

Received 23 October 2023 Accepted 3 March 2024

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela

Keywords: crystal structure; lanthanide; carbacylamidophosphate CAPh; rare-earth metals; coordination compound; tetrakis complex; chelate ligand; lutetium; tetraphenylphosphonium cation.

CCDC reference: 2337153

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of tetraphenyl phosphate tetrakis[dimethyl (2,2,2-trichloroacetyl)phosphoramidato]lutetium(III), PPh₄[LuL₄]

Mariia B. Struhatska,^a* Vladimir A. Ovchynnikov,^a Nataliia S. Kariaka,^a Paula Gawryszewska^b and Volodymyr M. Amirkhanov^a

^aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine, and ^bFaculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie Street, 50-383, Wroclaw, Poland. *Correspondence e-mail: mariya.strugatskaya@gmail.com

A lutetium(III) complex based on the anion of the ligand dimethyl (2,2,2-trichloroacetyl)phosphoramidate (HL) and tetraphenylphosphonium, of composition PPh₄[LuL₄] (L = CAPh = carbacylamidophosphate), or (C₂₄H₂₀)-[Lu(C₄H₆Cl₃NO₄P)₄], has been synthesized and structurally characterized. The X-ray diffraction study of the compound revealed that the lutetium ion is surrounded by four bis-chelating CAPh ligands, forming the complex anion [LuL₄]⁻ with a coordination number of 8[O] for Lu^{III}, while PPh₄⁺ serves as a counter-ion. The coordination geometry around the Lu³⁺ ion was determined to be a nearly perfect triangular dodecahedron. The complex crystallizes in the monoclinic crystal system, space group $P2_1/c$, with four molecules in the unit cell. Weak hydrogen bonds O···HC(Ph), Cl···HC(Ph) and N···HC(Ph) are formed between the cations and anions. For a comparative study, HL-based structures were retrieved from the Cambridge Structural Database (CSD) and their geometries and conformations are discussed. A Hirshfeld surface analysis was also performed.

1. Chemical context

Luminescent coordination compounds of lanthanides have attracted significant attention due to their diverse potential applications in lighting technology, including fluorescent lamps, LEDs, displays, telecommunications, lasers, sensors, luminescent probes for biological applications, for solar energy conversion and photocatalysis (Binnemans, 2009). Some of the extensively investigated ligands used for binding lanthanide(III) ions include β -diketones and compounds structurally akin to them (Nehra et al., 2022; Duan et al., 2022; Magennis et al., 1999). Within this category, a noteworthy subset comprises ligands known as carbacylamidophosphates (CAPhs), which incorporate a functional unit C(O)NHP(O), and enable bidentate chelation upon coordination. The inclusion of the phosphoryl group in CAPhs imparts a strong affinity for lanthanides (Amirkhanov et al., 2014). In this work, we intended to design a new lutetium(III) CAPh-based tetrakis complex with a bulk cation in order to obtain it in a crystalline form and investigate a quite rare example of a lutetium complex structure. From this idea, the compound $PPh_4[LuL_4]$ was synthesized in high yield via reaction between lutetium nitrate, tetraphenylphosphonium bromide and the sodium salt of the ligand NaL.

2. Structural commentary

The title compound $(C_{24}H_{20}P)[Lu(C_4H_6Cl_3NO_4P)_4]$ crystallizes in the monoclinic system in space group $P2_1/c$ with four molecules in the unit cell. All four ligands are coordinated in a bidentate chelate manner through the oxygen atoms of the carbonyl and phosphoryl groups. The complex comprises the $[LuL_4]^-$ anion and the PPh₄⁺ counter-ion, which are interconnected by hydrogen bonds (Table 1) and weak intermolecular interactions. The molecular structure of the complex is shown in Fig. 1 and the coordination polyhedron in Fig. 2. The coordination polyhedron of the Lu³⁺ ion was determined to be a nearly perfect triangular dodecahedron formed by the eight O atoms of the bidentate CAPh ligands. The calculation was carried out using *SHAPE 2.1* (Llunell *et al.*, 2013).

The average Lu–O bond length in PPh₄[LuL₄] is 2.3116 Å, which is longer than in {Lu₂L₆· μ -(γ , γ' -dipy)} (2.2403 Å; Trush *et al.*, 2001). The Lu–O(C) bond lengths [2.348 (3)– 2.411 (2) Å] are all longer than the Lu–O(P) bonds [2.236 (3)–2.267 (3) Å], which is explained by higher affinity of the phosphoryl group towards the metal ion. Deprotonation of the ligands leads to an increase of the π -conjugation in the chelating fragments and results in changes in the bond lengths. The C–O and P–O bond lengths are shorter than in the binuclear Lu^{III} complex and are in the ranges 1.233 (4)–

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Alkyl groups of the ligand and hydrogen atoms are omitted for clarity.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C26-H26A···O44	0.95	2.56	3.402 (6)	148
C14−H14B···O22	0.98	2.61	3.561 (5)	164
$C43B - H43E \cdots Cl12$	0.98	2.93	3.73 (6)	140
$C20-H20A\cdots Cl1A$	0.95	2.83	3.694 (5)	152
C34−H34 <i>B</i> ···O31	0.98	2.36	2.887 (6)	113
C19-H19A···O21	0.95	2.56	3.479 (6)	162
$C43B - H43D \cdots Cl32^{i}$	0.98	2.86	3.37 (2)	113
$C40-H40A\cdots Cl11^{ii}$	0.95	2.94	3.676 (4)	135
$C23-H23A\cdots Cl3A^{iii}$	0.98	2.99	3.768 (5)	137
$C33-H33A\cdots Cl33^{iv}$	0.98	2.89	3.597 (5)	130
$C50-H50A\cdots O23^{v}$	0.95	2.56	3.355 (5)	142
$C49-H49A\cdots N2^{v}$	0.95	2.71	3.540 (6)	146
$C49-H49A\cdots Cl21^{v}$	0.95	2.99	3.795 (5)	143
$C17 - H17A \cdots O33^{vi}$	0.95	2.88	3.383 (6)	114
$C17-H17A\cdots N3^{vi}$	0.95	2.68	3.424 (6)	136

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x, -y + 1, -z; (iv) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (v) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (v) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

1.245 (5) Å and 1.483 (3)-1.489 (3) Å, respectively, with corresponding average values of 1.2399 and 1.486 Å. In contrast, in $\{Lu_2L_6, \mu-(\gamma, \gamma'-dipy)\}$ (Trush *et al.*, 2001) the C–O bond lengths lie within 1.237–1.258 Å (average 1.247 Å) and the P-O bond lengths lie between 1.492 and 1.509 Å (average 1.501 Å). The corresponding bond lengths in the neutral ligand HL are 1.202 (2) and 1.459 (2) Å (Amirkhanov et al., 1995). The C-O and P-O bonds in the complex are longer than those in the neutral ligand (HL), indicating greater C-O and P-O double-bond character in HL than in the complex. The C–N and P–N bonds in $PPh_4[LuL_4]$, with lengths in the ranges 1.295 (6)-1.315 (5) and 1.613 (3)-1.624 (4) Å, respectively, are shorter compared to those in the free ligand, in which the reported C-N bond length is 1.347 (2) Å and P–N is 1.676 (1) Å. The C–N bond lengths in the binuclear lutetium complex are proportional to those in the tetrakis- and lie between 1.297 and 1.314 Å while the P-N distances are shorter (1.602–1.621 Å).

3. Supramolecular features

The crystal packing of the title compound viewed down the *c*-axis is shown in Fig. 3. The Lu^{III} polyhedra are isolated and do not share edges or vertices.

To visualize the intermolecular contacts in $PPh_4[LuL_4]$, the Hirshfeld surfaces (HS) mapped over d_{norm} and the two-

Figure 2 Coordination environment of the lutetium(III) ion.

Figure 3

The crystal packing of the title compound viewed down the *c*-axis. Hydrogen bonds are shown as dashed cyano lines.

dimensional fingerprint plots were generated using Crystal-Explorer 21.5 (Spackman et al., 2021). Fig. 4 illustrates the Hirshfeld surfaces for the PPh₄⁺ cation and the $[LuL_4]^-$ anion. The anion contains oxygen, chlorine, and nitrogen atoms that act as proton acceptors, forming hydrogen bonds (Table 1) and making a significant contribution to the intermolecular interactions, in addition to electrostatic attraction between the cations and anions. In contrast, the phenyl groups of the PPh₄⁺ cation only act as proton donors for hydrogen-bond formation. Weak hydrogen bonds, such as $O \cdots HC(Ph)$, $Cl \cdots HC(Ph)$ and $N \cdots HC(Ph)$, are formed between the cations and anions (Table 1, Fig. 4). The regions on the Hirshfeld surface of the cation colored in red correspond to hydrogen bonds of the C-H···O, C-H···Cl and C-H···N (light red) types (Fig. 4). On the Hirshfeld surface of the complex anion, the red regions represent close contacts between cations and anions, with the most significant interactions being intermolecular hydrogen bonds and $C-H\cdots O$, $C-H\cdots Cl$, $C-H\cdots N$ and $Cl\cdots Cl$ interactions. The figure also shows the atomic contributions (as percentages of the total surface) to the interactions between anions and cations. π - π stacking is not observed in the compound. There are six interacting anions around the cation and six interacting cations around the anion.

