COMMUNICATIONS

Received 6 November 2023
Accepted 12 February 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: powder diffraction; omadacycline; Nuzyra; Rietveld refinement.

CCDC reference: 2332637

Supporting information: this article has supporting information at journals.iucr.org/e

Omadacycline dihydrate, $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, from X-ray powder diffraction data

James A. Kaduk, ${ }^{\text {a* }}$ Nicholas C. Boaz, ${ }^{\text {b }}$ Stacy Gates-Rector, ${ }^{\text {a }}$ Amy M. Gindhart ${ }^{\text {a }}$ and Thomas N. Blanton ${ }^{\text {a }}$

${ }^{\text {a }}$ ICDD, 12 Campus Blvd., Newtown Square PA 19073-3273, USA, and ${ }^{\text {b }}$ Department of Chemistry, North Central College, 131 S. Loomis, St., Naperville IL, 60540 , USA. *Correspondence e-mail: kaduk@polycrystallography.com

The crystal structure of the title compound \{systematic name: ($4 S, 4 \mathrm{a} S, 5 \mathrm{a} R, 12 \mathrm{a} R$)-4,7-bis(dimethylamino)-9-[(2,2-dimethylpropylamino)meth-yl]-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2carboxamide dihydrate, $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ \} has been solved and refined using synchrotron X-ray powder diffraction data: it crystallizes in space group $R 3$ with $a=24.34430$ (7), $c=14.55212$ (4) $\AA, V=7468.81$ (2) \AA^{3} and $Z=9$. Most of the hydrogen bonds are intramolecular, but two classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (along with probable weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds) link the molecules into a three-dimensional framework. The framework contains voids, which contain disordered water molecules. Keto-enol tautomerism is apparently important in this molecule, and the exact molecular structure is ambiguous.

1. Chemical context

Omadacycline, sold under the brand name Nuzyra, is a broadspectrum tetracycline antibiotic. Omadacycline finds use in treating bacterial pneumonia and certain types of skin infections. The systematic name (CAS Registry No. 389139-89-3) is ($4 S, 4 \mathrm{a} S, 5 \mathrm{a} R, 12 \mathrm{a} R$)-4,7-bis(dimethylamino)-9-[(2,2-dimethyl-propylamino)methyl]-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide. It is sometimes the case that the hydroxyl and carbonyl groups are misassigned in structure pictures of tetracycline antibiotics, so in addition to the crystal structure it is important to consider the chemical connectivity to give insight into keto-enol tautomerism.

This work was carried out as part of a project (Kaduk et al., 2014) to determine the crystal structures of large-volume commercial pharmaceuticals, and include high-quality powder diffraction data for them in the Powder Diffraction File (Gates-Rector \& Blanton, 2019).

2. Structural commentary

The powder pattern of the hydrated omadacycline studied here is not the same as that reported for crystalline omada-

Figure 1
Comparison of the synchrotron pattern of omadacycline dihydrate (black) to that of omadacycline (green) reported by Cvetovich \& Warchol (2013). The patent pattern, measured using $\mathrm{Cu} K \alpha$ radiation, was digitized using $U N-S C A N-I T$ (Silk Scientific, 2013), and converted to the synchrotron wavelength of $0.458133 \AA$ using JADE Pro (MDI, 2021). Image generated using JADE Pro (MDI, 2021).
cycline by Cvetovich \& Warchol (2013) (Fig. 1). Our material was a commercial sample, but it is not clear how representative it is of the bulk pharmaceutical material.

The refined structure of the omadacycline molecule is different in chemical connectivity and conformation from that archived in PubChem (Kim et al., 2019; Figs. 2 and 3). In particular, $\mathrm{C} 20-\mathrm{O} 3$ (our numbering scheme) is a double bond, while $\mathrm{C} 30-\mathrm{O} 7, \mathrm{C} 21-\mathrm{O} 5$, and $\mathrm{C} 18-\mathrm{O} 2$ are single bonds. $\mathrm{C} 21-\mathrm{C} 24$ is a double bond, $\mathrm{C} 20-\mathrm{C} 24$ is a single bond, and several other $\mathrm{C}-\mathrm{C}$ bonds in the ring system differ in order. It is unclear whether the differences represent differences between solution and the solid state, or merely the limited information content of the powder diffraction pattern of a very complex material. The bond-distance and bond-angle restraints were deliberately given low weight to gain insight into what information the diffraction data can give regarding the chemical connectivity.

It was clear from both the structure solution and refinement and a DFT calculation that the $\mathrm{C} 30-\mathrm{O} 7-\mathrm{N} 10$ group is oriented to form a strong intramolecular O7-H55‥O3 hydrogen bond, and that N10 participates in intermolecular hydrogen bonds (Table 1).

Figure 2
The omadacycline molecule in omadacycline dihydrate, with the atom numbering. The atoms are represented by 50% probability spheres.

