research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

CoII-catalysed synthesis of N-(4-meth­­oxy­phen­yl)-5-(pyridin-4-yl)-1,3,4-oxa­diazol-2-amine hemi­hydro­chloride monohydrate

crossmark logo

aDepartment of Chemistry, Banaras Hindu University, Varanasi-221005, India, bDepartment of Chemistry, AKS University, Satna-485001, India, and cBuddha PG College, Kushinagar - 274403, India
*Correspondence e-mail: mkbharty@bhu.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 14 December 2023; accepted 1 March 2024; online 12 March 2024)

The title compound, C14H12N4O2·0.5HCl·H2O or H(C14H12N4O2)2+·Cl·2H2O, arose from the unexpected cyclization of isonicotinoyl-N-phenyl hydrazine carbo­thio­amide catalysed by cobalt(II) acetate. The organic mol­ecule is almost planar and a symmetric N⋯H+⋯N hydrogen bond links two of them together, with the H atom lying on a crystallographic twofold axis. The extended structure features N—H⋯O and O—H⋯Cl hydrogen bonds, which generate [001] chains. Weak C—H⋯Cl inter­actions cross-link the chains. The chloride ion has site symmetry 2. The major contributions to the Hirshfeld surface are from H⋯H (47.1%), Cl⋯H/H⋯Cl (total 10.8%), O⋯H/H⋯O (7.4%) and N⋯H/H⋯N (6.7%) inter­actions.

1. Chemical context

1,3,4-Oxa­diazole derivatives have been studied in recent years for their diverse biological activities (Gond et al., 2023[Gond, M. K., Rai, N., Chandra, B., Gautam, V., Garai, S., Butcher, R. J. & Bharty, M. K. (2023). Dalton Trans. 52, 10213-10221.]; Abd-Ellah et al., 2017[Abd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S. & Ahmed, A. F. F. (2017). Bioorg. Chem. 74, 15-29.]; Bitla et al., 2020[Bitla, S., Sagurthi, S. R., Dhanavath, R., Puchakayala, M. R., Birudaraju, S., Gayatri, A. A., Bhukya, V. K. & Atcha, K. R. (2020). J. Mol. Struct. 1220, 128705.]). As a result of their electron-accepting properties, high quantum yield, and good thermal and chemical stabilities, they have also been used in electroluminescent, optical and electron-transporting materials and chelating agents (Najare et al., 2020[Najare, M. S., Patil, M. K., Nadaf, A. A., Mantur, S., Garbhagudi, M., Gaonkar, S., Inamdar, S. R. & Khazi, I. A. M. (2020). J. Mol. Struct. 1199, 127032.]; Wu et al., 2012[Wu, C. A., Chou, H. H., Shih, C. H., Wu, F. I., Cheng, C. H., Huang, H. L., Chao, T. C. & Tseng, M. R. (2012). J. Mater. Chem. 22, 17792-17799.]). Several methods for the synthesis of 1,3,4-oxa­diazo­les from acyclic precursors are available, which include oxidative cyclization of acyl­hydrazones (Jedlovská & Leško, 1994[Jedlovská, E. & Leško, J. (1994). Synth. Commun. 24, 1879-1885.]) and acyl­thio­semicarbazides (Omar et al., 1996[Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819-825.], Paswan et al., 2015[Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880-o881.]). In the presence of a strong acid, an N-acyl­hydrazine carbodi­thio­ate is converted into a thia­diazole whereas in the presence of a weak acid or base or on complexation they can be cyclized into oxa­diazole (Reid & Heindel, 1976[Reid, J. R. & Heindel, N. D. (1976). J. Heterocycl. Chem. 13, 925-926.]; Jasinski et al., 2011[Jasinski, J. P., Bharty, M. K., Singh, N. K., Kushwaha, S. K. & Butcher, R. J. (2011). J. Chem. Crystallogr. 41, 6-11.]).