4. Database survey

Only one structure of a lutetium complex with the carbacylamidophosphate ligand has been reported. It contains the dimethyl (2,2,2-trichloroacetyl)phosphoramidate ligand used in the synthesis of PPh₄[LuL₄] and has the formula [Lu₂L₆· μ -(γ , γ' -dipy)] (refcode QENSIL; Trush *et al.*, 2001).

A search of the Cambridge Structural Database (CSD, Version 5.44, update of September 2023; Groom *et al.*, 2016) for compounds containing dimethyl (2,2,2-trichloroacetyl) phosphoramidate yielded 21 hits. Dimethyl (2,2,2-trichloroacetyl)phosphoramidate forms mono-, bi- and polynuclear coordination compounds with different metals. There are four cases of monodentate coordination of dimethyl (2.2.2-trichloroacetyl)phosphoramidate: three via oxygen (HATVOO, Trush et al., 2005; BIGCAV, Trush et al., 1999; HATWOP, Trush et al., 2005) and one via nitrogen (VONWUT, Trush et al., 2007). In the remaining structures, it is coordinated in a bidentate O-chelating manner (seven compounds: IHIBUW, Oczko et al., 2003; QENSIL, Trush et al., 2001; RUZRIN, Borzechowska et al., 2002; SAPKIH, Struhatska et al., 2021; SEMOAF, Yakovlev et al., 2018; WUKCOV, Znovjvak et al., 2009; YOFKUA, Puchalska et al., 2008) or a bridging manner (six compounds: CAPXOG, Bundya et al., 1999; HATVII, Trush et al., 2005; HATVUU, Trush et al., 2005; HATVIJ, Trush et al., 2005; JAGNUB, Trush et al., 2003; RUMRIA, Amirkhanov et al., 1996). Among them, a case of μ -2 coordination via oxygen atoms was found (RUMRIA, Amirkhanov et al., 1996). Another structure contains both a μ -3 bridging ligand connected to the metal via oxygen and chlorine and a μ -4 bridging ligand attracting oxygen and nitrogen atoms for binding to the metal ions (HATVUU, Trush et al., 2005). The

Figure 4

The Hirshfeld surface mapped over d_{norm} and two-dimensional fingerprint plots for intermolecular contacts for the anion and the cation in PPh₄[LuL₄].

research communications

remaining four cases show μ -2 coordination involving oxygen
atoms of the phosphoryl and carbonyl groups Among
reported HL based compounds there are two complexes of
3d metals (CAPYOG Bundya at al. 1000: IAGNUB Trush at
al 2002) four solts of alkaling motols (HATVIII HATVIII)
<i>ul.</i> , 2005), four saits of alkaline metals (HATVII, HATVUU
and HAT WIJ, Irush et al., 2005; RUMRIA, Amirkhanov et al.,
1996), two of thallium (BIGCAV, Irush <i>et al.</i> , 1999; HAI VOO,
Trush <i>et al.</i> , 2005), two tetraphenylphosphonium salts
(HATWAB and HATWEF, which also contains a bromide
anion and water; Trush et al., 2005) and one tetraphenylanti-
mony(V) salt (HATWOP, Trush et al., 2005), as well as nine
coordination compounds of lanthanides: seven mixed-ligand
lanthanide complexes (QENSIL, Trush et al., 2001; RUZRIN,
Borzechowska et al., 2002; RUZRIN01, Puchalska et al., 2008;
SEMQAF, Yakovlev et al., 2018; WUKCOV, Znovjyak et al.,
2009; YOFKUA, Puchalska et al., 2008; IHIBUW, Oczko et al.,
2003) and two <i>tetrakis</i> - CAPh lanthanide complexes Na[ErL ₄]
and $MMe_4[LaL_4]$ (RUMRIA, Amirkhanov et al., 1996;
SAPKIH, Struhatska <i>et al.</i> , 2021). In the latter two complexes.
the ligand is coordinated to the lanthanide ion in a bidentate
chelating manner via oxygen atoms of the phosphoryl and
carbonyl groups. The average $I n = O(P)$ bond lengths are 2.29
and 2.44 Å respectively and are shorter than the average
and 2.44 A, respectively, and are shorter than the average $L_{\pi} = O(C)$ hand lengths (2.20 and 2.55 Å respectively). In the
Lin = O(C) bond lengths (2.59 and 2.55 Å, respectively). In the
structure of the one known futerium complex $\{Lu_2L_6[\mu-(\gamma, (\mu-(\gamma, (\mu-(\mu-(\gamma, (\mu-(\mu-(\mu-(\mu-(\mu-(\mu-(\mu-(\mu-(\mu-(\mu-(\mu-(\mu-(\mu-($
γ -dipy)]} with HL (QENSIL; Irush <i>et al.</i> , 2001), the average
Lu - O(P) bond length is 2.22 A and the average $Lu - O(C)$
bond length is 2.26 A. The CAPh ligand is coordinated to the
lutetium ion in a bidentate chelating manner via the PO and
CO groups.
CO groups.

5. Synthesis and crystallization

Materials and methods

Commercially available lutetium nitrate, $Lu(NO_3)_3 \cdot 7H_2O$, and tetraphenylphosphonium bromide, PPh_4Br , of reagent grade were used in the synthesis. The acetone used was dried and distilled. The ¹H NMR spectrum of a solution of the title compound in DMSO- d_6 was recorded on a Varian 400 NMR spectrometer at room temperature. The infrared (FT–IR) spectrum was recorded on a Perkin–Elmer BX-II spectrometer using a KBr pellet.

The dimethyl (2,2,2-trichloroacetyl)phosphoramidate ligand and its sodium salt were obtained according to a known procedure (Kirsanov *et al.*, 1956). The complexes of composition PPh₄[LnL₄] with metals La, Nd, Eu, Tb and Y have been synthesized and described previously. The previously used method (Olyshevets *et al.*, 2017) was adopted for the preparation of the title compound.

Preparation of PPh₄[LuL₄]

Lu(NO₃)₃·7H₂O (0.0487 g, 0.1 mmol) in the presence of $HC(OC_2H_5)_3$ (0.14 ml, 0.7 mmol) as dehydrating agent was dissolved in acetone under heating. In a separate flask, NaL (0.1122 g, 0.4 mmol) was dissolved in acetone and PPh₄Br (0.0419 g, 0.1 mmol) was added under stirring and heating. The two mixtures were combined and boiled for few minutes, then cooled to room temperature. A white precipitate of

Table 2	
Experimental	deta

Experiment	al d	letail	s.
-			

Crystal data	
Chemical formula	$(C_{24}H_{20})[Lu(C_4H_6Cl_3NO_4P)_4]$
M _r	1592.01
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	19.6882 (3), 18.9452 (10), 17 2139 (3)
β (°)	110,8107 (15)
$V(A^3)$	6001.8 (3)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	9.89
Crystal size (mm)	$0.3 \times 0.3 \times 0.3$
Data collection	
Diffractometer	Rigaku XtaLAB Synergy R with HyPix-Arc 150
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.513, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	68030, 11789, 10535
R _{int}	0.059
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.623
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.108, 1.08
No. of reflections	11789
No. of parameters	735
No. of restraints	7
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.32, -1.07

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXS (Sheldrick, 2008), SHELXL2019/2 (Sheldrick, 2015) and ORTEPIII for Windows (Farrugia, 2012).

 $NaNO_3$ and NaBr was filtered off and the filtrate was left in a flask in a desiccator over CaCl₂. After two days, colorless crystals suitable for X-ray diffraction studies were obtained. The crystals were filtered off, washed with 2-propanol and dried in air.

IR (KBr pellet, cm⁻¹): 2954 [w, v(CH_{aliph})], 1622 [s, v(CO)], 1438 (w), 1358 [s, v(CN)], 1164 [s, v(PO)], 1042 [s, δ (POC)], 1004 (m), 888 (s), 842 (m), 820 (m), 790 (w), 730 (m), 674 [m, v(CCl)], 556 [m, δ (PNC)], 502 (m).

¹H NMR (400 MHz, DMSO- d_6 , 293 K): 3.58, 3.55 (d, 24H, CH₃ [L]⁻, J = 11.1 Hz), 7.98, 7.97, 7.95 (t, 4H, CH [PPh₄]⁺), 7.82, 7.81, 7.8, 7.79, 7.76, 7.75, 7.73, 7.71 (m, 16H, CH [PPh₄]⁺).

