

Received 12 March 2024 Accepted 15 March 2024

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences

Keywords: crystal structure; 1,2-dihydropyridine ring; 1,3-diazinane ring; hydrogen bonds; C– $H \cdots \pi$ interactions; Hirshfeld surface analysis.

CCDC reference: 2340712

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure and Hirshfeld surface analysis of 6-imino-8-(4-methylphenyl)-1,3,4,6-tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine-7,9-dicarbonitrile

Farid N. Naghiyev,^a Victor N. Khrustalev,^{b,c} Mehmet Akkurt,^d* Ekaterina V. Dobrokhotova,^b Ajaya Bhattarai,^e* Ali N. Khalilov^{f,a} and Ibrahim G. Mamedov^a

^aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, ^bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, ^cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, ^eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and ^{fu}Composite Materials^u Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan. *Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

In the ten-membered 1,3,4,6-tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine ring system of the title compound, $C_{17}H_{15}N_5$, the 1,2-dihydropyridine ring is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring has a distorted twist-boat conformation. In the crystal, molecules are linked by N-H···N and C-H···N hydrogen bonds, forming a three-dimensional network. In addition, C-H··· π interactions form layers parallel to the (100) plane. Thus, crystalstructure cohesion is ensured. According to a Hirshfeld surface study, H···H (40.4%), N···H/H···N (28.6%) and C···H/H···C (24.1%) interactions are the most important contributors to the crystal packing.

1. Chemical context

Heterocyclic compounds are crucial systems, both in terms of frequency of occurrence and consequential importance in different fields (Khalilov et al., 2022; Akkurt et al., 2023). Heterocyclic systems comprise all nucleic acids, alkaloids, vitamins, sugars, hormones, antibiotics, other drugs, dyes, pesticides, and herbicides. There have been major developments in organic chemistry in recent years with recently developed heterocyclic systems for various research and commercial aims, especially in the pharmaceutical and chemical industries (Maharramov et al., 2022; Erenler et al., 2022). These compounds have found widespread applications in multiple branches of science, such as coordination chemistry (Gurbanov et al., 2021; Mahmoudi et al., 2021), medicinal chemistry (Askerova, 2022) and materials chemistry (Velásquez et al., 2019; Afkhami et al., 2019). Pyrido[1,2-a]pyrimidines are simple bicyclic ring systems that contain a nitrogenbridgehead condensed pyrimidine motif. These derivatives are used for a large range of applications, as well as drugs, ligands, catalysts, materials, etc (Maharramov et al., 2021, Sobhi & Faisal, 2023). Functionalized pyrido[1,2-a]pyrimidines exhibit various biological activities, such as anticancer, antioxidant, cytotoxic, anti-inflammatory, herbicidal, pesticidal, antibacterial (Atalay et al., 2022; Donmez & Turkyılmaz, 2022). In medical practice, pyrido[1,2-a]pyrimidines are used as tranquilizers, anti-ulcerative agents, antiallergics, anti-asthmatics, analgesics, antipsychotics, protective gastrointestinal, neurotropic, stress-protecting compounds, and anti-HIV agents (Elattar et al., 2017). As a result of the wide application of

these systems, the efficient and regioselective development of pyrido[1.2-*a*]pyrimidines has attracted a lot of attention. Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020, 2021, 2022), herein we report the crystal structure and Hirshfeld surface analysis of the title compound, 6-imino-8-(4-methylphenyl)-1,3,4,6-tetrahydro-2H-pyrido[1,2*a*]pyrimidine-7,9-dicarbonitrile.

2. Structural commentary

As seen in Fig. 1, in the ten-membered 1,3,4,6-tetrahydro-2Hpyrido[1,2-a]pyrimidine ring system (N1/N5/C2-C9/C9A) of the title compound, the 1,2-dihydropyridine ring (C11-C16) is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3diazinane ring (N1/N5/C2-C4/C9A) has a distorted twist-boat conformation [puckering parameters (Cremer & Pople, 1975): $O_{\rm T} = 0.5085 \ (14) \ \text{\AA}, \ \theta = 122.41 \ (15)^{\circ} \ \text{and} \ \varphi = 281.45 \ (17)^{\circ}].$ The plane of the 1,2-dihydropyridine ring makes dihedral angles of 11.49 (6) and 47.52 (6) $^{\circ}$, respectively, with the mean plane of the 1,3-diazine and benzene rings. The angle between the mean plane of the 1,3-diazine and benzene rings is 41.40 (6)°. The torsion angles C11-C8-C7-C10, C11-C8-C9-C18 and C8-C7-C6-N6 are 4.73 (19), -4.83 (18) and $-179.04(13)^{\circ}$, respectively. The geometric parameters of the title compound are normal and comparable to those of the related compounds listed in the Database survey section.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, molecules are linked by N-H···N and C- $H \cdots N$ hydrogen bonds, forming a three-dimensional network