[Scheme 1]

We have previously reported the cyclo-desulfurization of several N-acyl­hydrazine carbodi­thio­ates into the corres­ponding 1,3,4-oxa­diazole in the presence of manganese(II) acetate via the loss of H2S where the MnII ion presumably behaves as a weak Lewis acid (Paswan et al., 2015[Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880-o881.], 2016[Paswan, S., Bharty, M. K., Gupta, S. K., Butcher, R. J. & Jasinski, J. P. (2016). IUCrData, 1, x161724.]; Gond et al., 2022[Gond, M. K., Shukla, A., Pandey, S. K., Bharty, M. K., Maiti, B., Acharya, A., Tiwari, N., Katiyar, D. & Butcher, R. J. (2022). J. Mol. Struct. 1249, 131547.]). In the present work, a similar reaction is reported in presence of CoII chloride. Similar CoII-assisted cyclization reactions are also reported in the literature (Li et al., 2021[Li, X., Liao, S., Chen, Y., Xia, C. & Wang, G. (2021). J. Chem. Res. 45, 1038-1041.], 2023[Li, J. L., Li, H. Y., Zhang, S. S., Shen, S., Yang, X. L. & Niu, X. (2023). J. Org. Chem. 88, 14874-14886.]; Bharty et al., 2012[Bharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34-41.]).

2. Structural commentary

The compound crystallizes in the monoclinic crystal system in space group C2/c. The asymmetric unit consists of one organic mol­ecule, half an equivalent of HCl and one water mol­ecule (Fig. 1[link]). The C3–C7/N4 pyridyl, C1/C2/N2/N3/O1 oxa­diazole and C8–C13 phenyl rings are close to co-planar with the dihedral angles between pyridyl and oxa­diazole rings being 4.88 (9)°, oxa­diazole and phenyl rings 4.27 (10)° and pyridyl and phenyl rings 2.27 (9)°. The bond distances and angles of the 1,3,4-oxa­diazole ring [C1—N2 = 1.298 (2); C2—N3 = 1.277 (2) Å] are in good agreement with values reported previously (Jasinski et al., 2011[Jasinski, J. P., Bharty, M. K., Singh, N. K., Kushwaha, S. K. & Butcher, R. J. (2011). J. Chem. Crystallogr. 41, 6-11.]; Paswan et al., 2015[Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880-o881.], 2016[Paswan, S., Bharty, M. K., Gupta, S. K., Butcher, R. J. & Jasinski, J. P. (2016). IUCrData, 1, x161724.]; Singh et al., 2007[Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782-o784.]). The C—N bond distance in the pyridine ring, C5—N4 = 1.336 (2) Å, is slightly longer than the corresponding bond in a similar compound (1.326 (2) Å; Singh et al., 2006[Singh, N. K., Butcher, R. J., Bharty, M. K., Srivastava, A. K. & Tripathi, P. (2006). Acta Cryst. E62, o3473-o3474.]), probably due to the N⋯H inter­action (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 30% probability displacement ellipsoids with hydrogen bonds indicated by dashed lines.
[Figure 2]
Figure 2
The packing of the title compound viewed along the a-axis direction.

3. Supra­molecular features

In the extended structure, two organic mol­ecules are linked through their pyridine nitro­gen atoms via the proton of the hydro­chloric acid, which lies on a crystallographic twofold axis. This strong, symmetrical, almost linear N4⋯H4N⋯N4 hydrogen bond (Table 1[link]) leads to a rod-like dimeric structure. These units form a layer-like structure when viewed along b axis of the unit cell (Fig. 3[link]). The water mol­ecules and chloride ions (site symmetry 2) are embedded in the space between the chains and are connected to them via N—H⋯O and O—H⋯Cl hydrogen bonds, thereby generating [001] chains. Weak C—H⋯Cl inter­actions are also observed (Table 1[link]; Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯N4i 1.34 (1) 1.34 (1) 2.675 (3) 178 (3)
N1—H1⋯O3 0.86 2.02 2.875 (2) 172
O3—H22⋯Cl1 0.82 (4) 2.43 (4) 3.233 (2) 166 (3)
O3—H21⋯Cl1ii 0.81 (4) 2.55 (4) 3.359 (3) 172 (4)
C7—H7⋯Cl1 0.93 2.93 3.7940 (18) 155
C6—H6⋯Cl1iii 0.93 2.82 3.7137 (18) 163
C5—H5⋯N3iv 0.93 2.56 3.329 (2) 140
C9—H9⋯N2 0.93 2.34 2.969 (2) 125
Symmetry codes: (i) [-x+1, y, -z+{\script{5\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+2]; (iv) [x, -y, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The packing of title compound viewed along the b-axis direction.