A comparison of the IR spectra of the obtained compound with the spectra of the ligand and of its sodium salt was carried out. In the IR spectrum of $PPh_4[LuL_4]$, characteristic absorption bands of the carbonyl and phosphoryl groups are observed at 1622 and 1164 cm⁻¹, respectively. There is a noticeable shift of the absorption bands of the carbonyl and phosphoryl groups in the spectrum of the complex towards lower wavenumbers compared to the spectra of the free ligand (110 and 104 cm^{-1} , respectively) and the sodium salt (2 and 36 cm^{-1} , respectively). This is consistent with the observed lengthening of the P=O and C=O bond lengths in the structure when compared to the ligand and sodium salt structures. The absorption band $\nu(N-H)$, which is observed in the IR spectrum of HL at 3080 cm^{-1} , is absent in the IR spectrum of the $PPh_4[LuL_4]$ complex, indicating ligand coordination in the deprotonated form. The presence of the

tetraphenylphosphonium cation in the complex can be confirmed by the IR spectrum, showing bands at 1439, 1108, and 528 cm^{-1} , which are absent in the IR spectrum of NaL.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen-atom positions were positioned geometrically (C–H = 0.95–0.98 Å) refined using a riding model, with fixed U_{iso} values of $1.2U_{iso}$ of the attached C atom for aromatic H atoms and 1.5 for CH₃ groups. The methyl group was refined as a rotating group. One of the phosphoryl ligands is disordered. The chlorine atoms of the CCl₃ group and the CH₃ group of the methoxy substituents refined to occupancy ratios of 0.868 (3):0.132 (3) and 0.62 (5):0.38 (5). The major component of the disordered CCl₃ group was refined in an anisotropic approximation, while the minor component was refined isotropically. Additionally, some C–Cl distances were restrained to 1.750 Å with a sigma value of 0.001.

Funding information

The authors wish to acknowledge support through a grant from the Ministry of Education and Science of Ukraine (grant No. 22BF037-04).

References

- Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). *Ligands. Synthesis, Characterization and Role in Biotechnology*, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199–248. New York: Nova Science Publishers.
- Amirkhanov, V. M. & Trush, V. A. (1995). Russ. J. Gen. Chem. 65, 1120–1124.
- Amirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996). *Zh. Neorg. Khim.* **41**, 2052–2057.
- Binnemans, K. (2009). Chem. Rev. 109, 4283-4374.
- Borzechowska, M., Trush, V., Turowska-Tyrk, I., Amirkhanov, W. & Legendziewicz, J. (2002). J. Alloys Compd. 341, 98–106.

- Bundya, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A., Domasevitch, K. V., Sieler, J. & Skopenko, V. V. (1999). Z. Naturforsch. B, 54, 1033–1038.
- Duan, Y.-Y., Wu, D. F., Chen, H.-H., Wang, Y.-J., Li, L., Gao, H.-L. & Cui, J.-Z. (2022). *Polyhedron*, **225**, 1–10.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kirsanov, A. W. & Derkatch, G. I. (1956). Zh. Org. Khim. 26, 2631–2638.
- Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). *SHAPE*. Barcelona, Spain.
- Magennis, S. W., Parsons, S., Pikramenou, Z., Corval, A. & Derek Woollins, J. (1999). *Chem. Commun.* pp. 61–62.
- Nehra, K., Dalal, A., Anjli, H., Shri, B., Raman, S., Bernabé, M. S., Sumit, K. & Devender, S. (2022). J. Mol. Struct. **1249**, 1–10.
- Oczko, G., Legendziewicz, J., Trush, V. & Amirkhanov, V. (2003). New J. Chem. 27, 948–956.
- Olyshevets, I., Kariaka, N., Smola, S., Trush, V. & Amirkhanov, V. (2017). Bull. Taras Shevchenko Nat. Univ. Kyiv Chem. **2**, 43-46.
- Puchalska, M., Turowska-Tyrk, I., Trush, V. & Legendziewicz, J. (2008). J. Alloys Compd. 451, 264–269.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Struhatska, M. B., Kariaka, N. S., Amirkhanov, V. M., Dyakonenko, V. V. & Seredyuk, M. (2021). Acta Cryst. E77, 1307–1310.
- Trush, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). *Polyhedron*, **22**, 1221–1229.
- Trush, V. A., Domasevitch, K. V., Amirkhanov, V. M. & Sieler, J. (1999). Z. Naturforsch. B, 54, 451–455.
- Trush, V. A., Domasevitch, K. V. & Amyrkhanov, V. M. (2007). Rep. Nat. Acad. Sci. Ukraine, 7, 147
- Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). *Polyhedron*, 24, 1007–1014.
- Trush, V. A., Swiatek-Kozlowska, J., Skopenko, V. V. & Amyrkhanov, V. M. (2001). Z. Naturforsch. B, 56, 249–254.
- Yakovlev, O. O., Kariaka, N. S., Trush, V. A., Smola, S. S., Siczek, M. & Amirkhanov, V. M. (2018). *Opt. Mater.* **75**, 459–464.
- Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). *Polyhedron*, **28**, 3731– 3738.

Acta Cryst. (2024). E80, 370-374 [https://doi.org/10.1107/S205698902400210X]

Crystal structure of tetraphenyl phosphate tetrakis[dimethyl (2,2,2-trichloroacetyl)phosphoramidato]lutetium(III), PPh₄[LuL₄]

Mariia B. Struhatska, Vladimir A. Ovchynnikov, Nataliia S. Kariaka, Paula Gawryszewska and Volodymyr M. Amirkhanov

Computing details

Tetraphenyl phosphate tetrakis[dimethyl (2,2,2-trichloroacetyl)phosphoramidato]lutetium(III)

Crystal data

$(C_{24}H_{20}P)[Lu(C_4H_6Cl_3NO_4P)_4]$
$M_r = 1592.01$
Monoclinic, $P2_1/c$
a = 19.6882 (3) Å
<i>b</i> = 18.9452 (10) Å
c = 17.2139 (3) Å
$\beta = 110.8107 \ (15)^{\circ}$
V = 6001.8 (3) Å ³
Z = 4

Data collection

Rigaku XtaLAB Synergy R with HyPix-Arc 150 diffractometer Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.108$ S = 1.0811789 reflections 735 parameters 7 restraints F(000) = 3160 $D_x = 1.762 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 36128 reflections $\theta = 2.4-73.8^{\circ}$ $\mu = 9.89 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.3 \times 0.3 \times 0.3 \text{ mm}$

 $T_{\min} = 0.513, T_{\max} = 1.000$ 68030 measured reflections 11789 independent reflections 10535 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{\max} = 73.9^{\circ}, \theta_{\min} = 2.4^{\circ}$ $h = -24 \rightarrow 24$ $k = -23 \rightarrow 23$ $l = -17 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 11.4066P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.32$ e Å⁻³ $\Delta\rho_{min} = -1.07$ e Å⁻³

Special details

Experimental. X-ray analyses of PPh₄[LuL₄] were performed on an XtaLAB Synergy R, Dual Wavelength system, using Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å) and a Hybrid Pixel Array HyPix-Arc 150 detector at 100 K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Lu1	0.30812 (2)	0.52340 (2)	0.24117 (2)	0.02160 (7)	
Cl1A	0.09212 (6)	0.36510 (8)	0.07379 (7)	0.0405 (4)	0.868 (3)
Cl2A	0.03572 (7)	0.34419 (9)	0.20331 (7)	0.0513 (5)	0.868 (3)
Cl3A	0.03339 (8)	0.48308 (8)	0.13322 (16)	0.0625 (6)	0.868 (3)
Cl1B	0.0709 (13)	0.3239 (6)	0.1084 (12)	0.133 (8)*	0.132 (3)
Cl2B	0.0208 (5)	0.4021 (7)	0.2140 (7)	0.071 (4)*	0.132 (3)
Cl3B	0.0433 (8)	0.4763 (6)	0.0972 (8)	0.075 (5)*	0.132 (3)
C43A	0.3208 (6)	0.4020 (17)	0.5146 (8)	0.052 (4)	0.62 (5)
H43A	0.306414	0.417250	0.560985	0.078*	0.62 (5)
H43B	0.356357	0.435244	0.507796	0.078*	0.62 (5)
H43C	0.342436	0.354796	0.526273	0.078*	0.62 (5)
C43B	0.3050 (19)	0.440 (3)	0.4999 (15)	0.057 (9)	0.38 (5)
H43D	0.288628	0.443234	0.547341	0.085*	0.38 (5)
H43E	0.307662	0.487720	0.478709	0.085*	0.38 (5)
H43F	0.353186	0.418203	0.517715	0.085*	0.38 (5)
Р3	0.46486 (5)	0.60714 (5)	0.36566 (6)	0.0262 (2)	
O32	0.42365 (14)	0.47177 (14)	0.27693 (17)	0.0262 (6)	
O42	0.18959 (15)	0.47307 (15)	0.20058 (17)	0.0311 (6)	
N2	0.3317 (2)	0.52389 (18)	0.0298 (2)	0.0322 (8)	
012	0.24928 (15)	0.57523 (15)	0.32441 (16)	0.0311 (6)	
011	0.23433 (14)	0.60386 (14)	0.15668 (16)	0.0274 (6)	
O41	0.31681 (14)	0.44195 (14)	0.33823 (16)	0.0259 (5)	
O24	0.34595 (17)	0.38773 (16)	0.04136 (18)	0.0370 (7)	
C12	0.1787 (2)	0.6328 (2)	0.3905 (3)	0.0370 (10)	
O33	0.49700 (17)	0.68190 (16)	0.35963 (19)	0.0376 (7)	
O23	0.22456 (16)	0.43826 (16)	-0.01704 (17)	0.0348 (6)	
O34	0.48780 (16)	0.59568 (18)	0.46207 (17)	0.0398 (7)	
O13	0.11413 (17)	0.67104 (18)	0.10392 (19)	0.0419 (7)	
C19	0.2909 (3)	0.2636 (3)	0.1581 (4)	0.0632 (16)	
H19A	0.286095	0.311037	0.139117	0.076*	
O22	0.36999 (14)	0.57898 (14)	0.15909 (15)	0.0250 (5)	
C31	0.4859 (2)	0.4967 (2)	0.2957 (2)	0.0263 (8)	
C40	0.0260 (2)	0.1450 (2)	0.0609 (3)	0.0361 (9)	
H40A	0.009692	0.157753	0.104700	0.043*	
O31	0.38470 (14)	0.60400 (14)	0.32491 (16)	0.0272 (6)	
O14	0.22822 (17)	0.73667 (16)	0.15450 (19)	0.0386 (7)	
C15	0.2386 (2)	0.1577 (2)	0.1887 (3)	0.0328 (9)	