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H55 . . O3	0.98	1.84	2.614 (15)	134
O2-H57 . . O_{4}	0.74	1.78	2.506 (15)	169
O6-H60 . . O4	1.28	1.26	2.485 (15)	155
$\mathrm{O} 1-\mathrm{H} 48 \cdots \mathrm{O} 2$	0.82	2.42	2.721 (13)	103
N10-H61 . ${ }^{\text {O }}$	1.11	1.79	2.686 (12)	135
$\mathrm{N} 10-\mathrm{H} 62 \cdots \mathrm{O} 2^{\text {i }}$	1.11	2.04	2.935 (13)	135
N11-H69 . . $\mathrm{O}_{4}{ }^{\text {ii }}$	1.11	2.15	3.18 (2)	153
C33-H58 \cdots N10 ${ }^{\text {iii }}$	1.14	2.51	3.63 (2)	165
C34-H64. . $\mathrm{O}^{\text {iv }}$	1.14	2.35	3.46 (2)	165
C35-H68 . $\mathrm{O}^{\text {iv }}$	1.14	2.58	3.642 (15)	154
C39-H76 . . $\mathrm{O}^{\text {5 }}{ }^{\text {v }}$	1.18	2.41	3.32 (2)	132

Symmetry codes: (i) $-y+\frac{4}{3}, x-y-\frac{1}{3}, z-\frac{1}{3}$; (ii) $\quad-y+1, x-y, z$; (iii) $-y+\frac{2}{3}, x-y-\frac{2}{3}, z+\frac{1}{3}$; (iv) $-y+\frac{2}{3}, x-y-\frac{2}{3}, z-\frac{2}{3}$; (v) $x+\frac{2}{3}, y+\frac{1}{3}, z-\frac{2}{3}$.

There are many unusual bond distances, bond angles, and torsion angles indicated by a Mercury Mogul Geometry check (Macrae et al., 2020). Although there are some large Z-scores among the bond distances, the largest ones tend to be on the periphery of the molecule, where the chemical connectivity is not in doubt. In the ring system, the distinctions between single and double bonds seem to be clear. It is hard to make conclusions about the Z-scores of the bond angles, but some of the large Z-scores result from very small standard uncertainties on the average bond angles. Both for bond distances and bond angles, greater- and less-than-normal values tend to be correlated, probably reflecting errors in atom positions, which were restrained only modestly. Some torsion angles involving rotation about the C16-N8, C26-N9, C24-C30, C37-C36, and C31-C33 bonds are flagged as unusual. All of these reflect the orientations of peripheral groups, which do seem to be unusual in this crystal structure.

3. Supramolecular features

We obtained guidance on whether potential interatomic contacts were real hydrogen bonds from a DFT optimization of the anhydrous structure (without the disordered water molecules). This structure is close to that of the disordered anhydrate. A DFT optimization of an ordered dihydrate yielded a different molecular connectivity, and it is unclear

Figure 3
Comparison of the structure of the omadacycline molecule from this Rietveld refinement (green) to that archived in PubChem (purple). The root-mean-square Cartesian displacement of the non-H atoms is $1.08 \AA$.

Figure 4
The crystal structure of omadacycline dihydrate, viewed down the c-axis direction showing the voids occupied by disordered water molecules.
how relevant such a calculation is to the disordered structure. The differences point out that the molecular connectivity may vary depending on the state of hydration, and also in solution versus the solid state.

There are many hydrogen bonds in the structure, but (perhaps surprisingly) almost all of them are intramolecular. Only the $\mathrm{N} 10-\mathrm{H} 62 \cdots \mathrm{O} 2$ and $\mathrm{N} 11-\mathrm{H} 69 \cdots \mathrm{O} 84$ hydrogen bonds (as well as probable weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds) link different molecules. The intermolecular hydrogen bonds link the molecules into a three-dimensional network (Fig. 4). There are three very strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between hydroxyl and carbonyl groups. There are also short intramolecular methyl . . methyl contacts between H49 and H52 and H66 and H63. The shortest (and only) O . . O distances between water molecules and omadacycline molecules are 2.727 (17) and 3.119 (16) \AA between O84 and two symmetry-equivalent O7; the water molecules only loosely interact with the framework and it was not possible to unambiguously locate the water H atoms.

We may state that we have established the crystal structure of omadacyclic dihydrate, but the exact molecular structure is ambiguous.