Figure 1

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the N5/C6-C9/C9A and C11-C16 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1 - H1 \cdots N18^{i}$	0.892 (18)	2.229 (18)	3.0308 (16)	149.3 (14)
$C2-H2B\cdots N10^{ii}$	0.99	2.60	3.1574 (18)	116
$C16-H16\cdots N18^{iii}$	0.95	2.51	3.3592 (17)	149
$C3-H3B\cdots Cg3^{iv}$	0.99	2.77	3.5553 (15)	136
$C4-H4B\cdots Cg3^{v}$	0.99	2.88	3.6750 (14)	138
$C17-H17C\cdots Cg2^{vi}$	0.98	2.88	3.6306 (16)	134

Symmetry codes: (i) -x + 3, -y + 2, -z + 1; (ii) x + 1, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iii) x - 1, y, z; (iv) -x + 2, -y + 2, -z + 1; (v) $x, -y + \frac{1}{2}, z - \frac{3}{2};$ (vi) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2};$

(Table 1; Figs. 2 and 3). In addition, $C-H \cdots \pi$ interactions form layers parallel to the (100) plane (Table 1; Figs. 4 and 5). Thus, crystal-structure cohesion is ensured.

Figure 2

The packing viewed along the a-axis of the title compound with $N-H \cdots N$ and $C-H \cdots N$ hydrogen bonds shown as dashed lines.

Figure 3

The packing viewed along the *b*-axis of the title compound with N-H···N and C-H···N hydrogen bonds shown as dashed lines.

research communications

Figure 4

A view of the packing along the *a*-axis of the title compound with $C-H\cdots\pi$ interactions shown as dashed lines.

Figure 5

A view of the packing along the *b*-axis of the title compound with $C-H\cdots\pi$ interactions shown as dashed lines.

In order to quantify the intermolecular interactions in the crystal, *Crystal Explorer 17.5* (Spackman *et al.*, 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots. The Hirshfeld surfaces mapped over d_{norm} are shown in Fig. 6. The bright-red spots indicate their roles as

Figure 6

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d_{norm} .

View of the electrostatic potential energy surface of the title compound calculated using the STO-3G basis set at the Hartree–Fock level of theory.

respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the electrostatic potential energy surface (Fig. 7).

The most important interatomic contact is $H \cdots H$ as it makes the highest contribution to the crystal packing (40.4%, Fig. 8*b*). The other major contributors are the $N \cdots H/H \cdots N$ (28.6%, Fig. 8*c*) and $C \cdots H/H \cdots C$ (24.1%, Fig. 8*d*) inter-

Figure 8

The two-dimensional fingerprint plots, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $N \cdots H/H \cdots N$ and (d) $C \cdots H/H \cdots C$ interactions. [d_e and d_i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].

actions. Other, smaller contributions are made by $N \cdots H/H \cdots N$ (2.8%), $C \cdots C$ (2.7%) and $N \cdots N$ (1.4%) interactions.

4. Database survey

Five related compounds, which also have the 1,3,4,6-tetrahydro- 2*H*-pyrido[1,2-*a*]pyrimidine ring system seen in the title compound, were found in a search of the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom *et al.*, 2016): CSD refcode IQEFOC (Naghiyev *et al.*, 2021), VAMBET (Khodjaniyazov & Ashurov, 2016), HECLUZ (Khodjaniyazov *et al.*, 2017), LEGLIU (Chen *et al.*, 2012) and KUTPEV (Samarov *et al.*, 2010).