O21	0.29546 (15)	0.44604 (14)	0.13784 (16)	0.0283 (6)
C21	0.3629 (2)	0.5727 (2)	0.0853 (2)	0.0261 (8)
C13	0.1034 (3)	0.6581 (3)	0.0180 (3)	0.0495 (12)
H13A	0.064326	0.688502	-0.017253	0.074*
H13B	0.090173	0.608526	0.004732	0.074*
H13C	0.148406	0.668492	0.008115	0.074*
O44	0.30205 (17)	0.31240 (16)	0.3592 (2)	0.0410(7)
C16	0.3064 (2)	0.1258 (3)	0.2175 (3)	0.0417 (10)
H16A	0.311920	0.079182	0.239017	0.050*
C20	0.2308 (3)	0.2267 (3)	0.1595 (4)	0.0506 (13)
H20A	0.184328	0.248461	0.140523	0.061*
C38	0.0040(3)	0.1343 (3)	-0.0851(3)	0.0423 (10)
H38A	-0.027983	0 138171	-0.141144	0.051*
C47	0.1889(2)	-0.1020(2)	0.1770(3)	0.0359(9)
H47A	0.182281	-0 138391	0.137095	0.043*
Cl31	0.52815 (8)	0 48361 (9)	0.16518 (7)	0.0614 (4)
C39	-0.0198(3)	0.1517(3)	-0.0213(3)	0.0442(11)
H39A	-0.068044	0.168384	-0.033791	0.053*
C32	0 5380 (2)	0.4514(2)	0.055771 0.2654 (3)	0.0309 (8)
N3	0.5300(2) 0.51473(17)	0.1511(2) 0.55532(18)	0.2031(3)	0.0309(0)
C41	0.51475(17) 0.1615(2)	0.55552(10) 0.4226(2)	0.3330(2) 0.2240(2)	0.0289(7)
C34	0.1013(2) 0.4372(3)	0.4220(2)	0.2240(2) 0.5022(3)	0.0200(0) 0.0547(14)
H34A	0.4372 (3)	0.533922	0.528283	0.0947 (14)
H34R	0.387764	0.5811/1	0.528285	0.082*
H34C	0.441577	0.616307	0.544800	0.082*
C132	0.441377 0.62007 (5)	0.010397 0.45770(6)	0.344800 0.32037 (7)	0.082°
C123	0.02997(5) 0.45083(6)	0.43770(0) 0.68373(7)	0.32937(7) 0.12537(7)	0.0361(2)
C125	0.45985(0) 0.26757(5)	0.08373(7) 0.38843(5)	0.12337(7) 0.35292(6)	0.0404(3)
C121	0.20757(5) 0.31804(7)	0.500+3(5)	-0.00345(7)	0.0207(2)
C121 D2	0.31694(7) 0.20012(5)	0.09203(0) 0.45186(5)	-0.00343(7)	0.0430(3)
1 2 Cl22	0.30013(3)	0.45180(5)	-0.02568(8)	0.0205(2)
C122	0.43001(8)	0.00320(0)	-0.02308(8)	0.0490(3)
DI	0.12830(8) 0.10225(6)	0.70993(6)	0.38003(9) 0.17026(7)	0.0333(3)
FI Cl12	0.19555(0)	0.00379(0)	0.17020(7)	0.0512(2)
C112 D5	0.25254(7)	0.03031(9)	0.48017(7)	0.0588(4)
P5 Claa	0.15805(5)	0.11087(5)	0.183/3(6)	0.0269(2)
C133	0.513/4(7)	0.36110 (6)	0.25932(10)	0.0578(4)
	0.3661 (3)	0.1630 (3)	0.2143 (4)	0.0593 (15)
HI/A	0.412707	0.141448	0.232801	$0.0/1^{*}$
0.12	0.12303 (6)	0.55772(6)	0.38694 (7)	0.0401 (2)
043	0.25654 (16)	0.39996 (18)	0.43804 (17)	0.0384 (/)
C27	0.1282 (3)	0.2266 (3)	0.3676 (3)	0.0498 (12)
H2/A	0.152949	0.262532	0.405660	0.060*
C24	0.3597 (3)	0.3797 (3)	-0.0347 (3)	0.0517 (13)
H24A	0.400407	0.347059	-0.025809	0.078*
H24B	0.371812	0.425675	-0.052334	0.078*
H24C	0.316239	0.360759	-0.077846	0.078*
C18	0.3581 (3)	0.2309 (3)	0.1845 (4)	0.0697 (19)
H18A	0.399159	0.255730	0.181982	0.084*

~~~				0.00.00
C22	0.3937 (2)	0.6348 (2)	0.0479 (3)	0.0349 (9)
C37	0.0749 (3)	0.1112 (2)	-0.0673 (3)	0.0399 (10)
H37A	0.091711	0.100427	-0.111267	0.048*
C42	0.0823 (2)	0.40435 (13)	0.16142 (14)	0.0338 (9)
C35	0.0956 (2)	0.1197 (2)	0.0784 (2)	0.0295 (8)
C11	0.2067 (2)	0.6251 (2)	0.3161 (3)	0.0304 (8)
C33	0.4738 (3)	0.7416 (2)	0.3975 (3)	0.0421 (11)
H33A	0.498876	0.784439	0.390338	0.063*
H33B	0.485591	0.732526	0.456890	0.063*
H33C	0.421165	0.748114	0.370676	0.063*
N1	0.1799 (2)	0.6714 (2)	0.2578 (2)	0.0378 (8)
N4	0.18567 (18)	0.38005 (19)	0.2877 (2)	0.0323 (7)
C26	0.1568 (3)	0.2016 (2)	0.3094 (3)	0.0401 (10)
H26A	0.199860	0.221571	0.305818	0.048*
C36	0.1206 (2)	0.1040 (2)	0.0137 (3)	0.0356 (9)
H36A	0.169085	0.088357	0.025862	0.043*
C45	0.1794 (2)	0.0201 (2)	0.2100 (3)	0.0293 (8)
C25	0.1212 (2)	0.1468 (2)	0.2567 (3)	0.0291 (8)
C46	0.1695 (2)	-0.0331 (2)	0.1508 (3)	0.0326 (9)
H46A	0.149630	-0.022265	0.093221	0.039*
C30	0.0579 (2)	0.1178 (2)	0.2615 (3)	0.0370 (10)
H30A	0.034868	0.079325	0.226658	0.044*
C28	0.0641 (3)	0.1992 (3)	0.3701 (3)	0.0475 (12)
H28A	0.044067	0.217793	0.408527	0.057*
C48	0.2175 (3)	-0.1178 (3)	0.2604 (3)	0.0437 (11)
H48A	0.228090	-0.165482	0.277662	0.052*
C29	0.0285 (3)	0.1450 (3)	0.3172 (3)	0.0441 (11)
H29A	-0.015810	0.126713	0.319146	0.053*
C14	0.3054 (3)	0.7467 (3)	0.1957 (3)	0.0460 (11)
H14A	0.320509	0.789805	0.174748	0.069*
H14B	0.331454	0.706144	0.184517	0.069*
H14C	0.316698	0.751020	0.255688	0.069*
C50	0.2109 (3)	0.0040 (3)	0.2937 (3)	0.0441 (11)
H50A	0.218762	0.040381	0.333944	0.053*
C49	0.2311 (3)	-0.0648 (3)	0.3195 (3)	0.0508 (13)
H49A	0.254012	-0.075361	0.376863	0.061*
C23	0.1674 (3)	0.4876 (3)	-0.0238 (3)	0.0471 (12)
H23A	0.121274	0.469135	-0.062383	0.071*
H23B	0.178200	0.532806	-0.044585	0.071*
H23C	0.163766	0.494584	0.031007	0.071*
C44	0.3783 (3)	0.3044 (3)	0.3774 (5)	0.0712 (19)
H44A	0.389015	0.255147	0.368709	0.107*
H44B	0.404772	0.317577	0.435429	0.107*
H44C	0.393517	0.335028	0.340694	0.107*

Atomic displacement parameters  $(Å^2)$ 

	$U^{11}$	$U^{22}$	U ³³	$U^{12}$	$U^{13}$	<i>U</i> ²³