Figure 5
The Rietveld plot for the refinement of omadacycline dihydrate. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized difference plot. The vertical scale has been multiplied by a factor of $20 \times$ for $2 \theta>8.0^{\circ}$.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Specimen shape, size (mm)
Data collection
Diffractometer
Specimen mounting
Data collection mode
Scan method
2θ values (${ }^{\circ}$)

Refinement
R factors and goodness of fit

No. of parameters
No. of restraints
H -atom treatment
$(\Delta / \sigma)_{\text {max }}$
$\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
588.03

Trigonal, R3
295
24.34430 (7), 14.55212 (4)
7468.81 (2)

9
Synchrotron, $\lambda=0.45813 \AA$
0.01

Cylinder, 3×1.5

11-BM, APS
Kapton capillary
Transmission
Step
$2 \theta_{\min }=0.500,2 \theta_{\max }=49.997$,
$2 \theta_{\text {step }}=0.001$
$R_{\mathrm{p}}=0.048, R_{\mathrm{wp}}=0.061$,
$R_{\exp }=0.043, R\left(F^{2}\right)=0.06407$,
$\chi^{2}=2.161$
148
112
Only H-atom displacement parameters refined
4.723

Computer programs: GSAS-II (Toby \& Von Dreele, 2013), Mercury (Macrae et al., 2020), and publCIF (Westrip, 2010).

4. Database survey

Polymorphs of crystalline omadacycline tosylate are claimed in US Patent 8,383,610 B2 (Cvetovich \& Warchol, 2013; Paratek Pharmaceuticals). A powder pattern of the parent compound is also provided. A reduced cell search in the Cambridge Structural Database (CSD, version 5.45 November 2023; Groom et al., 2016) combined with C, H, N, and O only, yielded two hits, but no structures of omadacycline derivatives.

5. Synthesis and crystallization

Omadacycline was a commercial reagent, purchased from TargetMol (Batch \#132019), and was used as received.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

The pattern was first indexed using JADE Pro 8.1 (MDI, 2021) as a primitive monoclinic unit cell with $a=11.98344, b=$ 12.17479, $c=8.54255 \AA, \beta=91.30^{\circ}, V=1246.0 \AA^{3}$, and $Z=2$. Indexing using $N-T R E O R$ (Altomare et al., 2013) yielded a hexagonal unit cell with $a=24.34510, c=14.55468 \AA$, and $V=$ $7470.6 \AA^{3}$. Re-indexing with $J A D E$, allowing for highersymmetry cells, yielded the same hexagonal cell. The space group suggested by both programs was $R 3$.

An omadacycline molecule was downloaded from PubChem (Kim et al., 2019) as Conformer3D_CID_5469735.-
sdf. It was converted into a *.mol2 file using Mercury (Macrae et al., 2020), and into a Fenske-Hall Z-matrix file using OpenBabel (O'Boyle et al., 2011). The structure was solved using FOX (Favre-Nicolin \& Černý, 2002) using $(\sin \theta / \lambda)_{\max }=$ $0.4 \AA^{-1}$. Visualization of the structure revealed the presence of several voids. By placing oxygen atoms (possibly water molecules) into the voids and refining their positions and occupancies (some refined to less than 0 , and were removed from the model), four potential sites, corresponding to 18.1 $\mathrm{H}_{2} \mathrm{O} /$ cell, or $2.0 \mathrm{H}_{2} \mathrm{O} /$ omadacycline (i.e., a dihydrate) were identified.

NMR analysis of the omadacycline sample was performed using a 400 MHz Bruker Avance spectrometer equipped with a multinuclear probe. The ${ }^{1} \mathrm{H}$ NMR of the pharmaceutical sample was performed in d^{6} DMSO, which was stored over flame-dried $3 \AA$ molecular sieves. The ${ }^{1} \mathrm{H}$ NMR analysis of the sample indicated the presence of water in addition to omadacycline (Gottlieb et al., 1997). By comparing the water signal at 3.33 ppm to the signal at 7.41 ppm , which belongs to the arene $\mathrm{C}-\mathrm{H}$ group of the pharmaceutical moleucle, the water content was estimated to be approximately 1.5 water molecules to 1 omadacycline. Moreover, the ${ }^{1} \mathrm{H}$ NMR spectrum of the omadacycline sample indicated that there was no observable trace of residual organic solvent or tosylate counter-ion. The NMR data therefore indicate that the species in the pores in the crystal structure is water. After evaporation of the DMSO solvent, the solid was discolored.

Rietveld refinement (Fig. 5) was carried out using GSAS-II (Toby \& Von Dreele, 2013). Only the $2.0-25.0^{\circ}$ portion of the pattern was included in the refinement ($d_{\min }=1.058 \AA$). The z-coordinate of O 1 was fixed to define the origin. All non-H bond distances and angles were subjected to restraints, based on a Mercury Mogul Geometry Check (Sykes et al., 2011; Bruno et al., 2004). The Mogul average and standard deviation for each quantity were used as the restraint parameters. The weight of the restraints was gradually decreased during the refinement. The restraints contributed 3.8% to the final χ^{2}. The hydrogen atoms were included in calculated positions, which were recalculated during the refinement using Materials Studio (Dassault, 2021). The $U_{\text {iso }}$ values were grouped by chemical similarity. The $U_{\text {iso }}$ for the H atoms were fixed at 1.3 \times the $U_{\text {iso }}$ of the heavy atoms to which they are attached. A second-order spherical harmonic model was included in the refinement to account for preferred orientation and the refined texture index is $1.001(0)$. The peak profiles were described using the generalized microstrain model. The background was modeled using a six-term shifted Chebyshev
polynomial, plus a peak at $5.63^{\circ} 2 \theta$ to model the scattering from the Kapton capillary and any amorphous component.