4. Hirshfeld Surface Analysis

To gain further insight into the inter­molecular inter­actions, a Hirshfeld surface analysis was performed using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 4[link]a,b shows the Hirshfeld surface mapped over dnorm. The red spots show the various hydrogen bonds noted above.

[Figure 4]
Figure 4
(a), (b) Two views of the Hirshfeld surface of the title compound mapped over dnorm, (c) fingerprint plot showing the total contribution of individual inter­actions and those delineated into (d) C⋯H/H⋯C inter­actions (6.6%), (e) Cl⋯H/H⋯Cl inter­actions (10.8%), (f) N⋯H/H⋯N inter­actions (6.7%) and (g) O⋯H/H⋯O inter­actions (7.4%).

The two-dimensional fingerprint plots are presented in Fig. 4[link]cg. The H⋯H (van der Waals) contacts dominate at 47.1%. Among the directional inter­actions present in the structure, the Cl⋯H/H⋯Cl (total 10.8%) contact is the most significant. Other contacts include 6.6% for C⋯H/H⋯C, 6.7% N⋯H/H⋯N and 7.4% for O⋯H/H⋯O inter­actions.

5. Synthesis and crystallization

2-Isonicotinoyl-N-(4-meth­oxy­phen­yl)hydrazine-1-carbo­thio­amide was prepared by adding 1.652 g (10.00 mmol) of 4-meth­oxy phenyl iso­thio­cyanate in ethanol solution to 1.370 g (10.00 mmol) of isonicotinohydrazide and the reaction mixture was refluxed for 6 h at 333 K. Upon cooling, a white precipitate of 2-isonicotinoyl-N-(4-meth­oxy­phen­yl)hydrazine-1-carbo­thio­amide was obtained (Fig. 5[link]), which was filtered off and washed with a 50:50 v/v mixture of water and ether. Then, 1.00 mmol of 2-isonicotinoyl-N-(4-meth­oxy­phen­yl)hydrazine-1-carbo­thio­amide was dissolved in a 50:50 v/v mixture of methanol and chloro­form, and a methano­lic solution of 0.5 mmol of CoCl2·6H2O was added and stirred for 2 h, during which time the smell of H2S was noted. The clear solution obtained was kept for crystallization and after 15 days, pale-pink blocks of the title compound were grown. Yield: 60.6%; m.p. 495–498 K. Analysis calculated for C14H12N4O2.0.5 HCl·H2O: C, 55.21; H, 4.79; N, 18.39%; found: C, 55.25; H, 4.50; N, 18.55%.

[Figure 5]
Figure 5
Synthesis scheme for the title compound.

The IR spectrum (KBr disc) shows an absorption band at 3280 cm−1 due to the NH group. The C=O band is absent and a new band is observed at 1623 cm−1 corresponding to the C=N bond. In addition, a blue shift is observed for the N=N band at 1179 cm−1 compared to the single bond in the thio­semicarbazide inter­mediate (Fig. 1 in the supporting information). All these data indicate that the carbo­thio­amide moiety has been transformed into the corresponding oxa­diazole (Chandra et al., 2022[Chandra, S., Gond, M. K., Jaiswal, S., Bharty, M. K., Maiti, B., Kushwaha, D. & Butcher, R. J. (2022). J. Mol. Struct. 1249, 131637.]; Jaiswal et al., 2023a[Jaiswal, S., Pandey, S. K., Minocha, T., Chandra, S., Bharty, M. K., Yadav, S. K., Kushwaha, D. & Butcher, R. J. (2023a). J. Mol. Struct. 1281, 135075.]b[Jaiswal, S., Pandey, S. K., Prajapati, J., Chandra, S., Gond, M. K., Bharty, M. K., Tiwari, I. & Butcher, R. J. (2023b). Appl. Organom Chem. 37, e7085.]).