Lu1	0.02115 (10)	0.02505 (11)	0.02073 (10)	-0.00046 (7)	0.01006 (7)	-0.00134 (7)
Cl1A	0.0320 (6)	0.0588 (8)	0.0284 (6)	-0.0052 (5)	0.0078 (4)	-0.0129 (5)
Cl2A	0.0338 (7)	0.0854 (12)	0.0309 (6)	-0.0266 (7)	0.0068 (5)	0.0069 (6)
Cl3A	0.0265 (7)	0.0439 (8)	0.0990 (15)	0.0123 (5)	0.0001 (8)	-0.0143 (8)
C43A	0.035 (5)	0.098 (13)	0.022 (5)	-0.004 (6)	0.010 (4)	-0.007 (6)
C43B	0.050 (13)	0.10(2)	0.028 (8)	-0.027 (14)	0.018 (8)	-0.009 (11)
P3	0.0241 (5)	0.0322 (5)	0.0251 (5)	-0.0023 (4)	0.0122 (4)	-0.0077 (4)
O32	0.0239 (13)	0.0268 (14)	0.0304 (14)	0.0010 (10)	0.0127 (11)	-0.0002 (11)
O42	0.0266 (14)	0.0389 (16)	0.0280 (14)	-0.0066 (12)	0.0098 (11)	0.0010 (12)
N2	0.044 (2)	0.0349 (19)	0.0246 (16)	-0.0058 (15)	0.0205 (15)	-0.0026 (14)
O12	0.0304 (14)	0.0394 (16)	0.0289 (14)	0.0037 (12)	0.0173 (11)	-0.0036 (12)
011	0.0269 (13)	0.0276 (14)	0.0282 (13)	0.0031 (11)	0.0106 (11)	0.0023 (11)
O41	0.0250 (13)	0.0280 (14)	0.0268 (13)	-0.0045 (11)	0.0115 (10)	0.0027 (11)
O24	0.0471 (18)	0.0345 (16)	0.0330 (15)	0.0067 (13)	0.0185 (13)	-0.0024 (12)
C12	0.036 (2)	0.037 (2)	0.047 (2)	-0.0037 (18)	0.025 (2)	-0.0111 (19)
O33	0.0411 (17)	0.0325 (15)	0.0485 (17)	-0.0087 (13)	0.0274 (14)	-0.0149 (13)
O23	0.0378 (16)	0.0391 (16)	0.0259 (13)	-0.0037 (13)	0.0095 (12)	-0.0040 (12)
O34	0.0335 (15)	0.062 (2)	0.0239 (14)	0.0013 (15)	0.0105 (12)	-0.0060 (13)
013	0.0336 (16)	0.0481 (19)	0.0436 (17)	0.0081 (14)	0.0133 (13)	0.0067 (15)
C19	0.071 (4)	0.047 (3)	0.088 (4)	-0.018 (3)	0.048 (3)	0.001 (3)
O22	0.0261 (13)	0.0276 (13)	0.0236 (12)	-0.0026 (11)	0.0117 (10)	-0.0009 (10)
C31	0.0262 (19)	0.033 (2)	0.0235 (18)	0.0015 (16)	0.0137 (15)	-0.0003 (16)
C40	0.030 (2)	0.046 (3)	0.037 (2)	-0.0005 (19)	0.0184 (18)	-0.0008 (19)
O31	0.0257 (13)	0.0301 (14)	0.0265 (13)	-0.0015 (11)	0.0101 (11)	-0.0107 (11)
014	0.0423 (17)	0.0304 (15)	0.0460 (17)	0.0007 (13)	0.0191 (14)	0.0014 (13)
C15	0.0262 (19)	0.033 (2)	0.044 (2)	-0.0043 (17)	0.0188 (18)	-0.0054 (18)
O21	0.0372 (15)	0.0238 (13)	0.0271 (13)	-0.0045 (11)	0.0152 (11)	-0.0030 (11)
C21	0.0284 (19)	0.0260 (19)	0.0283 (19)	0.0010 (15)	0.0156 (15)	0.0024 (15)
C13	0.038 (3)	0.062 (3)	0.041 (3)	-0.001 (2)	0.004 (2)	0.012 (2)
O44	0.0386 (17)	0.0305 (16)	0.0494 (18)	-0.0038 (13)	0.0103 (14)	0.0004 (14)
C16	0.035 (2)	0.041 (2)	0.054 (3)	0.0012 (19)	0.022 (2)	-0.011 (2)
C20	0.042 (3)	0.038 (3)	0.080 (4)	-0.002(2)	0.031 (3)	0.006 (2)
C38	0.042 (3)	0.048 (3)	0.036 (2)	0.001 (2)	0.014 (2)	0.001 (2)
C47	0.043 (2)	0.028 (2)	0.035 (2)	-0.0015 (18)	0.0112 (18)	-0.0069 (17)
Cl31	0.0661 (8)	0.0943 (11)	0.0340 (6)	0.0326 (8)	0.0301 (6)	0.0042 (6)
C39	0.033 (2)	0.059 (3)	0.044 (3)	0.004 (2)	0.017 (2)	0.001 (2)
C32	0.0235 (19)	0.035 (2)	0.036 (2)	0.0007 (16)	0.0128 (16)	-0.0083 (18)
N3	0.0226 (15)	0.0347 (18)	0.0311 (17)	-0.0026 (14)	0.0116 (13)	-0.0096 (14)
C41	0.0231 (18)	0.038 (2)	0.0265 (18)	-0.0052 (16)	0.0130 (15)	-0.0035 (16)
C34	0.057 (3)	0.079 (4)	0.036 (2)	0.004 (3)	0.026 (2)	0.005 (3)
C132	0.0244 (5)	0.0423 (6)	0.0489 (6)	0.0026 (4)	0.0147 (4)	-0.0055 (5)
C123	0.0473 (6)	0.0497 (6)	0.0477 (6)	-0.0208 (5)	0.0236 (5)	-0.0074 (5)
P4	0.0257 (5)	0.0309 (5)	0.0236 (4)	-0.0058 (4)	0.0090 (4)	-0.0002 (4)
Cl21	0.0603 (7)	0.0313 (5)	0.0444 (6)	0.0030 (5)	0.0197 (5)	0.0061 (4)
P2	0.0324 (5)	0.0267 (5)	0.0221 (4)	-0.0016 (4)	0.0117 (4)	-0.0025 (4)

C122	0.0750 (8)	0.0408 (6)	0.0563 (7)	-0.0076 (6)	0.0518 (7)	-0.0036 (5)
Cl11	0.0743 (9)	0.0363 (6)	0.0838 (9)	0.0015 (6)	0.0624 (8)	-0.0098 (6)
P1	0.0307 (5)	0.0289 (5)	0.0377 (5)	0.0043 (4)	0.0168 (4)	0.0022 (4)
Cl12	0.0466 (7)	0.0989 (11)	0.0363 (6)	-0.0137 (7)	0.0214 (5)	-0.0248 (6)
P5	0.0251 (5)	0.0239 (5)	0.0350 (5)	-0.0003 (4)	0.0148 (4)	-0.0009 (4)
C133	0.0422 (6)	0.0358 (6)	0.1030 (11)	-0.0048 (5)	0.0352 (7)	-0.0249 (6)
C17	0.034 (3)	0.064 (4)	0.089 (4)	-0.010 (2)	0.033 (3)	-0.024 (3)
Cl13	0.0374 (5)	0.0375 (5)	0.0553 (6)	-0.0033 (4)	0.0288 (5)	-0.0018 (5)
O43	0.0329 (15)	0.056 (2)	0.0278 (14)	-0.0135 (14)	0.0127 (12)	-0.0029 (13)
C27	0.069 (3)	0.036 (3)	0.054 (3)	-0.005 (2)	0.034 (3)	-0.014 (2)
C24	0.062 (3)	0.059 (3)	0.042 (3)	0.019 (3)	0.029 (2)	-0.005 (2)
C18	0.058 (4)	0.065 (4)	0.110 (5)	-0.028 (3)	0.058 (4)	-0.025 (4)
C22	0.047 (2)	0.030 (2)	0.036 (2)	-0.0040 (18)	0.025 (2)	-0.0032 (17)
C37	0.051 (3)	0.040 (2)	0.038 (2)	0.003 (2)	0.027 (2)	0.0028 (19)
C42	0.026 (2)	0.045 (2)	0.030 (2)	-0.0038 (18)	0.0100 (16)	0.0006 (18)
C35	0.028 (2)	0.029 (2)	0.033 (2)	0.0018 (16)	0.0138 (16)	0.0035 (16)
C11	0.0274 (19)	0.035 (2)	0.034 (2)	-0.0052 (17)	0.0179 (17)	-0.0082 (18)
C33	0.047 (3)	0.035 (2)	0.046 (3)	-0.001 (2)	0.018 (2)	-0.015 (2)