Acknowledgements

Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was partially supported by the International Centre for Diffraction Data. We thank Lynn Ribaud and Saul Lapidus for their assistance in the data collection.

Funding information

Funding for this research was provided by: International Centre for Diffraction Data (grant No. 09-03 to Poly Crystallography Inc.).

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. \& Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. \& Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.
Cvetovich, R. \& Warchol, T. (2013). US Patent 8,383,610 B2.
Dassault (2021). Materials Studio. Dassault Systèmes, San Diego, CA, USA.
Favre-Nicolin, V. \& Černý, R. (2002). J. Appl. Cryst. 35, 734-743.
Gates-Rector, S. \& Blanton, T. N. (2019). Powder Diffr. 34, 352360.

Gottlieb, H. E., Kotlyar, V. \& Nudelman, A. (1997). J. Org. Chem. 62, 7512-7515.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G. \& Suchomel, M. R. (2014). Powder Diffr. 29, 269-273.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. \& Bolton, E. E. (2019). Nucleic Acids Res. 47, D1102-D1109.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
MDI (2021). JADE Pro 8.1. MDI, Livermore, CA, USA.
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. \& Hutchison, G. R. (2011). J. Chem. Informatics, 3, 33.

Silk Scientific. (2013). UN-SCAN-IT 7.0. Orem, UT, USA.
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. \& Wood, P. A. (2011). J. Appl. Cryst. 44, 882-886.
Toby, B. H. \& Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Omadacycline dihydrate, $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, from X-ray powder diffraction data

James A. Kaduk, Nicholas C. Boaz, Stacy Gates-Rector, Amy M. Gindhart and Thomas N. Blanton

Computing details

(4S,4aS,5aR,12aR)-4,7-Bis(dimethylamino)-9-[(2,2-dimethylpropylamino)methyl]-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide dihydrate

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=588.03$
Trigonal, R3
Hall symbol: R 3
$a=24.34430$ (7) \AA
$c=14.55212(4) \AA$
$V=7468.81(2) \AA^{3}$

Data collection

11-BM, APS
diffractometer
Radiation source: synchrotron
Double $\mathrm{Si}(111)$ sngle crystal monochromator

Refinement

Least-squares matrix: full
$R_{\mathrm{p}}=0.048$
$R_{\text {wp }}=0.061$
$R_{\text {exp }}=0.043$
$R\left(F^{2}\right)=0.06407$
49575 data points
Excluded region(s): Th regions 0.5-2.0 and $25.0-50.0^{\circ}$ contained no peaks.
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance $($ Gauss $)=\mathrm{Utan}(\mathrm{Th})^{2}+\mathrm{V} \tan (\mathrm{Th})+\mathrm{W}:$ peak $\mathrm{HW}($ Lorentz $)=\mathrm{X} / \cos (\mathrm{Th})+\mathrm{Y} \tan (\mathrm{Th})$; $\mathrm{SH} / \mathrm{L}=\mathrm{S} / \mathrm{L}+\mathrm{H} / \mathrm{L} \mathrm{U}, \mathrm{V}, \mathrm{W}$ in (centideg) ${ }^{2}$, X \& Y in centideg 1.163, $-0.126,0.063,0.000,0.000$, 0.002 ,

$$
\begin{aligned}
& Z=9 \\
& D_{\mathrm{x}}=1.177 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Synchrotron radiation, } \lambda=0.45813 \AA \\
& \mu=0.01 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { white } \\
& \text { cylinder, } 3 \times 1.5 \mathrm{~mm}
\end{aligned}
$$

Specimen mounting: Kapton capillary
Data collection mode: transmission
Scan method: step
$2 \theta_{\min }=0.500^{\circ}, 2 \theta_{\max }=49.997^{\circ}, 2 \theta_{\text {step }}=0.001^{\circ}$

148 parameters
112 restraints
7 constraints
Only H-atom displacement parameters refined
Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\text {max }}=4.723$
Background function: Background function: "chebyschev-1" function with 6 terms: 242.80(28), -5.7(4), -17.4(4), 6.6(4), 19.4(3), $-39.10(30)$, Background peak parameters: pos, int, sig, gam: 5.635, 59368.501, 16287.514, 0.100 ,