The 1H NMR spectrum of the title compound in DMSO-d6 displays peaks at δ 10.69 ppm due to the NH proton, at δ 8.91 and 7.90 ppm due to the pyridyl ring protons and at δ 7.55 and 6.98 ppm due to phenyl ring protons. The meth­oxy protons appear at δ 3.74 ppm. (Fig. 2 in the supporting information). In the 13C NMR spectrum, peaks at δ 156.9 and 155.2 ppm arise from oxa­diazole ring carbon atoms, the meth­oxy C atom appears at 55.7 ppm and the phenyl and pyridyl carbon atoms are observed in the range δ 114.8–132.4 ppm (Fig. 3 in the supporting information). An absorption at 338 nm in the electronic spectrum of the title compound can be attributed to its ππ* transition (Fig. 4 in the supporting information). It displays fluorescence at 418 nm upon excitation at 338 nm (Fig. 5 in the supporting information) when dissolved in 10−5 M DMSO solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atom H4N was freely refined. Other H atoms were placed in idealized locations (N—H = 0.86 Å, C—H = 0.93–0. 96 Å) and refined using a riding model with Uiso(H) =1.2Ueq(C,N) or 1.5Ueq(C-meth­yl). Asymmetric N—H⋯N/N⋯H—N refinements with the H atom displaced towards one of the N atoms were inconclusive and atom H4N was placed on the twofold axis.

Table 2
Experimental details

Crystal data
Chemical formula C28H25N8O4+·Cl·2H2O
Mr 609.04
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 20.5406 (9), 13.7457 (5), 10.5650 (3)
β (°) 107.006 (4)
V3) 2852.54 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.32 × 0.26 × 0.24
 
Data collection
Diffractometer Bruker multiwire proportional
No. of measured, independent and observed [I > 2σ(I)] reflections 16772, 3121, 2026
Rint 0.029
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 0.98
No. of reflections 3009
No. of parameters 205
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.18
Computer programs: FRAMBO (Bruker, 2004[Bruker (2004). FRAMBO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]).