In IQEFOC, intermolecular N-H···N and C-H···N hydrogen bonds form molecular sheets parallel to the (110) and $(\overline{1}10)$ planes, crossing each other. Adjacent molecules are further linked by $C-H\cdots\pi$ interactions, which form zigzag chains propagating parallel to [100]. In the crystal of VAMBET, molecules are linked via $C - H \cdots O$ and $C - H \cdots N$ hydrogen bonds, forming layers parallel to (101). In the crystal of HECLUZ, hydrogen bonds with 16-membered ring and three chain motifs are generated by $N-H\cdots N$ and $N-H\cdots O$ contacts. The amino group is located close to the nitrogen atoms, forming hydrogen bonds with R_2^1 (4) and R_2^2 (12) graphset motifs. This amino group also forms a hydrogen bond with the C=O oxygen atom of a molecule translated parallel to [100], which links the molecules into R_4^4 (16) rings. Hydrogenbonded chains are formed along [100] by alternating R_2^2 (12) and R_4^4 (16) rings. These chains are stabilized by intermolecular π - π stacking interactions observed between the pyridine and pyrimidine rings. In LEGLIU, the molecular structure is built up from two fused six-membered rings and one seven-membered ring linked through a spiro C atom. The crystal packing is stabilized by intermolecular N-H···O hydrogen bonds between the two N-H groups and the ketone O atoms of the neighbouring molecules. In KUTPEV, water molecules are mutually $O-H \cdots O$ hydrogen bonded and form infinite chains propagating parallel to [010]. Neighbouring chains are linked by the quinazoline molecules by means of $O-H \cdots O = C$ hydrogen bonds, forming a diperiodic network.

5. Synthesis and crystallization

A solution of 2-(4-methylbenzylidene)malononitrile (6 mmol) and malononitrile (6.1 mmol) in methanol (35 mL) was stirred for 10 min. Then 1,3-diaminopropane (5.3 mol) was added to the reaction mixture and stirred for 72 h. Then 25 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (m.p. 501–502 K, yield 36%).

¹H NMR (300 MHz, DMSO- d_6 , ppm.): 1.98 (*m*, 2H, CH₂); 2.39 (*s*, 3H, CH3-Ar); 3.42 (*t*, 2H, CH₂, ${}^{3}J_{H-H} = 6.9$); 3.93 (*t*, 2H, CH₂, ${}^{3}J_{H-H} = 6.9$); 4.14 (*s*, 1H, CH-Ar); 6.41 (*s*, 2H, NH₂); 7.30–7.42 (*m*, 4H, 4Ar-H); 7.70 (*s*, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6 , ppm.): 19.46 (CH₂), 21.01 (Ar-CH₃), 38.36 (Ar-CH), 39.64 (NCH2), 41.59 (NCH2), 51.64 (=C_{quat.}),

Experimental actans.	
Crystal data	
Chemical formula	C ₁₇ H ₁₅ N ₅
Mr	289.34
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	6.2459 (4), 14.1480 (9),
	16.2111 (11)
β (°)	92.435 (7)
$V(Å^3)$	1431.23 (16)
Z	4
Radiation type	Synchrotron $\lambda = 0.74500$ Å
$\mu (\text{mm}^{-1})$	0.09
Crystal size (mm)	$0.13 \times 0.03 \times 0.01$
	0.15 X 0.05 X 0.01
Data collection	
Diffractometer	Rayonix SX165 CCD
Absorption correction	Multi-scan (SCALA; Evans, 2006)
T_{\min}, \hat{T}_{\max}	0.981, 0.989
No. of measured, independent and	16784, 3956, 3119
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.049
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.692
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.113, 1.04
No. of reflections	3956
No. of parameters	206
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.30, -0.24

Computer programs: *Marccd* (Doyle, 2011), *iMosfim* (Battye et al., 2011), *SHELXT2014/* 5 (Sheldrick, 2015a), *SHELXL2019/3* (Sheldrick, 2015b), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2020).

57.25 (= $C_{quat.}$), 120.70 (CN), 121.12 (CN), 128.14 (2CH_{arom.}), 128.98 (2CH_{arom.}), 134.92 (C_{arom.}), 140.77 (C_{arom.}), 151.15 (= $C_{quat.}$), 152.36 (= $C_{quat.}$).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C-H = 0.95-0.99 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The N-bound H atoms were located in difference-Fourier maps [N1-H1 = 0.894 (17) Å, N6-H6 = 0.944 (18) Å] and refined with $U_{iso}(H) = 1.2U_{eq}(N)$.

Acknowledgements

Authors contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), IGM and ANK; visualization, MA, EVD and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

- Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). *Eur. J. Inorg. Chem.* pp. 262–270.
- Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39.
- Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58-64.
- Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40.
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). *Acta Cryst.* D67, 271–281.
- Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48.
- Doyle, R. A. (2011). *MarCCD software manual*. Rayonix LLC, Evanston, IL 60201, USA.
- Elattar, K. M., Rabie, R. & Hammouda, M. M. (2017). *Monatsh. Chem.* **148**, 601–627.
- Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32.
- Evans, P. (2006). Acta Cryst. D62, 72-82.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). *Crystals*, **11**, 112.
- Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). *Acta Cryst.* E78, 525–529.
- Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452– 455.

- Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). *Acta Cryst.* E73, 1497–1500.
- Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.
- Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.
- Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). *Inorg. Chim. Acta*, **519**, 120279.
- Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). *Acta Cryst.* E76, 720–723.
- Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). *Acta Cryst.* E78, 554–558.
- Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). *Acta Cryst.* E77, 516–521.
- Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). *Acta Cryst.* E66, 0890.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). *CrystEngComm*, **21**, 6018–6025.

supporting information

Acta Cryst. (2024). E80, 378-382 [https://doi.org/10.1107/S2056989024002500]

Crystal structure and Hirshfeld surface analysis of 6-imino-8-(4-methyl-phenyl)-1,3,4,6-tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine-7,9-dicarbonitrile

Farid N. Naghiyev, Victor N. Khrustalev, Mehmet Akkurt, Ekaterina V. Dobrokhotova, Ajaya Bhattarai, Ali N. Khalilov and İbrahim G. Mamedov

Computing details

6-Imino-8-(4-methylphenyl)-1,3,4,6-tetrahydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile

Crystal data

 $C_{17}H_{15}N_5$ $M_r = 289.34$ Monoclinic, $P2_1/c$ a = 6.2459 (4) Å b = 14.1480 (9) Å c = 16.2111 (11) Å $\beta = 92.435 (7)^{\circ}$ $V = 1431.23 (16) Å^3$ Z = 4

Data collection

```
Rayonix SX165 CCD
diffractometer
/f scan
Absorption correction: multi-scan
(Scala; Evans, 2006)
T_{min} = 0.981, T_{max} = 0.989
16784 measured reflections
```

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.113$ S = 1.043956 reflections 206 parameters 0 restraints F(000) = 608 $D_x = 1.343 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.74500 \text{ Å}$ Cell parameters from 600 reflections $\theta = 2.6-26.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KNeedle, yellow $0.13 \times 0.03 \times 0.01 \text{ mm}$

3956 independent reflections 3119 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 31.0^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -19 \rightarrow 19$ $l = -22 \rightarrow 22$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.6432P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	1.22846 (18)	0.85962 (8)	0.43598 (6)	0.0203 (2)
H1	1.338 (3)	0.8968 (12)	0.4519 (10)	0.024*
C2	1.2417 (2)	0.80620 (10)	0.35940 (7)	0.0218 (2)
H2A	1.303447	0.742845	0.370787	0.026*
H2B	1.334227	0.839650	0.320792	0.026*
C3	1.0165 (2)	0.79718 (10)	0.32220 (7)	0.0217 (2)
H3A	1.018198	0.760667	0.270134	0.026*
H3B	0.957031	0.860657	0.309545	0.026*
C4	0.8787 (2)	0.74716 (9)	0.38329 (8)	0.0220 (3)
H4A	0.726345	0.751480	0.364155	0.026*
H4B	0.918397	0.679453	0.385898	0.026*
N5	0.90562 (17)	0.78939 (8)	0.46706 (6)	0.0188 (2)
C6	0.7437 (2)	0.76717 (9)	0.52209 (7)	0.0196 (2)
N6	0.60252 (19)	0.70637 (8)	0.49720 (7)	0.0246 (2)
H6	0.504 (3)	0.6963 (13)	0.5390 (11)	0.030*
C7	0.7591 (2)	0.81478 (9)	0.60171 (7)	0.0191 (2)
C8	0.91651 (19)	0.88052 (9)	0.62207 (7)	0.0181 (2)
C9	1.07340 (19)	0.89846 (9)	0.56422 (7)	0.0184 (2)
C9A	1.07054 (19)	0.84860 (9)	0.48773 (7)	0.0177 (2)
C10	0.6013 (2)	0.78674 (9)	0.65782 (8)	0.0218 (3)
N10	0.4674 (2)	0.75999 (9)	0.69863 (8)	0.0291 (3)
C11	0.91976 (19)	0.93141 (9)	0.70229 (7)	0.0185 (2)
C12	1.1058 (2)	0.93959 (9)	0.75279 (7)	0.0206 (2)
H12	1.235238	0.911116	0.736637	0.025*
C13	1.1016 (2)	0.98949 (10)	0.82682 (8)	0.0224 (3)
H13	1.228854	0.994184	0.860790	0.027*
C14	0.9150 (2)	1.03264 (9)	0.85215 (8)	0.0219 (3)
C15	0.7295 (2)	1.02285 (9)	0.80184 (8)	0.0220 (3)
H15	0.599979	1.050941	0.818303	0.026*
C16	0.7307 (2)	0.97293 (9)	0.72833 (7)	0.0204 (2)
H16	0.602065	0.966821	0.695323	0.025*
C17	0.9088 (2)	1.09051 (11)	0.92991 (8)	0.0285 (3)
H17A	1.047423	1.086173	0.960301	0.043*
H17B	0.795831	1.066382	0.964407	0.043*
H17C	0.878970	1.156666	0.915642	0.043*
C18	1.2316 (2)	0.96948 (9)	0.57532 (7)	0.0190 (2)
N18	1.36293 (18)	1.02717 (8)	0.57859 (7)	0.0228 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0197 (5)	0.0226 (5)	0.0188 (5)	-0.0025 (4)	0.0026 (4)	-0.0023 (4)
C2	0.0240 (6)	0.0227 (6)	0.0189 (5)	-0.0004(5)	0.0036 (4)	-0.0017 (5)
C3	0.0249 (6)	0.0227 (6)	0.0174 (5)	0.0001 (5)	0.0010 (4)	-0.0015 (4)
C4	0.0236 (6)	0.0229 (6)	0.0195 (5)	-0.0021 (5)	0.0007 (4)	-0.0035 (4)
N5	0.0193 (5)	0.0199 (5)	0.0173 (4)	-0.0008(4)	0.0011 (4)	-0.0010 (4)
C6	0.0186 (5)	0.0207 (6)	0.0195 (5)	-0.0004(5)	0.0011 (4)	0.0016 (4)
N6	0.0240 (5)	0.0264 (6)	0.0236 (5)	-0.0055 (5)	0.0023 (4)	-0.0015 (4)
C7	0.0195 (5)	0.0194 (6)	0.0186 (5)	-0.0006 (5)	0.0021 (4)	0.0010 (4)
C8	0.0182 (5)	0.0188 (6)	0.0173 (5)	0.0027 (5)	0.0004 (4)	0.0013 (4)
C9	0.0179 (5)	0.0191 (6)	0.0181 (5)	-0.0012 (5)	0.0000 (4)	0.0003 (4)
C9A	0.0170 (5)	0.0175 (5)	0.0184 (5)	0.0014 (4)	-0.0004(4)	0.0019 (4)
C10	0.0235 (6)	0.0216 (6)	0.0203 (5)	-0.0012 (5)	0.0015 (5)	-0.0013 (4)
N10	0.0315 (6)	0.0284 (6)	0.0278 (6)	-0.0052 (5)	0.0082 (5)	-0.0006 (5)
C11	0.0195 (6)	0.0188 (5)	0.0173 (5)	-0.0009(5)	0.0016 (4)	0.0008 (4)
C12	0.0204 (6)	0.0214 (6)	0.0200 (5)	0.0002 (5)	0.0013 (4)	0.0020 (4)
C13	0.0216 (6)	0.0246 (6)	0.0208 (6)	-0.0029 (5)	-0.0011 (4)	0.0009 (5)
C14	0.0256 (6)	0.0210 (6)	0.0191 (5)	-0.0024 (5)	0.0023 (5)	-0.0009 (4)
C15	0.0218 (6)	0.0211 (6)	0.0233 (6)	0.0018 (5)	0.0029 (4)	-0.0003 (5)
C16	0.0190 (6)	0.0215 (6)	0.0207 (5)	-0.0008(5)	0.0003 (4)	0.0009 (4)
C17	0.0328 (7)	0.0293 (7)	0.0232 (6)	0.0009 (6)	-0.0002 (5)	-0.0077 (5)
C18	0.0204 (5)	0.0213 (6)	0.0154 (5)	0.0022 (5)	0.0004 (4)	-0.0001 (4)
N18	0.0223 (5)	0.0250 (5)	0.0211 (5)	-0.0020 (5)	-0.0003 (4)	-0.0004(4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C9A	1.3310 (16)	C8—C11	1.4859 (16)
N1—C2	1.4587 (16)	C9—C18	1.4155 (17)
N1—H1	0.894 (17)	C9—C9A	1.4259 (16)
C2—C3	1.5123 (18)	C10—N10	1.1524 (18)
C2—H2A	0.9900	C11—C12	1.3974 (17)
C2—H2B	0.9900	C11—C16	1.4002 (17)
C3—C4	1.5150 (18)	C12—C13	1.3936 (17)
С3—НЗА	0.9900	C12—H12	0.9500
С3—Н3В	0.9900	C13—C14	1.3929 (19)
C4—N5	1.4865 (15)	C13—H13	0.9500
C4—H4A	0.9900	C14—C15	1.3947 (18)
C4—H4B	0.9900	C14—C17	1.5050 (18)
N5—C9A	1.3586 (16)	C15—C16	1.3855 (17)
N5—C6	1.4120 (16)	C15—H15	0.9500
C6—N6	1.2847 (17)	C16—H16	0.9500
C6—C7	1.4555 (17)	C17—H17A	0.9800
N6—H6	0.944 (18)	C17—H17B	0.9800
С7—С8	1.3833 (17)	C17—H17C	0.9800
C7—C10	1.4252 (17)	C18—N18	1.1567 (17)
C8—C9	1.4080 (17)		