Preferred orientation correction: Simple spherical harmonic correction Order $=2$ Coefficients: 0:0:C(2,0) $=0.081(5)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1	0.8514 (3)	0.1354 (3)	0.51110	0.0497 (10)*	
O2	0.7746 (4)	0.1858 (4)	0.4890 (7)	0.0497 (10)*	
O3	0.8837 (4)	0.2363 (4)	0.3587 (8)	0.0497 (10)*	
O4	0.6658 (4)	0.1617 (4)	0.4417 (7)	0.0497 (10)*	
O5	0.9444 (4)	0.0918 (4)	0.2428 (7)	0.0497 (10)*	
O6	0.5495 (4)	0.1148 (4)	0.4214 (7)	0.0497 (10)*	
O7	0.9888 (4)	0.2785 (4)	0.2650 (7)	0.031 (2)*	
N8	0.8862 (7)	0.0578 (6)	0.4539 (9)	0.092 (4)*	
N9	0.5642 (5)	0.0056 (5)	0.1009 (9)	0.057 (3)*	
N10	1.0152 (5)	0.2154 (4)	0.2006 (9)	0.031 (2)*	
N11	0.4343 (6)	0.0952 (7)	0.2570 (10)	0.107 (3)*	
C12	0.8049 (5)	0.0645 (5)	0.3856 (9)	0.0336 (9)*	
C13	0.8248 (4)	0.1300 (5)	0.4225 (7)	0.0336 (9)*	
C14	0.7724 (5)	0.0573 (5)	0.2953 (9)	0.0336 (9)*	
C15	0.7089 (5)	0.0561 (6)	0.3079 (9)	0.0336 (9)*	
C16	0.8606 (5)	0.0550 (6)	0.3636 (10)	0.0336 (9)*	
C17	0.7161 (5)	0.1108 (5)	0.3646 (9)	0.0336 (9)*	
C18	0.7652 (5)	0.1424 (5)	0.4282 (9)	0.0336 (9)*	
C19	0.6766 (5)	0.0564 (6)	0.2273 (9)	0.0336 (9)*	
C20	0.8734 (5)	0.1842 (5)	0.3436 (9)	0.0336 (9)*	
C21	0.9163 (6)	0.1090 (5)	0.3060 (8)	0.0336 (9)*	
C22	0.6082 (4)	0.0559 (6)	0.2353 (10)	0.0336 (9)*	
C23	0.6654 (5)	0.1270 (5)	0.3751 (8)	0.0336 (9)*	
C24	0.9206 (5)	0.1664 (5)	0.3003 (9)	0.0336 (9)*	
C25	0.6071 (4)	0.0848 (5)	0.3199 (9)	0.0336 (9)*	
C26	0.5612 (5)	0.0287 (5)	0.1824 (9)	0.0336 (9)*	
C27	0.5555 (6)	0.0851 (6)	0.3527 (8)	0.0336 (9)*	
C28	0.8490 (8)	0.0023 (8)	0.5002 (10)	0.092 (4)*	
C29	0.9504 (7)	0.0844 (7)	0.4781 (12)	0.092 (4)*	
C30	0.9828 (5)	0.2244 (5)	0.2738 (10)	0.031 (2)*	
C31	0.4989 (6)	0.0548 (6)	0.2996 (9)	0.0336 (9)*	
C32	0.5042 (6)	0.0304 (6)	0.2106 (9)	0.0336 (9)*	
C33	0.4478 (7)	0.0581 (7)	0.3171 (11)	0.107 (3)*	
C34	0.6218 (7)	0.0548 (7)	0.0311 (13)	0.107 (3)*	
C35	0.5180 (7)	-0.0357 (7)	0.0567 (9)	0.057 (3)*	
C36	0.4804 (6)	0.1595 (6)	0.2292 (10)	0.057 (3)*	
C37	0.4713 (8)	0.1946 (8)	0.1400 (11)	0.107 (3)*	
C38	0.4917 (7)	0.1708 (7)	0.0725 (13)	0.107 (3)*	
C39	0.5218 (8)	0.2717 (8)	0.1705 (10)	0.107 (3)*	
C40	0.4133 (8)	0.1868 (7)	0.1118 (13)	0.107 (3)*	
H41	0.77134	0.02666	0.43592	0.0437 (11)*	
H42	0.76306	0.01119	0.26141	0.0437 (11)*	
H43	0.80423	0.09882	0.24866	0.0437 (11)*	
H44	0.69353	0.01603	0.32895	0.0437 (11)*	
H45	0.84361	0.00660	0.33080	0.0437 (11)*	

