)$	$0.16411(8)$	$0.01617(19)$
C1	$0.46804(12)$	$0.39265(11)$	$0.15776(10)$	$0.0163(2)$
C2	$0.38348(13)$	$0.33437(11)$	$0.07839(10)$	$0.0202(2)$
H2	0.443192	0.233469	0.026117	0.024^{*}
C3	$0.21438(13)$	$0.42397(12)$	$0.07686(11)$	$0.0221(2)$
H3	0.157226	0.384741	0.023461	0.027^{*}
C4	$0.12524(13)$	$0.57396(12)$	$0.15423(11)$	$0.0227(2)$
H4	0.007481	0.633952	0.154015	0.027^{*}
C5	$0.20634(13)$	$0.63425(11)$	$0.22970(10)$	$0.0206(2)$
H5	0.145802	0.736230	0.279815	0.025^{*}
C6	$0.37993(12)$	$0.54442(11)$	$0.23271(10)$	$0.0168(2)$
C7	$0.61911(12)$	$0.51363(11)$	$0.3114(9)$	$0.0161(2)$
C8	$0.71038(12)$	$0.35506(10)$	$0.23996(9)$	$0.0153(2)$
C9	$0.62072(14)$	$0.72174(11)$	$0.45585(10)$	$0.0220(2)$
H9A	0.664895	0.726667	0.540217	0.026^{*}
H9B	0.491675	0.744261	0.494533	0.026^{*}
C10	$0.65155(13)$	$0.84189(11)$	$0.35597(10)$	$0.0203(2)$
C11	$0.67695(14)$	$0.94264(12)$	$0.27984(11)$	$0.0260(2)$
H11	0.697268	1.023246	0.218929	0.031^{*}
C12	$0.88656(12)$	$0.24852(11)$	$0.24864(10)$	$0.0164(2)$
C13	$0.93639(13)$	$0.24226(12)$	$0.37693(10)$	$0.0217(2)$
H13	0.860641	0.313948	0.459583	0.026^{*}
C14	$1.09717(14)$	$0.13079(12)$	$0.38327(11)$	$0.0251(2)$
H14	1.129576	0.125487	0.47192	0.030^{*}
C15	$1.21016(13)$	$0.02769(12)$	$0.26279(12)$	$0.0259(2)$
H15	1.320346	-0.047128	0.267536	0.031^{*}
C16	$1.16184(13)$	$0.03400(12)$	$0.13478(11)$	$0.0243(2)$
H16	1.239339	-0.036390	0.051699	0.029^{*}
C17	$1.00061(13)$	$0.14291(11)$	$0.12807(10)$	$0.0198(2)$

H 17	0.967552	0.145639	0.040722

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0248(4)$	$0.0157(3)$	$0.0240(4)$	$-0.0084(3)$	$-0.0109(3)$	$0.0001(3)$
N1	$0.0202(4)$	$0.0157(4)$	$0.0170(4)$	$-0.0062(3)$	$-0.0051(3)$	$0.0012(3)$
N2	$0.0171(4)$	$0.0152(4)$	$0.0165(4)$	$-0.0063(3)$	$-0.0050(3)$	$0.0025(3)$
C1	$0.0164(4)$	$0.0157(4)$	$0.0162(4)$	$-0.0062(3)$	$-0.0042(3)$	$0.0038(3)$
C2	$0.0216(5)$	$0.0182(5)$	$0.0222(5)$	$-0.0084(4)$	$-0.0072(4)$	$0.0013(4)$
C3	$0.0223(5)$	$0.0253(5)$	$0.0238(5)$	$-0.0121(4)$	$-0.0102(4)$	$0.0049(4)$
C4	$0.0170(5)$	$0.0259(5)$	$0.0234(5)$	$-0.0058(4)$	$-0.0069(4)$	$0.0067(4)$
C5	$0.0198(5)$	$0.0182(5)$	$0.0198(4)$	$-0.0031(4)$	$-0.0049(4)$	$0.0025(4)$
C6	$0.0181(4)$	$0.0165(4)$	$0.0151(4)$	$-0.0062(4)$	$-0.0041(3)$	$0.0024(3)$
C7	$0.0193(5)$	$0.0155(4)$	$0.0143(4)$	$-0.0079(4)$	$-0.0044(3)$	$0.0024(3)$
C8	$0.0171(4)$	$0.0146(4)$	$0.0144(4)$	$-0.0066(3)$	$-0.0041(3)$	$0.0026(3)$
C9	$0.0307(5)$	$0.0184(5)$	$0.0189(4)$	$-0.0114(4)$	$-0.0068(4)$	$-0.0011(4)$
C10	$0.0202(5)$	$0.0182(5)$	$0.0218(4)$	$-0.0055(4)$	$-0.0064(4)$	$-0.0028(4)$
C11	$0.0289(6)$	$0.0208(5)$	$0.0276(5)$	$-0.0092(4)$	$-0.0074(4)$	$0.0020(4)$
C12	$0.0170(4)$	$0.0140(4)$	$0.0203(4)$	$-0.0072(3)$	$-0.0066(4)$	$0.0033(3)$
C13	$0.0230(5)$	$0.0217(5)$	$0.0202(4)$	$-0.0065(4)$	$-0.0081(4)$	$0.0016(4)$
C14	$0.0277(5)$	$0.0247(5)$	$0.0286(5)$	$-0.0095(4)$	$-0.0171(4)$	$0.0056(4)$
C15	$0.0204(5)$	$0.0205(5)$	$0.0385(6)$	$-0.0054(4)$	$-0.0142(4)$	$0.0049(4)$
C16	$0.0203(5)$	$0.0188(5)$	$0.0292(5)$	$-0.0025(4)$	$-0.0064(4)$	$-0.0018(4)$
C17	$0.0210(5)$	$0.0174(4)$	$0.0218(4)$	$-0.0065(4)$	$-0.0081(4)$	$0.0012(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C7	1.3544 (11)	C8-C12	1.4832 (12)
O1-C9	1.4493 (12)	C9-C10	1.4648 (13)
N1-C7	1.2976 (12)	C9-H9A	0.9900
N1-C6	1.3751 (12)	C9-H9B	0.9900
N2-C8	1.3158 (11)	C10-C11	1.1874 (14)
N2-C1	1.3733 (11)	C11-H11	0.9500
C1-C2	1.4094 (12)	C12-C17	1.3961 (13)
C1-C6	1.4145 (13)	C12-C13	1.3991 (12)
C2-C3	1.3741 (13)	C13-C14	1.3922 (14)
C2-H2	0.9500	C13-H13	0.9500
C3-C4	1.4110 (15)	C14-C15	1.3831 (16)
C3-H3	0.9500	C14-H14	0.9500
C4-C5	1.3709 (14)	C15-C16	1.3895 (14)
C4-H4	0.9500	C15-H15	0.9500
C5-C6	1.4105 (13)	C16-C17	1.3876 (13)
C5-H5	0.9500	C16-H16	0.9500
C7-C8	1.4525 (13)	C17-H17	0.9500
C7-O1-C9	117.08 (7)	O1-C9-C10	111.63 (8)
C7-N1-C6	117.06 (8)	O1-C9-H9A	109.3

C8-N2-C1	118.73 (8)
N2- $\mathrm{C} 1-\mathrm{C} 2$	119.45 (8)
N2-C1-C6	120.70 (8)
C2-C1-C6	119.83 (8)
C3-C2-C1	119.79 (9)
C3-C2-H2	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.1
C2-C3-C4	120.30 (9)
C2-C3-H3	119.8
C4-C3-H3	119.8
C5-C4-C3	120.87 (9)
C5-C4-H4	119.6
C3-C4-H4	119.6
C4-C5-C6	119.81 (9)
C4-C5-H5	120.1
C6-C5-H5	120.1
N1-C6-C5	120.06 (9)
N1-C6-C1	120.56 (8)
C5-C6-C1	119.38 (9)
N1-C7-O1	120.57 (8)
N1-C7-C8	123.68 (8)
O1-C7-C8	115.75 (8)
N2-C8-C7	119.21 (8)
N2-C8-C12	116.98 (8)
C7-C8-C12	123.80 (8)
C8-N2-C1-C2	-179.28 (8)
C8-N2-C1-C6	-0.75 (13)
N2- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	177.16 (8)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.38 (14)
C1-C2-C3-C4	0.06 (14)
C2-C3-C4-C5	1.26 (15)
C3-C4-C5-C6	-1.21 (15)
C7-N1-C6-C5	177.76 (7)
C7-N1-C6-C1	-1.98 (14)
C4-C5-C6-N1	-179.86 (8)
C4-C5-C6- ${ }^{\text {C1 }}$	-0.13 (14)
N2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	2.63 (14)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	-178.84 (8)
N2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-177.10 (8)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	1.42 (14)
C6-N1-C7-O1	179.51 (7)
C6-N1-C7-C8	-0.37 (14)
C9-O1-C7-N1	0.65 (13)
C9-O1-C7-C8	-179.47 (7)

$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.3
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.3
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.3
$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	108.0
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$177.21(10)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	180.0
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 13$	$119.09(8)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 8$	$118.53(8)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 8$	$122.21(8)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$119.89(9)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	120.1
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	120.1
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$120.63(9)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$	119.7
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	119.7
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$119.73(9)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	120.1
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$	120.1
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$	$120.12(9)$
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 16$	119.9
C15-C16-H16	119.9
C16-C17-C12	$120.54(8)$
C16-C17-H17	119.7
C12-C17-H17	119.7

$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$-1.53(13)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 12$	$177.76(7)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$2.22(14)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$-177.66(7)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$	$-177.02(8)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$	$3.10(13)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	$-87.00(10)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 17$	$33.33(12)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 17$	$-147.42(9)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 13$	$-141.76(9)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 13$	$37.49(13)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.54(14)$
$\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$174.53(8)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$1.21(15)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-0.83(16)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-0.23(15)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$0.90(14)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$-0.51(14)$
$\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$-175.76(8)$

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.95	2.44	$3.3164(14)$	153

Symmetry code: (i) $x, y+1, z$.

[^0]: ISSN 2056-9890