Supporting information


Computing details top

N-(4-Methoxyphenyl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine 4-{5-[(4-methoxyphenyl)amino]-1,3,4-oxadiazol-2-yl}pyridin-1-ium chloride dihydrate top
Crystal data top
C28H25N8O4+·Cl·2H2OF(000) = 1276
Mr = 609.04Dx = 1.418 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.5406 (9) ÅCell parameters from 8519 reflections
b = 13.7457 (5) Åθ = 2.5–26.2°
c = 10.5650 (3) ŵ = 0.19 mm1
β = 107.006 (4)°T = 293 K
V = 2852.54 (19) Å3Block, pinkish
Z = 40.32 × 0.26 × 0.24 mm
Data collection top
Bruker multiwire proportional
diffractometer
Rint = 0.029
Radiation source: sealed tubeθmax = 27.0°, θmin = 2.5°
phi and ω scansh = 2525
16772 measured reflectionsk = 1713
3121 independent reflectionsl = 1311
2026 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0602P)2 + 1.1461P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3009 reflectionsΔρmax = 0.20 e Å3
205 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5000000.49848 (5)0.7500000.0696 (3)
O10.60240 (6)0.24882 (8)0.73971 (10)0.0438 (3)
O20.73500 (8)0.20297 (12)0.12535 (14)0.0738 (4)
N40.52376 (7)0.20300 (10)1.14485 (13)0.0447 (4)
N10.63480 (7)0.26868 (11)0.55203 (13)0.0470 (4)
H10.6270280.3292120.5622480.056*
N20.62683 (8)0.11322 (11)0.64893 (14)0.0567 (4)
O30.59808 (11)0.46965 (13)0.5629 (3)0.0817 (5)
N30.60728 (9)0.08972 (11)0.76220 (15)0.0579 (4)
C30.57017 (8)0.18290 (12)0.92666 (15)0.0395 (4)
C10.62287 (8)0.20733 (13)0.64050 (15)0.0423 (4)
C20.59381 (8)0.16960 (12)0.81088 (16)0.0421 (4)
C70.55180 (9)0.27308 (13)0.96298 (16)0.0465 (4)
H70.5547040.3282070.9138840.056*
C80.65878 (8)0.24517 (13)0.44342 (16)0.0438 (4)
C60.52914 (9)0.27987 (13)1.07303 (16)0.0481 (4)
H60.5171790.3406471.0978660.058*
C40.56536 (9)0.10281 (13)1.00308 (17)0.0489 (4)
H40.5776590.0412690.9815050.059*
C50.54218 (9)0.11591 (13)1.11088 (17)0.0504 (5)
H50.5391540.0621991.1623900.060*
C130.66769 (10)0.32122 (14)0.36423 (17)0.0526 (5)
H130.6565610.3842410.3823620.063*
C110.70949 (9)0.21120 (15)0.23119 (17)0.0537 (5)
C90.67449 (9)0.15188 (14)0.41413 (17)0.0514 (5)
H90.6681650.1000400.4658520.062*
C120.69280 (10)0.30451 (15)0.25909 (19)0.0578 (5)
H120.6985900.3561680.2065580.069*
C100.69972 (10)0.13515 (15)0.30768 (18)0.0560 (5)
H100.7100460.0720740.2881460.067*
C140.75778 (13)0.11035 (19)0.0984 (2)0.0827 (7)
H14A0.7742830.1144980.0224560.124*
H14B0.7938180.0887260.1734720.124*
H14C0.7207060.0649310.0810800.124*
H220.5797 (18)0.477 (2)0.621 (3)0.129 (14)*
H210.578 (2)0.478 (3)0.485 (4)0.159 (18)*
H4N0.5000000.205 (2)1.2500000.092 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1079 (7)0.0494 (4)0.0619 (4)0.0000.0413 (4)0.000
O10.0531 (7)0.0434 (7)0.0391 (6)0.0010 (5)0.0201 (5)0.0004 (5)
O20.0879 (11)0.0901 (11)0.0591 (8)0.0004 (9)0.0458 (8)0.0021 (8)
N40.0507 (9)0.0484 (9)0.0375 (7)0.0013 (7)0.0168 (6)0.0010 (6)
N10.0547 (9)0.0476 (8)0.0434 (8)0.0006 (7)0.0218 (7)0.0003 (7)
N20.0838 (12)0.0460 (10)0.0518 (9)0.0039 (8)0.0380 (8)0.0053 (7)
O30.1057 (15)0.0670 (11)0.0814 (13)0.0140 (9)0.0413 (13)0.0026 (9)
N30.0875 (12)0.0457 (9)0.0520 (9)0.0028 (8)0.0386 (9)0.0040 (7)
C30.0413 (9)0.0428 (9)0.0346 (8)0.0022 (7)0.0115 (7)0.0011 (7)
C10.0421 (9)0.0488 (10)0.0371 (9)0.0036 (8)0.0133 (7)0.0054 (7)
C20.0471 (10)0.0406 (9)0.0395 (9)0.0022 (7)0.0141 (8)0.0009 (7)
C70.0604 (11)0.0395 (9)0.0421 (9)0.0029 (8)0.0189 (8)0.0033 (7)
C80.0408 (9)0.0546 (11)0.0361 (8)0.0040 (8)0.0116 (7)0.0016 (8)