N1	0.040 (2)	0.036 (2)	0.046 (2)	0.0044 (16)	0.0254 (17)	-0.0050 (16)
N4	0.0270 (17)	0.0395 (19)	0.0287 (17)	-0.0085 (15)	0.0076 (14)	0.0042 (15)
C26	0.044 (3)	0.035 (2)	0.049 (3)	-0.0058 (19)	0.026 (2)	-0.010 (2)
C36	0.035 (2)	0.038 (2)	0.040 (2)	0.0021 (18)	0.0205 (19)	0.0043 (19)
C45	0.032 (2)	0.0245 (19)	0.033 (2)	0.0013 (16)	0.0127 (17)	-0.0016 (16)
C25	0.030 (2)	0.0250 (19)	0.036 (2)	0.0004 (16)	0.0161 (17)	-0.0017 (16)
C46	0.038 (2)	0.029 (2)	0.030 (2)	0.0029 (17)	0.0116 (17)	-0.0005 (16)
C30	0.040 (2)	0.039 (2)	0.038 (2)	-0.0034 (19)	0.0219 (19)	-0.0003 (19)
C28	0.071 (3)	0.038 (3)	0.052 (3)	0.009 (2)	0.044 (3)	0.002 (2)
C48	0.063 (3)	0.034 (2)	0.039 (2)	0.013 (2)	0.024 (2)	0.0066 (19)
C29	0.046 (3)	0.048 (3)	0.050 (3)	-0.002 (2)	0.030 (2)	0.003 (2)
C14	0.042 (3)	0.035 (2)	0.065 (3)	-0.003 (2)	0.024 (2)	-0.009 (2)
C50	0.065 (3)	0.038 (2)	0.030 (2)	0.006 (2)	0.017 (2)	-0.0065 (19)
C49	0.082 (4)	0.040 (3)	0.031 (2)	0.021 (3)	0.021 (2)	0.006 (2)
C23	0.040 (3)	0.063 (3)	0.036 (2)	0.008 (2)	0.010 (2)	0.000 (2)
C44	0.044 (3)	0.041 (3)	0.114 (5)	0.006 (2)	0.010 (3)	-0.016 (3)

# Geometric parameters (Å, °)

Lu1—O41	2.236 (3)	C20—H20A	0.9500
Lu1-011	2.247 (3)	C38—C39	1.378 (6)
Lu1—021	2.249 (3)	C38—C37	1.388 (7)
Lu1-031	2.267 (3)	C38—H38A	0.9500
Lu1-032	2.348 (3)	C47—C48	1.376 (6)
Lu1-012	2.353 (3)	C47—C46	1.389 (6)
Lu1—042	2.384 (3)	C47—H47A	0.9500
Lu1—022	2.411 (2)	Cl31—C32	1.775 (4)
Cl1A—C42	1.7529 (10)	C39—H39A	0.9500
Cl2A—C42	1.769 (3)	C32—Cl32	1.758 (4)
Cl3A—C42	1.748 (3)	C32—C133	1.768 (4)

Cl1B—C42	1.7495 (10)	C41—N4	1.306 (5)
Cl2B—C42	1.7508 (10)	C41—C42	1.586 (5)
Cl3B—C42	1.7508 (10)	C34—H34A	0.9800
C43A—O43	1.468 (13)	C34—H34B	0.9800
C43A—H43A	0.9800	C34—H34C	0.9800
C43A—H43B	0.9800	Cl23—C22	1.761 (5)
C43A—H43C	0.9800	P4—O43	1.571 (3)
C43B—O43	1.38 (2)	P4—N4	1.613 (3)
C43B—H43D	0.9800	Cl21—C22	1.795 (5)
C43B—H43E	0.9800	Cl22—C22	1.761 (4)
C43B—H43F	0.9800	P1—N1	1.624 (4)
P3—O31	1.483 (3)	P5—C45	1.789 (4)
Р3—О33	1.570 (3)	P5—C25	1.793 (4)
P3—O34	1.573 (3)	P5—C35	1.801 (4)
P3—N3	1.618 (3)	C17—C18	1.372 (9)
O32—C31	1.245 (5)	C17—H17A	0.9500
O42—C41	1.242 (5)	C27—C28	1.379 (7)
N2—C21	1.315 (5)	C27—C26	1.395 (6)
N2—P2	1.613 (3)	С27—Н27А	0.9500
O12—C11	1.238 (5)	C24—H24A	0.9800
O11—P1	1.489 (3)	C24—H24B	0.9800
O41—P4	1.485 (3)	C24—H24C	0.9800
O24—C24	1.436 (5)	C18—H18A	0.9500
O24—P2	1.573 (3)	C37—C36	1.371 (6)
C12—C11	1.569 (5)	С37—Н37А	0.9500
C12—Cl11	1.755 (5)	C35—C36	1.400 (6)
C12—Cl12	1.768 (5)	C11—N1	1.295 (6)
C12—Cl13	1.784 (5)	С33—Н33А	0.9800
O33—C33	1.459 (5)	С33—Н33В	0.9800
O23—C23	1.435 (6)	С33—Н33С	0.9800
O23—P2	1.574 (3)	C26—C25	1.394 (6)
O34—C34	1.428 (6)	C26—H26A	0.9500
O13—C13	1.438 (6)	С36—Н36А	0.9500
O13—P1	1.575 (3)	C45—C50	1.386 (6)
C19—C20	1.381 (7)	C45—C46	1.396 (6)
C19—C18	1.383 (9)	C25—C30	1.392 (6)
С19—Н19А	0.9500	C46—H46A	0.9500
O22—C21	1.233 (4)	C30—C29	1.383 (6)
C31—N3	1.310 (5)	С30—Н30А	0.9500
C31—C32	1.562 (5)	C28—C29	1.387 (7)
C40—C35	1.380 (6)	C28—H28A	0.9500
C40—C39	1.389 (6)	C48—C49	1.386 (7)
C40—H40A	0.9500	C48—H48A	0.9500
O14—C14	1.443 (6)	С29—Н29А	0.9500
O14—P1	1.575 (3)	C14—H14A	0.9800
C15—C16	1.386 (6)	C14—H14B	0.9800
C15—C20	1.389 (7)	C14—H14C	0.9800
C15—P5	1.793 (4)	C50—C49	1.388 (7)

O21—P2	1.486 (3)	C50—H50A	0.9500
C21—C22	1.564 (5)	C49—H49A	0.9500
C13—H13A	0.9800	C23—H23A	0.9800
C13—H13B	0.9800	C23—H23B	0.9800
C13—H13C	0.9800	C23—H23C	0.9800
O44—C44	1.429 (6)	C44—H44A	0.9800
O44—P4	1.580 (3)	C44—H44B	0.9800
C16—C17	1.388 (7)	C44—H44C	0.9800
C16—H16A	0.9500		
O41—Lu1—O11	144.31 (9)	O43—P4—N4	103.19 (17)
O41—Lu1—O21	95.67 (10)	O44—P4—N4	104.89 (18)
O11—Lu1—O21	93.77 (10)	O21—P2—O24	108.19 (16)
O41—Lu1—O31	97.62 (10)	O21—P2—O23	111.94 (16)
O11—Lu1—O31	94.91 (10)	O24—P2—O23	101.42 (17)
O21—Lu1—O31	143.48 (9)	O21—P2—N2	118.37 (16)
O41—Lu1—O32	72.95 (9)	O24—P2—N2	109.09 (18)
O11—Lu1—O32	142.71 (9)	O23—P2—N2	106.48 (18)
O21—Lu1—O32	76.16 (10)	O11—P1—O14	110.56 (16)
O31—Lu1—O32	75.55 (9)	O11—P1—O13	112.85 (17)
O41—Lu1—O12	75.91 (10)	O14—P1—O13	101.61 (18)
O11—Lu1—O12	76.47 (10)	O11—P1—N1	118.28 (18)
O21—Lu1—O12	144.40 (10)	O14—P1—N1	109.21 (19)
O31—Lu1—O12	72.05 (9)	O13—P1—N1	102.84 (19)
O32—Lu1—O12	130.89 (9)	C45—P5—C25	107.76 (19)
O41—Lu1—O42	75.53 (9)	C45—P5—C15	109.8 (2)
O11—Lu1—O42	75.00 (10)	C25—P5—C15	110.48 (19)
O21—Lu1—O42	71.68 (10)	C45—P5—C35	111.05 (19)
O31—Lu1—O42	144.72 (9)	C25—P5—C35	111.61 (19)
O32—Lu1—O42	131.78 (10)	C15—P5—C35	106.1 (2)
O12—Lu1—O42	72.73 (10)	C18—C17—C16	120.2 (5)
O41—Lu1—O22	144.98 (9)	C18—C17—H17A	119.9
O11—Lu1—O22	70.70 (9)	С16—С17—Н17А	119.9
O21—Lu1—O22	76.01 (9)	C43B—O43—P4	120.7 (8)
O31—Lu1—O22	73.62 (9)	C43A—O43—P4	118.8 (5)
O32—Lu1—O22	72.03 (9)	C28—C27—C26	120.1 (5)
O12—Lu1—O22	129.42 (10)	С28—С27—Н27А	119.9
O42—Lu1—O22	130.44 (9)	С26—С27—Н27А	119.9
O43—C43A—H43A	109.5	O24—C24—H24A	109.5
O43—C43A—H43B	109.5	O24—C24—H24B	109.5
H43A—C43A—H43B	109.5	H24A—C24—H24B	109.5
O43—C43A—H43C	109.5	O24—C24—H24C	109.5
H43A—C43A—H43C	109.5	H24A—C24—H24C	109.5
H43B—C43A—H43C	109.5	H24B—C24—H24C	109.5
O43—C43B—H43D	109.5	C17—C18—C19	120.8 (5)
O43—C43B—H43E	109.5	C17—C18—H18A	119.6
H43D—C43B—H43E	109.5	C19—C18—H18A	119.6
O43—C43B—H43F	109.5	C21-C22-C123	112.0 (3)

H43D—C43B—H43F	109.5	C21—C22—Cl22	112.1 (3)
H43E—C43B—H43F	109.5	Cl23—C22—Cl22	109.2 (2)
O31—P3—O33	113.02 (17)	C21—C22—Cl21	107.0 (3)
O31—P3—O34	110.61 (16)	Cl23—C22—Cl21	107.9 (2)
O33—P3—O34	102.89 (18)	Cl22—C22—Cl21	108.4 (2)
O31—P3—N3	119.15 (16)	C36—C37—C38	120.0 (4)
O33—P3—N3	102.54 (17)	С36—С37—Н37А	120.0
O34—P3—N3	107.14 (18)	С38—С37—Н37А	120.0
C31—O32—Lu1	133.1 (3)	C41—C42—Cl3A	108.3 (2)
C41—O42—Lu1	135.7 (3)	C41—C42—Cl1B	117.2 (8)
C21—N2—P2	122.1 (3)	C41—C42—Cl3B	111.3 (6)
C11—O12—Lu1	135.1 (3)	Cl1B—C42—Cl3B	113.7 (9)
P1—O11—Lu1	134.02 (16)	C41—C42—Cl2B	110.4 (4)
P4—O41—Lu1	135.81 (16)	Cl1B—C42—Cl2B	105.3 (9)
C24—O24—P2	120.6 (3)	Cl3B—C42—Cl2B	96.7 (7)
C11—C12—C111	113.8 (3)	C41—C42—Cl1A	107.1 (2)
C11—C12—C112	110.3 (3)	Cl3A—C42—Cl1A	109.95 (17)
Cl11—C12—Cl12	108.8 (2)	C41—C42—Cl2A	113.0 (2)
C11—C12—C113	106.7 (3)	Cl3A—C42—Cl2A	110.40 (19)
Cl11—C12—Cl13	109.3 (2)	Cl1A—C42—Cl2A	108.00 (15)
Cl12—C12—Cl13	107.7 (3)	C40—C35—C36	120.1 (4)
С33—О33—Р3	118.2 (3)	C40—C35—P5	121.5 (3)
C23—O23—P2	117.0 (3)	C36—C35—P5	118.3 (3)
C34—O34—P3	123.4 (3)	012—C11—N1	132.8 (4)
C13—O13—P1	118.7 (3)	012-011-012	113.3 (4)
C20-C19-C18	119.5 (5)	N1-C11-C12	113.9 (4)
С20—С19—Н19А	120.2	033—C33—H33A	109.5
C18—C19—H19A	120.2	O33—C33—H33B	109.5
C21—O22—Lu1	131.7 (2)	H33A—C33—H33B	109.5
032—C31—N3	131.5 (4)	O33—C33—H33C	109.5
O32—C31—C32	114.0 (3)	H33A—C33—H33C	109.5
N3—C31—C32	114.4 (3)	H33B—C33—H33C	109.5
C35—C40—C39	119.3 (4)	C11—N1—P1	121.3 (3)
С35—С40—Н40А	120.3	C41—N4—P4	120.0 (3)
С39—С40—Н40А	120.3	C25—C26—C27	118.8 (4)
P3—O31—Lu1	133.10 (15)	C25—C26—H26A	120.6
C14—O14—P1	118.4 (3)	С27—С26—Н26А	120.6
C16—C15—C20	120.5 (4)	C37—C36—C35	119.9 (4)
C16—C15—P5	121.6 (3)	С37—С36—Н36А	120.0
C20—C15—P5	117.8 (3)	С35—С36—Н36А	120.0
P2-021-Lu1	133.92 (16)	C50—C45—C46	119.6 (4)
022—C21—N2	132.0 (4)	C50—C45—P5	116.9 (3)
O22—C21—C22	115.7 (3)	C46—C45—P5	123.3 (3)
N2—C21—C22	112.3 (3)	C30—C25—C26	120.7 (4)
O13—C13—H13A	109.5	C30—C25—P5	119.1 (3)
O13—C13—H13B	109.5	C26—C25—P5	120.2 (3)
H13A—C13—H13B	109.5	C47—C46—C45	119.3 (4)
O13—C13—H13C	109.5	C47—C46—H46A	120.3

H13A—C13—H13C	109.5	C45—C46—H46A	120.3
H13B—C13—H13C	109.5	C29—C30—C25	119.9 (4)
C44—O44—P4	120.3 (3)	С29—С30—Н30А	120.1
C15—C16—C17	119.1 (5)	С25—С30—Н30А	120.1
C15—C16—H16A	120.5	C27—C28—C29	120.9 (4)
C17—C16—H16A	120.5	C27—C28—H28A	119.6
C19—C20—C15	119.8 (5)	C29—C28—H28A	119.6
C19—C20—H20A	120.1	C47—C48—C49	120.5 (4)
C15—C20—H20A	120.1	C47—C48—H48A	119.8
C39—C38—C37	120.0 (4)	C49—C48—H48A	119.8
С39—С38—Н38А	120.0	C30—C29—C28	119.5 (4)
С37—С38—Н38А	120.0	С30—С29—Н29А	120.2
C48—C47—C46	120.5 (4)	С28—С29—Н29А	120.2
С48—С47—Н47А	119.8	O14—C14—H14A	109.5
C46—C47—H47A	119.8	O14—C14—H14B	109.5
C38—C39—C40	120.5 (4)	H14A—C14—H14B	109.5
С38—С39—Н39А	119.7	O14—C14—H14C	109.5
C40—C39—H39A	119.7	H14A - C14 - H14C	109.5
$C_{31}$ $-C_{32}$ $-C_{132}$	113.9 (3)	H14B— $C14$ — $H14C$	109.5
$C_{31} - C_{32} - C_{133}$	110.9 (3)	C45—C50—C49	120.7 (4)
Cl32—C32—Cl33	107.4 (2)	C45—C50—H50A	119.6
C31—C32—Cl31	106.1 (3)	С49—С50—Н50А	119.6
Cl32—C32—Cl31	108.5 (2)	C48—C49—C50	119.2 (4)
Cl33—C32—Cl31	109.9 (2)	C48—C49—H49A	120.4
C31—N3—P3	118.4 (3)	С50—С49—Н49А	120.4
042—C41—N4	132.5 (4)	O23—C23—H23A	109.5
O42—C41—C42	113.0 (3)	O23—C23—H23B	109.5
N4—C41—C42	114.4 (3)	H23A—C23—H23B	109.5
O34—C34—H34A	109.5	O23—C23—H23C	109.5
O34—C34—H34B	109.5	H23A—C23—H23C	109.5
H34A—C34—H34B	109.5	H23B—C23—H23C	109.5
O34—C34—H34C	109.5	O44—C44—H44A	109.5
H34A—C34—H34C	109.5	O44—C44—H44B	109.5
H34B—C34—H34C	109.5	H44A—C44—H44B	109.5
O41—P4—O43	112.25 (16)	O44—C44—H44C	109.5
O41—P4—O44	110.09 (17)	H44A—C44—H44C	109.5
O43—P4—O44	105.16 (18)	H44B—C44—H44C	109.5
O41—P4—N4	120.01 (17)		
O31—P3—O33—C33	61.0 (3)	O22—C21—C22—C123	21.9 (5)
O34—P3—O33—C33	-58.3 (3)	N2—C21—C22—Cl23	-160.4(3)
N3—P3—O33—C33	-169.4(3)	O22—C21—C22—C122	145.0 (3)
O31—P3—O34—C34	3.1 (5)	N2—C21—C22—Cl22	-37.2(5)
O33—P3—O34—C34	124.1 (4)	O22—C21—C22—Cl21	-96.2 (4)
N3—P3—O34—C34	-128.2 (4)	N2-C21-C22-Cl21	81.5 (4)
Lu1—O32—C31—N3	31.3 (6)	C39—C38—C37—C36	1.6 (7)
Lu1—O32—C31—C32	-146.0 (3)	O42—C41—C42—Cl3A	-46.1 (3)
O33—P3—O31—Lu1	137.0 (2)	N4—C41—C42—Cl3A	136.8 (3)
			- (-)

O34—P3—O31—Lu1	-108.3 (2)	O42—C41—C42—C11B	112.4 (9)
N3—P3—O31—Lu1	16.5 (3)	N4—C41—C42—Cl1B	-64.6 (9)
Lu1—O22—C21—N2	-17.2 (7)	O42—C41—C42—Cl3B	-20.9 (7)
Lu1—O22—C21—C22	160.1 (3)	N4—C41—C42—Cl3B	162.0 (7)
P2—N2—C21—O22	-6.7 (7)	O42—C41—C42—Cl2B	-127.1 (6)
P2—N2—C21—C22	176.0 (3)	N4—C41—C42—Cl2B	55.9 (6)
C20-C15-C16-C17	-1.9 (7)	O42—C41—C42—C11A	72.4 (3)
P5-C15-C16-C17	175.4 (4)	N4—C41—C42—Cl1A	-104.6(3)
C18—C19—C20—C15	1.1 (9)	O42—C41—C42—Cl2A	-168.8(3)
C16—C15—C20—C19	0.8 (8)	N4—C41—C42—Cl2A	14.2 (4)
P5-C15-C20-C19	-176.6 (4)	C39—C40—C35—C36	2.9 (7)
C37—C38—C39—C40	-1.2 (8)	C39—C40—C35—P5	179.2 (4)
C35—C40—C39—C38	-1.0(7)	C45—P5—C35—C40	114.3 (4)
O32—C31—C32—Cl32	-150.1(3)	C25—P5—C35—C40	-5.9(4)
N3—C31—C32—Cl32	32.1 (5)	C15—P5—C35—C40	-126.4(4)
O32—C31—C32—Cl33	-28.8(4)	C45—P5—C35—C36	-69.2(4)
N3—C31—C32—Cl33	153.5 (3)	C25—P5—C35—C36	170.5 (3)
032—C31—C32—Cl31	90.6 (4)	C15—P5—C35—C36	50.1 (4)
N3—C31—C32—Cl31	-87.2 (4)	Lu1—012—C11—N1	-3.7(7)
O32—C31—N3—P3	1.4 (6)	Lu1—012—C11—C12	175.0 (3)
C32—C31—N3—P3	178.7 (3)	Cl11—C12—C11—O12	171.8 (3)
O31—P3—N3—C31	-24.1(4)	Cl12—C12—C11—O12	49.2 (4)
O33—P3—N3—C31	-149.7(3)	Cl13—C12—C11—O12	-67.6 (4)
O34—P3—N3—C31	102.3 (3)	Cl11—C12—C11—N1	-9.2(5)
Lu1—O42—C41—N4	8.0 (7)	Cl12—C12—C11—N1	-131.8 (3)
Lu1—O42—C41—C42	-168.3(2)	Cl13—C12—C11—N1	111.4 (4)
Lu1—O41—P4—O43	-120.8(2)	O12—C11—N1—P1	7.2 (7)
Lu1—O41—P4—O44	122.4 (2)	C12—C11—N1—P1	-171.6(3)
Lu1—O41—P4—N4	0.6 (3)	O11—P1—N1—C11	3.1 (4)
C44—O44—P4—O41	20.0 (5)	O14—P1—N1—C11	-124.5 (4)
C44—O44—P4—O43	-101.1 (4)	O13—P1—N1—C11	128.2 (4)
C44—O44—P4—N4	150.4 (4)	O42—C41—N4—P4	-0.9 (7)
Lu1—O21—P2—O24	135.4 (2)	C42—C41—N4—P4	175.4 (2)
Lu1—O21—P2—O23	-113.7 (2)	O41—P4—N4—C41	-3.3 (4)
Lu1—O21—P2—N2	10.7 (3)	O43—P4—N4—C41	122.5 (3)
C24—O24—P2—O21	-179.8(4)	O44—P4—N4—C41	-127.6(3)
C24—O24—P2—O23	62.3 (4)	C28—C27—C26—C25	-2.7(8)
C24—O24—P2—N2	-49.8 (4)	C38—C37—C36—C35	0.2 (7)
C23—O23—P2—O21	64.1 (3)	C40—C35—C36—C37	-2.5(7)
C23—O23—P2—O24	179.3 (3)	P5-C35-C36-C37	-179.0(3)
$C_{23} = O_{23} = P_{2} = N_{2}$	-66.7 (3)	C25—P5—C45—C50	-41.1 (4)
$C_{21} - N_{2} - P_{2} - O_{21}$	10.3 (4)	$C_{15}$ $P_{5}$ $C_{45}$ $C_{50}$	79.3 (4)
$C_{21} = N_{2} = P_{2} = O_{24}$	-114.0(3)	$C_{35}$ $P_{5}$ $C_{45}$ $C_{50}$	-163.6(4)
$C_{21} = N_{2} = P_{2} = O_{23}$	137.3 (3)	$C_{25}$ $P_{5}$ $C_{45}$ $C_{46}$	142.4 (4)
Lu1—O11—P1—O14	109.5 (2)	C15—P5—C45—C46	-97.2 (4)
Lu1—O11—P1—O13	-137.5(2)	C35—P5—C45—C46	19.8 (4)
Lu1—O11—P1—N1	-17.4 (3)	C27-C26-C25-C30	0.4 (7)
C14 - O14 - P1 - O11	-50.8(3)	C27—C26—C25—P5	-177.6(4)
	2010 (0)		1,1,0 (1)

C14—O14—P1—O13	-170.8 (3)	C45—P5—C25—C30	-60.7 (4)
C14—O14—P1—N1	81.0 (3)	C15—P5—C25—C30	179.3 (3)
C13—O13—P1—O11	-42.9 (4)	C35—P5—C25—C30	61.5 (4)
C13—O13—P1—O14	75.5 (4)	C45—P5—C25—C26	117.4 (4)
C13—O13—P1—N1	-171.4 (4)	C15—P5—C25—C26	-2.6 (4)
C16—C15—P5—C45	-5.9 (4)	C35—P5—C25—C26	-120.4 (4)
C20-C15-P5-C45	171.5 (4)	C48—C47—C46—C45	0.1 (7)
C16—C15—P5—C25	112.9 (4)	C50—C45—C46—C47	2.4 (7)
C20-C15-P5-C25	-69.8 (4)	P5-C45-C46-C47	178.8 (3)
C16—C15—P5—C35	-126.0 (4)	C26—C25—C30—C29	2.2 (7)
C20—C15—P5—C35	51.4 (4)	P5-C25-C30-C29	-179.7 (4)
C15—C16—C17—C18	1.2 (8)	C26—C27—C28—C29	2.3 (8)
O41—P4—O43—C43B	-19 (3)	C46—C47—C48—C49	-3.5 (8)
O44—P4—O43—C43B	101 (3)	C25—C30—C29—C28	-2.6 (7)
N4—P4—O43—C43B	-150 (3)	C27—C28—C29—C30	0.3 (8)
O41—P4—O43—C43A	-56.0 (15)	C46—C45—C50—C49	-1.5 (8)
O44—P4—O43—C43A	63.6 (15)	P5-C45-C50-C49	-178.2 (4)
N4—P4—O43—C43A	173.3 (14)	C47—C48—C49—C50	4.4 (9)
C16-C17-C18-C19	0.7 (10)	C45—C50—C49—C48	-1.9 (9)
C20-C19-C18-C17	-1.9 (10)		

# Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C26—H26A····O44	0.95	2.56	3.402 (6)	148
C14—H14 <i>B</i> ···O22	0.98	2.61	3.561 (5)	164
C43 <i>B</i> —H43 <i>E</i> ···Cl12	0.98	2.93	3.73 (6)	140
C20—H20A···Cl1A	0.95	2.83	3.694 (5)	152
C34—H34 <i>B</i> ···O31	0.98	2.36	2.887 (6)	113
C19—H19A····O21	0.95	2.56	3.479 (6)	162
C43 <i>B</i> —H43 <i>D</i> ···Cl32 ⁱ	0.98	2.86	3.37 (2)	113
C40—H40A…C111 ⁱⁱ	0.95	2.94	3.676 (4)	135
C23—H23 <i>A</i> ····Cl3 <i>A</i> ⁱⁱⁱ	0.98	2.99	3.768 (5)	137
C33—H33 <i>A</i> ···Cl33 ^{iv}	0.98	2.89	3.597 (5)	130
C50—H50 <i>A</i> ···O23 ^v	0.95	2.56	3.355 (5)	142
C49—H49 $A$ ····N2 ^v	0.95	2.71	3.540 (6)	146
C49—H49 <i>A</i> ···Cl21 ^v	0.95	2.99	3.795 (5)	143
C17—H17 <i>A</i> ···O33 ^{vi}	0.95	2.88	3.383 (6)	114
C17—H17 <i>A</i> ···N3 ^{vi}	0.95	2.68	3.424 (6)	136

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, y-1/2, -z+1/2; (iii) -x, -y+1, -z; (iv) -x+1, y+1/2, -z+1/2; (v) x, -y+1/2, z+1/2; (vi) -x+1, y-1/2, -z+1/2.