C9A—N1—C2	123.11 (11)	C9—C8—C11	120.77 (11)
C9A—N1—H1	117.8 (10)	C8—C9—C18	123.04 (11)
C2—N1—H1	118.7 (11)	C8—C9—C9A	120.44 (11)
N1—C2—C3	107.31 (10)	С18—С9—С9А	116.40 (11)
N1—C2—H2A	110.3	N1—C9A—N5	119.41 (11)
C3—C2—H2A	110.3	N1—C9A—C9	120.53 (11)
N1—C2—H2B	110.3	N5—C9A—C9	120.06 (11)
C3—C2—H2B	110.3	N10-C10-C7	174.99 (14)
H2A—C2—H2B	108.5	C12—C11—C16	118.66 (11)
C2—C3—C4	108.88 (10)	C12—C11—C8	122.20 (11)
С2—С3—НЗА	109.9	C16—C11—C8	119.13 (11)
С4—С3—НЗА	109.9	C13—C12—C11	120.05 (12)
С2—С3—Н3В	109.9	C13—C12—H12	120.0
С4—С3—Н3В	109.9	C11—C12—H12	120.0
НЗА—СЗ—НЗВ	108.3	C14—C13—C12	121.50 (12)
N5—C4—C3	111.35 (10)	C14—C13—H13	119.2
N5—C4—H4A	109.4	C12—C13—H13	119.2
C3—C4—H4A	109.4	C13—C14—C15	117.94 (11)
N5—C4—H4B	109.4	C13—C14—C17	122.48 (12)
C3—C4—H4B	109.4	C15—C14—C17	119.56 (12)
H4A—C4—H4B	108.0	C16—C15—C14	121.27 (12)
C9A—N5—C6	122.49 (10)	C16—C15—H15	119.4
C9A—N5—C4	121.90 (10)	C14—C15—H15	119.4
C6—N5—C4	115.55 (10)	C15—C16—C11	120.55 (12)
N6—C6—N5	116.82 (11)	C15—C16—H16	119.7
N6—C6—C7	127.35 (12)	C11—C16—H16	119.7
N5—C6—C7	115.81 (11)	С14—С17—Н17А	109.5
C6—N6—H6	109.5 (11)	C14—C17—H17B	109.5
C8—C7—C10	122.59 (11)	H17A—C17—H17B	109.5
C8—C7—C6	122.82 (11)	C14—C17—H17C	109.5
C10—C7—C6	114.58 (11)	H17A—C17—H17C	109.5
C7—C8—C9	118.05 (11)	H17B—C17—H17C	109.5
C7—C8—C11	121.18 (11)	N18—C18—C9	175.26 (13)
C9A—N1—C2—C3	38.85 (16)	C6—N5—C9A—N1	173.71 (11)
N1—C2—C3—C4	-59.02 (13)	C4—N5—C9A—N1	-9.17 (18)
C2-C3-C4-N5	48.56 (14)	C6—N5—C9A—C9	-6.41 (18)
C3—C4—N5—C9A	-14.66 (16)	C4—N5—C9A—C9	170.71 (11)
C3—C4—N5—C6	162.65 (11)	C8—C9—C9A—N1	-174.37 (11)
C9A—N5—C6—N6	-176.32 (12)	C18—C9—C9A—N1	9.52 (17)
C4—N5—C6—N6	6.39 (17)	C8—C9—C9A—N5	5.75 (18)
C9A—N5—C6—C7	2.43 (17)	C18—C9—C9A—N5	-170.36 (11)
C4—N5—C6—C7	-174.86 (11)	C7—C8—C11—C12	132.01 (13)
N6—C6—C7—C8	-179.04 (13)	C9—C8—C11—C12	-48.44 (17)
N5—C6—C7—C8	2.36 (18)	C7—C8—C11—C16	-48.17 (17)
N6—C6—C7—C10	2.2 (2)	C9—C8—C11—C16	131.37 (13)
N5—C6—C7—C10	-176.36 (11)	C16—C11—C12—C13	-0.95 (18)

supporting information

C10—C7—C8—C9	175.72 (12)	C8—C11—C12—C13	178.86 (12)
C6—C7—C8—C9	-2.91 (18)	C11—C12—C13—C14	-0.42 (19)
C10-C7-C8-C11	-4.73 (19)	C12—C13—C14—C15	1.33 (19)
C6—C7—C8—C11	176.65 (11)	C12—C13—C14—C17	-177.21 (13)
C7—C8—C9—C18	174.72 (11)	C13—C14—C15—C16	-0.88 (19)
C11—C8—C9—C18	-4.83 (18)	C17—C14—C15—C16	177.71 (12)
С7—С8—С9—С9А	-1.12 (18)	C14-C15-C16-C11	-0.48 (19)
С11—С8—С9—С9А	179.33 (11)	C12-C11-C16-C15	1.40 (18)
C2—N1—C9A—N5	-4.15 (18)	C8—C11—C16—C15	-178.42 (12)
C2—N1—C9A—C9	175.97 (11)		

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A and C11–C16 rings, respectively.

D—H···A	<i>D</i> —Н	Н…А	D···A	<i>D</i> —Н··· <i>A</i>
N1—H1···N18 ⁱ	0.892 (18)	2.229 (18)	3.0308 (16)	149.3 (14)
C2—H2 <i>B</i> ···N10 ⁱⁱ	0.99	2.60	3.1574 (18)	116
C16—H16…N18 ⁱⁱⁱ	0.95	2.51	3.3592 (17)	149
C3—H3 B ··· $Cg3^{iv}$	0.99	2.77	3.5553 (15)	136
C4—H4 B ··· $Cg3^{v}$	0.99	2.88	3.6750 (14)	138
C17—H17 C ··· $Cg2^{vi}$	0.98	2.88	3.6306 (16)	134

Symmetry codes: (i) -*x*+3, -*y*+2, -*z*+1; (ii) *x*+1, -*y*+3/2, *z*-1/2; (iii) *x*-1, *y*, *z*; (iv) -*x*+2, -*y*+2, -*z*+1; (v) *x*, -*y*+1/2, *z*-3/2; (vi) -*x*+2, *y*+1/2, -*z*+3/2.