C60.0597 (11)0.0424 (10)0.0457 (10)0.0045 (8)0.0209 (9)0.0018 (8)
C40.0628 (12)0.0398 (10)0.0493 (10)0.0033 (8)0.0245 (9)0.0018 (8)
C50.0633 (12)0.0445 (10)0.0476 (10)0.0016 (9)0.0228 (9)0.0079 (8)
C130.0592 (12)0.0552 (11)0.0469 (10)0.0007 (9)0.0208 (9)0.0019 (8)
C110.0504 (11)0.0751 (14)0.0397 (9)0.0067 (9)0.0195 (8)0.0036 (9)
C90.0597 (12)0.0548 (12)0.0446 (10)0.0049 (9)0.0231 (9)0.0002 (8)
C120.0639 (13)0.0655 (13)0.0484 (10)0.0049 (10)0.0235 (9)0.0070 (9)
C100.0595 (12)0.0595 (12)0.0534 (11)0.0021 (9)0.0236 (9)0.0085 (9)
C140.0935 (18)0.0996 (19)0.0706 (14)0.0045 (15)0.0485 (13)0.0172 (13)
Geometric parameters (Å, º) top
O1—C11.3634 (19)C7—H70.9300
O1—C21.3637 (19)C8—C91.379 (3)
O2—C111.371 (2)C8—C131.384 (2)
O2—C141.414 (3)C6—H60.9300
N4—C61.324 (2)C4—C51.369 (2)
N4—C51.336 (2)C4—H40.9300
N4—H4N1.3379 (15)C5—H50.9300
N1—C11.334 (2)C13—C121.374 (3)
N1—C81.412 (2)C13—H130.9300
N1—H10.8600C11—C101.371 (3)
N2—C11.298 (2)C11—C121.382 (3)
N2—N31.407 (2)C9—C101.388 (2)
O3—H220.82 (4)C9—H90.9300
O3—H210.81 (4)C12—H120.9300
N3—C21.277 (2)C10—H100.9300
C3—C71.382 (2)C14—H14A0.9600
C3—C41.386 (2)C14—H14B0.9600
C3—C21.454 (2)C14—H14C0.9600
C7—C61.376 (2)
C1—O1—C2102.04 (13)C7—C6—H6118.8
C11—O2—C14117.79 (17)C5—C4—C3118.79 (16)
C6—N4—C5118.91 (15)C5—C4—H4120.6
C6—N4—H4N124.9 (13)C3—C4—H4120.6
C5—N4—H4N116.2 (13)N4—C5—C4122.43 (16)
C1—N1—C8127.16 (15)N4—C5—H5118.8
C1—N1—H1116.4C4—C5—H5118.8
C8—N1—H1116.4C12—C13—C8120.64 (18)
C1—N2—N3105.04 (14)C12—C13—H13119.7
H22—O3—H21122 (4)C8—C13—H13119.7
C2—N3—N2107.14 (14)C10—C11—O2125.05 (19)
C7—C3—C4118.62 (16)C10—C11—C12119.59 (17)
C7—C3—C2122.13 (15)O2—C11—C12115.36 (18)
C4—C3—C2119.25 (15)C8—C9—C10120.20 (18)
N2—C1—N1131.13 (16)C8—C9—H9119.9
N2—C1—O1113.05 (14)C10—C9—H9119.9
N1—C1—O1115.82 (15)C13—C12—C11120.19 (18)
N3—C2—O1112.73 (15)C13—C12—H12119.9
N3—C2—C3127.75 (15)C11—C12—H12119.9
O1—C2—C3119.50 (14)C11—C10—C9120.31 (19)
C6—C7—C3118.86 (16)C11—C10—H10119.8
C6—C7—H7120.6C9—C10—H10119.8
C3—C7—H7120.6O2—C14—H14A109.5
C9—C8—C13119.05 (17)O2—C14—H14B109.5
C9—C8—N1123.71 (16)H14A—C14—H14B109.5
C13—C8—N1117.23 (16)O2—C14—H14C109.5
N4—C6—C7122.38 (16)H14A—C14—H14C109.5
N4—C6—H6118.8H14B—C14—H14C109.5
C1—N2—N3—C20.2 (2)C5—N4—C6—C71.3 (3)
N3—N2—C1—N1179.21 (18)C3—C7—C6—N40.6 (3)
N3—N2—C1—O10.22 (19)C7—C3—C4—C50.5 (3)
C8—N1—C1—N23.2 (3)C2—C3—C4—C5179.14 (16)
C8—N1—C1—O1177.42 (14)C6—N4—C5—C41.2 (3)
C2—O1—C1—N20.20 (18)C3—C4—C5—N40.3 (3)
C2—O1—C1—N1179.33 (14)C9—C8—C13—C121.0 (3)
N2—N3—C2—O10.0 (2)N1—C8—C13—C12178.02 (16)
N2—N3—C2—C3178.69 (16)C14—O2—C11—C105.0 (3)
C1—O1—C2—N30.08 (18)C14—O2—C11—C12175.28 (18)
C1—O1—C2—C3178.69 (14)C13—C8—C9—C100.9 (3)
C7—C3—C2—N3174.38 (18)N1—C8—C9—C10178.10 (15)
C4—C3—C2—N35.2 (3)C8—C13—C12—C110.0 (3)
C7—C3—C2—O14.2 (2)C10—C11—C12—C131.1 (3)
C4—C3—C2—O1176.23 (15)O2—C11—C12—C13179.10 (17)
C4—C3—C7—C60.3 (3)O2—C11—C10—C9178.98 (18)
C2—C3—C7—C6179.26 (15)C12—C11—C10—C91.3 (3)
C1—N1—C8—C90.8 (3)C8—C9—C10—C110.3 (3)
C1—N1—C8—C13179.82 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N4i1.34 (1)1.34 (1)2.675 (3)178 (3)
N1—H1···O30.862.022.875 (2)172
O3—H22···Cl10.82 (4)2.43 (4)3.233 (2)166 (3)
O3—H21···Cl1ii0.81 (4)2.55 (4)3.359 (3)172 (4)
C7—H7···Cl10.932.933.7940 (18)155
C6—H6···Cl1iii0.932.823.7137 (18)163
C5—H5···N3iv0.932.563.329 (2)140
C9—H9···N20.932.342.969 (2)125
Symmetry codes: (i) x+1, y, z+5/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y, z+1/2.
 