H46	0.70821	0.10088	0.18560	0.0437 (11)*	
H47	0.66787	0.01369	0.18415	0.0437 (11)*	
H48	0.85543	0.16435	0.54461	0.0646 (13)*	
H49	0.80861	-0.03198	0.45374	0.120 (5)*	
H50	0.87885	-0.01974	0.52155	0.120 (5)*	
H51	0.82856	0.01244	0.56423	0.120 (5)*	
H52	0.95992	0.04520	0.50130	0.120 (5)*	
H53	0.98138	0.10985	0.41609	0.120 (5)*	
H54	0.96198	0.11972	0.53653	0.120 (5)*	
H56	0.48709	0.02113	0.14240	0.0437 (11)*	
H57	0.74402	0.18307	0.47700	0.0646 (13)*	
H58	0.45430	0.07785	0.38980	0.139 (4)*	
H59	0.40539	0.00784	0.31716	0.139 (4)*	
H60	0.60944	0.15005	0.43402	0.0646 (13)*	
H61	1.00708	0.16631	0.20287	0.040 (3)*	
H62	1.06675	0.24970	0.20670	0.040 (3)*	
H63	0.64974	0.10332	0.06510	0.139 (4)*	
H64	0.60037	0.05953	-0.03602	0.139 (4)*	
H65	0.65485	0.03534	0.01626	0.139 (4)*	
H66	0.47237	-0.03954	0.08425	0.074 (4)*	
H67	0.51579	-0.08335	0.06450	0.074 (4)*	
H68	0.52365	-0.02191	-0.01902	0.074 (4)*	
H69	0.41864	0.07082	0.18963	0.139 (4)*	
H70	0.53133	0.18084	0.24663	0.139 (4)*	
H71	0.46309	0.18667	0.27036	0.139 (4)*	
H72	0.47212	0.17551	0.00362	0.139 (4)*	
H73	0.47439	0.11862	0.08686	0.139 (4)*	
H74	0.54574	0.19823	0.07020	0.139 (4)*	
H75	0.49633	0.28512	0.21228	0.139 (4)*	
H76	0.55918	0.26284	0.20982	0.139 (4)*	
H77	0.54325	0.29705	0.10563	0.139 (4)*	
H78	0.40054	0.21738	0.15621	0.139 (4)*	
H79	0.37509	0.13485	0.11920	0.139 (4)*	
H80	0.41666	0.20176	0.03683	0.139 (4)*	
H55	0.96519	0.28344	0.31579	0.0646 (13)*	
O82	0.00000	0.00000	1.127 (2)	0.1000*	0.640 (28)
O83	0.00000	0.00000	1.031 (2)	0.1000*	1.087 (25)
O84	0.6271 (4)	0.6381 (4)	0.1054 (10)	0.1000*	1.077 (10)
O85	0.00000	0.00000	0.9249 (17)	0.1000*	0.925 (24)

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 13$	$1.420(10)$	$\mathrm{C} 24-\mathrm{C} 20$	$1.550(12)$
$\mathrm{O} 1-\mathrm{H} 48$	0.823	$\mathrm{C} 24-\mathrm{C} 21$	$1.349(9)$
$\mathrm{O} 2-\mathrm{C} 18$	$1.308(9)$	$\mathrm{C} 24-\mathrm{C} 30$	$1.516(11)$
$\mathrm{O} 2-\mathrm{H} 57$	0.735	$\mathrm{C} 25-\mathrm{C} 22$	$1.425(13)$
$\mathrm{O} 3-\mathrm{C} 20$	$1.183(10)$	$\mathrm{C} 25-\mathrm{C} 23$	$1.502(11)$
$\mathrm{O} 4-\mathrm{C} 23$	$1.281(7)$	$\mathrm{C} 25-\mathrm{C} 27$	$1.348(12)$

O4-H60	1.261	C26-N9	1.329 (12)
O5-C21	1.334 (11)	C26-C22	1.259 (12)
O6-C27	1.284 (7)	C26-C32	1.469 (13)
O6-H60	1.283	C27-O6	1.284 (7)
O7-C30	1.256 (12)	C27-C25	1.348 (12)
O7-H55	0.979	C27-C31	1.421 (11)
N8-C16	1.441 (14)	C28-N8	1.369 (16)
N8-C28	1.369 (16)	C28-H49	1.141
N8-C29	1.404 (15)	C28-H50	1.140
N9-C26	1.329 (12)	C28-H51	1.140
N9-C34	1.660 (15)	C29-N8	1.404 (15)
N9-C35	1.250 (14)	C29-H52	1.141
N10-C30	1.408 (12)	C29-H53	1.140
N10-H61	1.110	C29-H54	1.139
N10-H62	1.109	C30-O7	1.256 (12)
N11-C33	1.409 (15)	C30-N10	1.408 (12)
N11-C36	1.456 (13)	C30-C24	1.516 (11)
N11-H69	1.110	C31-C27	1.421 (11)
C12-C13	1.515 (9)	C31-C32	1.456 (12)
C12-C14	1.498 (13)	C31-C33	1.313 (10)
C12-C16	1.520 (10)	C32-C26	1.469 (13)
C12-H41	1.139 (12)	C32-C31	1.456 (12)
C13-O1	1.420 (10)	C32-H56	1.056 (13)
C13-C12	1.515 (9)	C33-N11	1.409 (15)
C13-C18	1.625 (9)	C33-C31	1.313 (10)
C13-C20	1.703 (11)	C33-H58	1.139
C14-C12	1.498 (13)	C33-H59	1.139
C14-C15	1.544 (11)	C34-N9	1.660 (15)
C14-H42	1.139	C34-H63	1.139
C14-H43	1.140	C34-H64	1.140
C15-C14	1.544 (11)	C34-H65	1.140
C15-C17	1.501 (10)	C35-N9	1.250 (14)
C15-C19	1.413 (12)	C35-H66	1.140
C15-H44	0.906	C35-H67	1.139
C16-N8	1.441 (14)	C35-H68	1.140
C16-C12	1.520 (10)	C36-N11	1.456 (13)
C16-C21	1.577 (13)	C36-C37	1.631 (17)
C16-H45	1.140	C36-H70	1.107
C17-C15	1.501 (10)	C36-H71	1.120
C17-C18	1.398 (11)	C37-C36	1.631 (17)
C17-C23	1.480 (11)	C37-C38	1.356 (17)
C18-O2	1.308 (9)	C37-C39	1.709 (16)
C18-C13	1.625 (9)	C37-C40	1.388 (17)
C18-C17	1.398 (11)	C38-C37	1.356 (17)
C19-C15	1.413 (12)	C38-H72	1.140
C19-C22	1.663 (10)	C38-H73	1.140
C19-H46	1.140	C38-H74	1.139
C19-H47	1.139	C39-C37	1.709 (16)

C20-O3	1.183 (10)
C20-C13	1.703 (11)
C20-C24	1.550 (12)
C21-O5	1.334 (11)
C21-C16	1.577 (13)
C21-C24	1.349 (9)
C22-C19	1.663 (10)
C22-C25	1.425 (13)
C22-C26	1.259 (12)
C23-O4	1.281 (7)
C23-C17	1.480 (11)
C23-C25	1.502 (11)
C13-O1-H48	118.0
C18-O2-H57	90.3
C23-O4-H60	97.8
C27-O6-H60	94.4
C30-O7-H55	106.5
C16-N8-C28	110.2 (13)
C16-N8-C29	127.3 (14)
C28-N8-C29	111.5 (15)
C26-N9-C35	125.6 (10)
C30-N10-H61	109.5
C30-N10-H62	109.5
H61-N10-H62	109.5
C33-N11-C36	124.0 (12)
C33-N11-H69	109.5
C36-N11-H69	101.7
C13-C12-C14	107.9 (8)
C13-C12-C16	113.3 (8)
C14-C12-C16	104.8 (9)
C13-C12-H41	110.2
C14-C12-H41	110.2
C16-C12-H41	110.2
O1-C13-C12	108.0 (9)
C12-C14-C15	111.3 (9)
C12-C14-H42	109.3
C15-C14-H42	109.1
C12-C14-H43	109.5
C15-C14-H43	108.4
H42-C14-H43	109.2
C14-C15-C17	112.1 (8)
C14-C15-C19	117.1 (10)
C17-C15-C19	105.7 (9)
C14-C15-H44	86.0
C17-C15-H44	124.9
C19-C15-H44	110.8
N8-C16-C12	101.5 (10)

$\mathrm{C} 39-\mathrm{H} 75$	1.031
$\mathrm{C} 39-\mathrm{H} 76$	1.182
$\mathrm{C} 39-\mathrm{H} 77$	1.106
$\mathrm{C} 40-\mathrm{C} 37$	$1.388(17)$
$\mathrm{C} 40-\mathrm{H} 78$	1.141
$\mathrm{C} 40-\mathrm{H} 79$	1.139
$\mathrm{C} 40-\mathrm{H} 80$	1.140
$\mathrm{O} 82-\mathrm{O} 83$	$1.39(3)$
$\mathrm{O} 83-\mathrm{O} 82$	$1.39(3)$
$\mathrm{O} 83-\mathrm{O} 85$	$1.55(3)$
$\mathrm{O} 85-\mathrm{O} 83$	$1.55(3)$

130.3 (11)
111.3 (11)
118.0 (8)
109.4
109.6
109.7
109.5
109.4
109.2
109.4
109.5
109.4
109.6
109.4
109.5
107.8 (9)
122.8 (11)
115.1 (11)
115.8 (10)
124.4 (12)
118.4 (11)
122.5 (10)
90.4
144.9 (11)
116.8 (13)
109.5
105.6
108.2
108.2
108.3
109.5
109.5
109.5
109.4
109.4

$\mathrm{N} 8-\mathrm{C} 16-\mathrm{H} 45$	110.8
$\mathrm{C} 12-\mathrm{C} 16-\mathrm{H} 45$	110.8
$\mathrm{C} 15-\mathrm{C} 17-\mathrm{C} 18$	$122.7(4)$
$\mathrm{C} 15-\mathrm{C} 17-\mathrm{C} 23$	$123.4(9)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 23$	$112.5(8)$
$\mathrm{O} 2-\mathrm{C} 18-\mathrm{C} 17$	$130.4(8)$
$\mathrm{C} 15-\mathrm{C} 19-\mathrm{H} 46$	109.5
$\mathrm{C} 15-\mathrm{C} 19-\mathrm{H} 47$	107.7
$\mathrm{H} 46-\mathrm{C} 19-\mathrm{H} 47$	107.6
$\mathrm{O} 3-\mathrm{C} 20-\mathrm{C} 24$	$126.0(10)$
$\mathrm{O} 5-\mathrm{C} 21-\mathrm{C} 24$	$119.7(8)$
$\mathrm{C} 25-\mathrm{C} 22-\mathrm{C} 26$	$123.5(7)$
$\mathrm{O} 4-\mathrm{C} 23-\mathrm{C} 17$	$121.4(9)$
$\mathrm{O} 4-\mathrm{C} 23-\mathrm{C} 25$	$123.3(9)$
$\mathrm{C} 17-\mathrm{C} 23-\mathrm{C} 25$	$113.0(8)$
$\mathrm{C} 20-\mathrm{C} 24-\mathrm{C} 21$	$125.5(8)$
$\mathrm{C} 20-\mathrm{C} 24-\mathrm{C} 30$	$112.1(9)$
$\mathrm{C} 21-\mathrm{C} 24-\mathrm{C} 30$	$120.3(9)$
$\mathrm{C} 22-\mathrm{C} 25-\mathrm{C} 23$	$123.7(9)$
$\mathrm{C} 22-\mathrm{C} 25-\mathrm{C} 27$	$123.8(7)$
$\mathrm{C} 23-\mathrm{C} 25-\mathrm{C} 27$	$111.8(10)$
$\mathrm{N} 9-\mathrm{C} 26-\mathrm{C} 22$	$122.7(10)$
$\mathrm{N} 9-\mathrm{C} 26-\mathrm{C} 32$	$121.0(10)$
$\mathrm{C} 22-\mathrm{C} 26-\mathrm{C} 32$	$115.9(8)$

H66-C35-H67	109.5
N9-C35-H68	109.4
H66-C35-H68	109.5
H67-C35-H68	109.5
N11-C36-H70	121.5
N11-C36-H71	99.8
H70-C36-H71	105.3
C38-C37-C40	$107.0(16)$
C37-C38-H72	109.4
C37-C38-H73	109.4
H72-C38-H73	109.4
C37-C38-H74	109.5
H72-C38-H74	109.5
H73-C38-H74	109.6
H75-C39-H76	114.4
H75-C39-H77	121.1
H76-C39-H77	108.8
C37-C40-H78	109.4
C37-C40-H79	109.5
H78-C40-H79	109.5
C37-C40-H80	109.5
H78-C40-H80	109.4
H79-C40-H80	109.5
O4-H60-O6	$155.4(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

D—H $\cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
O7-H55 $\cdots 3$	0.98	1.84	2.614 (15)	134
$\mathrm{O} 2-\mathrm{H} 57 \cdots \mathrm{O} 4$	0.74	1.78	2.506 (15)	169
O6-H60‥04	1.28	1.26	2.485 (15)	155
O1-H48 ${ }^{\text {O }}$ 2	0.82	2.42	2.721 (13)	103
$\mathrm{N} 10-\mathrm{H} 61 \cdots \mathrm{O} 5$	1.11	1.79	2.686 (12)	135
N10-H62 $\cdots{ }^{\text {O }}{ }^{\text {i }}$	1.11	2.04	2.935 (13)	135
N11-H69 \cdots O $84{ }^{\text {ii }}$	1.11	2.15	3.18 (2)	153
C33-H58 \cdots N10 ${ }^{\text {iii }}$	1.14	2.51	3.63 (2)	165
C34-H64 ${ }^{\text {O }} \mathrm{O}^{\text {iv }}$	1.14	2.35	3.46 (2)	165
C35-H68 ${ }^{\text {O }} \mathrm{O}^{\text {iv }}$	1.14	2.58	3.642 (15)	154
C39-H76 ${ }^{\text {O }}$ 85 ${ }^{\text {v }}$	1.18	2.41	3.32 (2)	132

Symmetry codes: (i) $-y+4 / 3, x-y-1 / 3, z-1 / 3$; (ii) $-y+1, x-y, z$; (iii) $-y+2 / 3, x-y-2 / 3, z+1 / 3$; (iv) $-y+2 / 3, x-y-2 / 3, z-2 / 3$; (v) $x+2 / 3, y+1 / 3, z-2 / 3$.