Footnotes

Additional correspondence author, email: syshailendra5@gmail.com.

Acknowledgements

MK expresses gratitude to BHU for the financial support provided through the IoE Research Grant for Faculty Development Scheme No. 6031.

References

First citationAbd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S. & Ahmed, A. F. F. (2017). Bioorg. Chem. 74, 15–29.  Web of Science CAS PubMed Google Scholar
First citationBharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationBitla, S., Sagurthi, S. R., Dhanavath, R., Puchakayala, M. R., Birudaraju, S., Gayatri, A. A., Bhukya, V. K. & Atcha, K. R. (2020). J. Mol. Struct. 1220, 128705.  Web of Science CrossRef Google Scholar
First citationBruker (2004). FRAMBO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S., Gond, M. K., Jaiswal, S., Bharty, M. K., Maiti, B., Kushwaha, D. & Butcher, R. J. (2022). J. Mol. Struct. 1249, 131637.  Web of Science CSD CrossRef Google Scholar
First citationGond, M. K., Rai, N., Chandra, B., Gautam, V., Garai, S., Butcher, R. J. & Bharty, M. K. (2023). Dalton Trans. 52, 10213–10221.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGond, M. K., Shukla, A., Pandey, S. K., Bharty, M. K., Maiti, B., Acharya, A., Tiwari, N., Katiyar, D. & Butcher, R. J. (2022). J. Mol. Struct. 1249, 131547.  Web of Science CSD CrossRef Google Scholar
First citationJaiswal, S., Pandey, S. K., Minocha, T., Chandra, S., Bharty, M. K., Yadav, S. K., Kushwaha, D. & Butcher, R. J. (2023a). J. Mol. Struct. 1281, 135075.  Web of Science CSD CrossRef Google Scholar
First citationJaiswal, S., Pandey, S. K., Prajapati, J., Chandra, S., Gond, M. K., Bharty, M. K., Tiwari, I. & Butcher, R. J. (2023b). Appl. Organom Chem. 37, e7085.  Web of Science CSD CrossRef Google Scholar
First citationJasinski, J. P., Bharty, M. K., Singh, N. K., Kushwaha, S. K. & Butcher, R. J. (2011). J. Chem. Crystallogr. 41, 6–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationJedlovská, E. & Leško, J. (1994). Synth. Commun. 24, 1879–1885.  Google Scholar
First citationLi, J. L., Li, H. Y., Zhang, S. S., Shen, S., Yang, X. L. & Niu, X. (2023). J. Org. Chem. 88, 14874–14886.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, X., Liao, S., Chen, Y., Xia, C. & Wang, G. (2021). J. Chem. Res. 45, 1038–1041.  Web of Science CrossRef CAS Google Scholar
First citationNajare, M. S., Patil, M. K., Nadaf, A. A., Mantur, S., Garbhagudi, M., Gaonkar, S., Inamdar, S. R. & Khazi, I. A. M. (2020). J. Mol. Struct. 1199, 127032.  Web of Science CrossRef Google Scholar
First citationOmar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819–825.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPaswan, S., Bharty, M. K., Gupta, S. K., Butcher, R. J. & Jasinski, J. P. (2016). IUCrData, 1, x161724.  Google Scholar
First citationPaswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880–o881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReid, J. R. & Heindel, N. D. (1976). J. Heterocycl. Chem. 13, 925–926.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Butcher, R. J., Bharty, M. K., Srivastava, A. K. & Tripathi, P. (2006). Acta Cryst. E62, o3473–o3474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782–o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. A., Chou, H. H., Shih, C. H., Wu, F. I., Cheng, C. H., Huang, H. L., Chao, T. C. & Tseng, M. R. (2012). J. Mater. Chem. 22, 17792–17799.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds