

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 21 February 2018
Accepted 10 April 2018

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; pseudotetrameric; pyrimidine.

CCDC reference: 1835970

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure, hydrogen bonding and Hirshfeld surface analysis of 2-amino-4-methoxy-6-methylpyrimidinium 4-chlorobenzoate

Muthaiah Jeevaraj, ${ }^{\text {a }}$ Palaniyappan Sivajeyanthi, ${ }^{\text {a }}$ Bellarmin Edison, ${ }^{\text {a }}$ Kaliyaperumal Thanigaimani ${ }^{\text {b }}$ and Kasthuri Balasubramani ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Government Arts College, Tiruchirappalli 620 022, Tamil Nadu, India. *Correspondence e-mail: manavaibala@gmail.com

In the crystal structure of the title salt, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}{ }^{-}$, the dihedral angle between the pyrimidine ring of the 2-amino-4-methoxy-6-methylpyrimidine cation and the the benzene ring of the 2 -chlorobenzoate anion is $2.2(1)^{\circ}$. In the anion, the benzene ring forms a dihedral angle of $8.5(2)^{\circ}$ with the carboxyl group. The pyrimidine N atom of the cation is protonated and the methoxy substituent is essentially coplanar with the parent ring. The protonated N atom and the N atom of the 2-amino group are hydrogen bonded to the 4-chlorobenzoate anion through a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\text {carboxyl }}$ hydrogen bonds, forming an $R_{2}^{2}(8)$ ring motif linked through a centrosymmetric $R_{4}^{2}(8)$ ring motif, resulting in a pseudotetrameric $D D A A$ array. These units are linked through intermolecular methoxy $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into ribbon-like chains extending along the c-axis direction. The crystal structure also features $\pi-\pi$ stacking interactions between the rings in the cation and anion [minimum ring centroid separation $=3.7707(12) \AA$].

1. Chemical context

Pyrimidine and aminopyrimidine derivatives are biologically important compounds and they occur in nature as components of nucleic acids such as cytosine, uracil and thymine. Pyrimidine derivatives are also important molecules in biology and have many applications in the areas of pesticides and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997). In order to study the hydrogen-bonding interactions, the title compound, the 2-amino-4-methoxy-6methylpyrimidinium salt of 4-chlorobenzoate, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}^{-}$, was synthesized and its structure, hydrogen-bonding and Hirshfeld surface analysis are reported herein.

Figure 1
The asymmetric unit of the the title compound with atom labels, showing non-hydrogen atoms as 30% probability displacement ellipsoids. Interspecies hydrogen bonds are shown as dashed lines.

2. Structural commentary

The asymmetric unit of the title compound contains a 2-amino-4-methoxy-6-methylpyrimidinium cation and a 4-chlorobenzoate anion (Fig. 1), which are essentially coplanar, with a dihedral angle between the ring systems of the two species of $2.2(1)^{\circ}$. In the cation, one of the pyrimidine nitrogen atoms (N 1) is protonated and this is reflected in an increase in bond angle at $\mathrm{N} 1\left[\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 13=120.53(17)^{\circ}\right]$, when compared with that at the unprotonated atom (N3) $\left[\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 13=116.32(18)^{\circ}\right]$ and the corresponding angle of $116.01(18)^{\circ}$ in neutral 2-amino-4-methoxy-6-methylpyrimidine (Glidewell et al., 2003). The methoxy substituent group at C 9 of the cation is essentially coplanar with the ring, the $\mathrm{N} 3-\mathrm{C} 9-\mathrm{O} 3-\mathrm{C} 8$ torsion angle being $-2.9(3)^{\circ}$. The bond lengths and angles are normal for the carboxylate group of a 4-chlorobenzoate anion, and the benzene ring forms a dihedral angle of $8.5(2)^{\circ}$ with the carboxyl group.

3. Supramolecular features

In the crystal, the protonated nitrogen atom (N1) and the amino nitrogen atom (N2) of the cation interact with the carboxyl oxygen atoms O 2 and O 1 , respectively, of the anion through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), forming an

Figure 2
Hydrogen bonding in the structure of the title compound showing the $R_{2}^{2}(8)$ and centrosymmetric $R_{4}^{2}(8)$ ring motifs and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ extensions. Dashed lines indicate the hydrogen bonds.

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O} 2$	$1.04(3)$	$1.60(3)$	$2.636(3)$	$176(2)$
$\mathrm{N} 2-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.12	$2.846(2)$	142
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 1{ }^{\mathrm{ii}}$	0.86	1.97	$2.824(3)$	169
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.96	2.82	$3.770(3)$	171

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x+2,-y+\frac{3}{2}, z+\frac{1}{2}$.
eight-membered $R_{2}^{2}(8)$ ring motif. This is extended into a $D D A A$ array (where D represents a hydrogen-bond donor and A represents a hydrogen-bond acceptor) by $\mathrm{N} 2-$ $\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$ hydrogen bonds in a centrosymmetric $R_{4}^{2}(8)$ association [symmetry code: (i) $-x+1,-y+2,-z+1$], the corresponding graph-set notations for the heterotetramer being $R_{2}^{2}(8), R_{4}^{2}(8), R_{2}^{2}(8)$. The heterotetrameric units are linked through methoxy $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Cl}^{\mathrm{ii}}$ hydrogen bonds, forming one-dimensional ribbon-like structures (Fig. 2) [symmetry code: (ii) $x+2,-y+\frac{3}{2}, z+\frac{1}{2}$]. Only very weak methyl $\mathrm{C} 12-\mathrm{H} \cdots \mathrm{O} 2$ interactions [C. $\mathrm{O}=3.442$ (3) \AA; $\mathrm{H} \cdots \mathrm{O} 2=2.76 \AA$] exist between ribbons. The crystal structure also features $\pi-\pi$ stacking interactions between the aromatic pyrimidine ring of the cation (Fig. 3) and the benzene ring of the anion, with minimum centroid-centroid and perpendicular interplanar distances of 3.7780 (12) and 3.7075 (8) A. respectively, and a slip angle of 19.44° (Hunter et al., 1994).

4. Hirshfeld surface analysis

Three-dimensional (3D) $d_{\text {norm }}$ surface analyis is a useful tool for analysing and visualizing the intermolecular interactions.

Figure 3
The overall view of the packing and stacking interactions in the title compound.

Figure 4
The three-dimensional $d_{\text {norm }}$ surface of the title compound.
$d_{\text {norm }}$ takes negative or positive values depending on whether the intermolecular contact is shorter or longer, respectively, than the van der Waals radii (Spackman \& Jayatilaka, 2009; McKinnon et al., 2007). The 3D $d_{\text {norm }}$ surface of the title compound was shown in Fig. 4. The red points represent closer

Figure 5
Two-dimensional fingerprint plots with the relative contributions to the Hirshfeld surface.
contacts and negative $d_{\text {norm }}$ values on the surface corresponding to the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions, while $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are light red in colour. Two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 5, revealing the intermolecular contacts and their percentage distributions on the Hirshfeld surface. H...H interactions (44.8%) are present as a major contributor while $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}(14.6 \%), \mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}(13.3 \%), \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ (7.5\%), $\mathrm{C} \cdots \mathrm{C}(6.6 \%), \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}(3.4 \%), \mathrm{C} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{C}$ (3.3%), $\mathrm{Cl} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{Cl}(1.8 \%), \mathrm{C} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{C}(1.0 \%)$ and $\mathrm{Cl} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{Cl}(0.7 \%)$ contacts also make significant contributions to the Hirshfeld surface. Two 'wingtips' in the fingerprint plot are related to $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{H}$ interactions and are shown in Fig. 5.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016) for 2-amino-4-methoxy-6-methylpyrimidine yielded only seven structures of proton-transfer salts with carboxylic acids: VAQSOW [with 3(N, N-dimethylamino)benzoic acid]; VAQSUC [with methylene hydrogen succinic acid (a monohydrate)]; VAQSEM (with 3-nitrobenzoic acid); VAQSIQ (with benzoic acid); VAQRUB (with 2-fluorobenzoic acid) and VAQSAI (with 3-chlorobenzoic acid) (all from Aakeröy et al., 2003) and NUQTOJ (with picric acid; Jasinski et al., 2010).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}^{+} . \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}{ }^{-}$
$M_{\text {r }}$	295.72
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	296
$a, b, c(\AA)$	10.1148 (8), 11.2236 (8), 14.579 (1)
β (${ }^{\circ}$)	120.940 (5)
$V\left(\AA^{3}\right)$	1419.57 (19)
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.28
Crystal size (mm)	$0.35 \times 0.30 \times 0.20$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}, T_{\text {max }}$	0.909, 0.946
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	10962, 3423, 2125
$R_{\text {int }}$	0.024
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.669
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.047, 0.152, 0.99
No. of reflections	3423
No. of parameters	188
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.26, -0.35

[^0]
6. Synthesis and crystallization

The title compound was synthesized by the reaction of a $1: 1$ stoichiometric mixture of 2-amino-4-methoxy-6-methylpyrimidine $[0.139 \mathrm{mg}$ (Aldrich)] and 4-chlorobenzoic acid [0.156 mg (Merck)] in 20 ml of a hot methanolic solution. After warming for a few minutes over a water bath, the solution was cooled and kept at room temperature. Within a few days, colourless block-shaped crystals suitable for the X-ray analysis were obtained (yield: 65\%).

7. refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. N-bound pyrimidinium H atoms were located in a difference-Fourier map and refined freely $[\mathrm{N}-\mathrm{H}=1.03$ (3) \AA]. The remaining H atoms were positioned geometrically and refined using a riding model with $(\mathrm{N}-\mathrm{H}=$ $0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA)$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}$ (methyl C). A rotating-group model was used for the methyl groups.

Acknowledgements

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF) at STIC, Cochin University of Science and Technology, Cochin, for X-ray data collection.

Funding information

PS and KB thank the Department of Science and Technology (DST-SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.

References

Aakeröy, B. C., Beffert, K., Desper, J. \& Elisabeth, E. (2003). Cryst. Growth Des. 3, 837-846.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. \& Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.
Glidewell, C., Low, J. N., Melguizo, M. \& Quesada, A. (2003). Acta Cryst. C59, o9-o13.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. \& Prakash Kamath, K. (2010). Acta Cryst. E66, o1189-o1190.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Maeno, S., Miura, I., Masuda, K. \& Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun., pp. 3814-3816.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 1932.

supporting information

Crystal structure, hydrogen bonding and Hirshfeld surface analysis of 2-amino-4-methoxy-6-methylpyrimidinium 4-chlorobenzoate

Muthaiah Jeevaraj, Palaniyappan Sivajeyanthi, Bellarmin Edison, Kaliyaperumal Thanigaimani and Kasthuri Balasubramani

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).
(I)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}^{+} . \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}^{-}$
$M_{r}=295.72$
Monoclinic, $P 2{ }_{1} / c$
$a=10.1148$ (8) \AA
$b=11.2236$ (8) \AA
$c=14.579$ (1) \AA
$\beta=120.940$ (5) ${ }^{\circ}$
$V=1419.57(19) \AA^{3}$
$Z=4$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.909, T_{\text {max }}=0.946$
10962 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.152$
$S=0.99$
3423 reflections
188 parameters
0 restraints
$F(000)=616$
$D_{\mathrm{x}}=1.384 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3319 reflections
$\theta=4.7-53.1^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.35 \times 0.30 \times 0.20 \mathrm{~mm}$

3423 independent reflections
2125 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-13 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-15 \rightarrow 18$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0728 P)^{2}+0.324 P\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.34$ e \AA^{-3}

Extinction correction: SHELXL2017
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.020 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O3	$1.08061(18)$	$0.73298(18)$	$0.57812(14)$	$0.0840(5)$
N1	$0.62562(18)$	$0.71035(13)$	$0.45066(13)$	$0.0513(4)$
N2	$0.61625(18)$	$0.91121(14)$	$0.47011(15)$	$0.0649(5)$
H1N	0.659761	0.979882	0.489408	0.078^{*}
H2N	0.518251	0.904882	0.442578	0.078^{*}
N3	$0.85256(18)$	$0.82711(15)$	$0.52563(13)$	$0.0555(4)$
C8	$1.1555(3)$	$0.8473(3)$	$0.6048(2)$	$0.0926(9)$
H8A	1.258389	0.838988	0.618161	0.139^{*}
H8B	1.159254	0.877851	0.667577	0.139^{*}
H8C	1.098704	0.901435	0.546305	0.139^{*}
C9	$0.9288(2)$	$0.7287(2)$	$0.53678(16)$	$0.0616(6)$
C10	$0.8601(3)$	$0.6168(2)$	$0.50699(19)$	$0.0703(6)$
H10	0.919348	0.548952	0.518504	0.084^{*}
C11	$0.7049(3)$	$0.60891(17)$	$0.46085(17)$	$0.0595(5)$
C12	$0.6128(3)$	$0.49752(19)$	$0.4188(2)$	$0.0872(8)$
H12A	0.531726	0.509732	0.346014	0.131^{*}
H12B	0.568913	0.477063	0.461457	0.131^{*}
H12C	0.678410	0.433995	0.421663	0.131^{*}
C13	$0.6995(2)$	$0.81598(16)$	$0.48261(15)$	$0.0489(4)$
C11	$-0.42873(6)$	$0.70123(7)$	$0.18780(6)$	$0.0859(3)$
O1	$0.30336(15)$	$0.87707(12)$	$0.40502(13)$	$0.0710(5)$
O2	$0.32766(15)$	$0.68727(12)$	$0.37489(12)$	$0.0648(4)$
C1	$0.2501(2)$	$0.77506(16)$	$0.37387(15)$	$0.0506(5)$
C2	$0.0808(2)$	$0.75559(16)$	$0.33048(14)$	$0.0455(4)$
C3	$0.0178(2)$	$0.64290(17)$	$0.30515(16)$	$0.0532(5)$
H3	0.081505	0.577740	0.317181	0.064^{*}
C4	$-0.1384(2)$	$0.62496(19)$	$0.26221(16)$	$0.0591(5)$
H4	-0.179743	0.548535	0.245653	0.071^{*}
C5	$-0.2314(2)$	$0.72173(19)$	$0.24443(16)$	$0.0552(5)$
C6	$-0.1725(2)$	$0.83473(19)$	$0.26959(17)$	$0.0615(5)$
H6	-0.237007	0.899426	0.257249	0.074^{*}

C7	$-0.0160(2)$	$0.85154(17)$	$0.31355(16)$	$0.0559(5)$
H7	0.025012	0.927932	0.332014	0.067^{*}
H1N1	$0.508(3)$	$0.700(2)$	$0.418(2)$	$0.089(8)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	$0.0495(9)$	$0.1165(14)$	$0.0927(12)$	$0.0275(9)$	$0.0414(9)$	$0.0152(11)$
N1	$0.0479(9)$	$0.0476(9)$	$0.0551(9)$	$0.0080(7)$	$0.0242(8)$	$-0.0032(7)$
N2	$0.0389(8)$	$0.0483(9)$	$0.0946(13)$	$0.0010(7)$	$0.0251(8)$	$-0.0125(8)$
N3	$0.0411(9)$	$0.0722(11)$	$0.0533(10)$	$0.0081(7)$	$0.0243(7)$	$-0.0019(8)$
C8	$0.0457(13)$	$0.140(3)$	$0.0899(19)$	$0.0033(14)$	$0.0337(13)$	$0.0031(17)$
C9	$0.0507(12)$	$0.0858(15)$	$0.0564(13)$	$0.0194(10)$	$0.0333(10)$	$0.0100(11)$
C10	$0.0728(15)$	$0.0697(14)$	$0.0839(16)$	$0.0340(12)$	$0.0514(13)$	$0.0182(12)$
C11	$0.0738(14)$	$0.0508(11)$	$0.0653(13)$	$0.0173(9)$	$0.0439(11)$	$0.0081(9)$
C12	$0.112(2)$	$0.0478(12)$	$0.121(2)$	$0.0116(12)$	$0.0732(18)$	$0.0017(13)$
C13	$0.0406(9)$	$0.0533(10)$	$0.0497(11)$	$0.0050(8)$	$0.0210(8)$	$-0.0029(8)$
C11	$0.0454(3)$	$0.1120(6)$	$0.0929(5)$	$-0.0142(3)$	$0.0302(3)$	$-0.0069(4)$
O1	$0.0424(7)$	$0.0458(8)$	$0.1021(12)$	$-0.0028(6)$	$0.0210(7)$	$-0.0149(7)$
O2	$0.0454(8)$	$0.0481(7)$	$0.0872(11)$	$0.0023(6)$	$0.0242(7)$	$-0.0098(7)$
C1	$0.0404(9)$	$0.0449(10)$	$0.0527(11)$	$0.0003(7)$	$0.0141(8)$	$-0.0010(8)$
C2	$0.0406(9)$	$0.0447(9)$	$0.0424(10)$	$0.0005(7)$	$0.0149(8)$	$0.0012(7)$
C3	$0.0495(11)$	$0.0465(10)$	$0.0573(11)$	$-0.0031(8)$	$0.0230(9)$	$-0.0053(8)$
C4	$0.0549(12)$	$0.0578(12)$	$0.0623(13)$	$-0.0144(9)$	$0.0285(10)$	$-0.0095(10)$
C5	$0.0416(10)$	$0.0722(13)$	$0.0468(11)$	$-0.0074(9)$	$0.0191(8)$	$-0.0020(9)$
C6	$0.0429(10)$	$0.0607(12)$	$0.0702(14)$	$0.0087(9)$	$0.0215(10)$	$0.0076(10)$
C7	$0.0442(10)$	$0.0459(10)$	$0.0643(12)$	$0.0007(8)$	$0.0184(9)$	$0.0034(9)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

$\mathrm{O} 3-\mathrm{C} 9$	$1.331(2)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9600
$\mathrm{O} 3-\mathrm{C} 8$	$1.438(4)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 13$	$1.350(2)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 11$	$1.356(2)$	$\mathrm{C} 11-\mathrm{C} 5$	$1.7385(19)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$1.03(3)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.247(2)$
$\mathrm{N} 2-\mathrm{C} 13$	$1.314(2)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.255(2)$
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N}$	0.8600	$\mathrm{C} 1-\mathrm{C} 2$	$1.506(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	0.8600	$\mathrm{C} 2-\mathrm{C} 3$	$1.379(3)$
$\mathrm{N} 3-\mathrm{C} 9$	$1.308(3)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.389(3)$
$\mathrm{N} 3-\mathrm{C} 13$	$1.344(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.383(3)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9600	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9600	$\mathrm{C} 4-\mathrm{C} 5$	$1.372(3)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9600	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 9-\mathrm{C} 10$	$1.392(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.369(3)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.356(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.381(3)$
C10-H10	0.9300	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
C11-C12	$1.490(3)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300

C9-O3-C8	118.61 (18)
C13-N1-C11	120.53 (17)
C13-N1-H1N1	124.1 (13)
C11-N1-H1N1	115.4 (13)
C13-N2-H1N	120.0
C13-N2-H2N	120.0
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	120.0
C9-N3-C13	116.32 (18)
O3-C8-H8A	109.5
O3-C8-H8B	109.5
H8A-C8-H8B	109.5
O3-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
N3-C9-O3	119.7 (2)
N3-C9-C10	123.68 (19)
O3-C9-C10	116.64 (19)
C11-C10-C9	118.62 (18)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.7
C9-C10- H 10	120.7
C10-C11-N1	117.9 (2)
C10-C11-C12	125.36 (19)
N1-C11-C12	116.74 (19)
C11-C12-H12A	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
C11-C12-H12C	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-173.20 (19)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	7.8 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	7.7 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-171.35 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-177.99 (18)
C7-C2-C3-C4	1.0 (3)
C1-C2-C7-C6	177.29 (19)
C3-C2-C7-C6	-1.8 (3)
C2-C3-C4-C5	0.3 (3)
C8-O3-C9-C10	176.7 (2)
C8-O3-C9-N3	-2.9 (3)
C3-C4-C5-C6	-0.9 (3)
C3-C4-C5-Cl1	178.62 (16)
C11-C5-C6-C7	-179.32 (16)

H12A-C12-H12C	109.5
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
N2-C13-N3	119.43 (17)
N2-C13-N1	117.68 (16)
N3-C13-N1	122.89 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	124.51 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.10 (16)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.39 (16)
C3-C2-C7	118.48 (17)
C3-C2-C1	121.00 (16)
C7-C2-C1	120.51 (16)
C2-C3-C4	121.22 (18)
C2-C3-H3	119.4
C4-C3-H3	119.4
C5-C4-C3	118.90 (18)
C5-C4-H4	120.5
C3-C4-H4	120.5
C6-C5-C4	121.40 (18)
C6-C5-Cl1	119.04 (16)
C4-C5-Cl1	119.55 (16)
C5-C6-C7	119.23 (18)
C5-C6-H6	120.4
C7-C6-H6	120.4
C6-C7-C2	120.74 (18)
C6-C7-H7	119.6
C2-C7-H7	119.6
C4-C5-C6-C7	0.2 (3)
C5-C6-C7-C2	1.2 (3)
C13-N1-C11-C10	2.1 (3)
C13-N1-C11-C12	-177.2 (2)
C11-N1-C13-N2	179.63 (19)
C11-N1-C13-N3	-0.1 (3)
C13-N3-C9-O3	179.53 (18)
C13-N3-C9-C10	-0.1 (3)
C9-N3-C13-N1	-0.9 (3)
C9-N3-C13-N2	179.37 (19)
O3-C9-C10-C11	-177.6 (2)
N3-C9-C10-C11	2.0 (4)
C9-C10-C11-N1	-2.9 (3)
C9-C10-C11-C12	176.3 (2)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N 1 \cdots \mathrm{O} 2$	$1.04(3)$	$1.60(3)$	$2.636(3)$	$176(2)$
$\mathrm{N} 2 — \mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.12	$2.846(2)$	142

supporting information

$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{O} 1$	0.86	1.97	$2.824(3)$	169
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.96	2.82	$3.770(3)$	171

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x+2,-y+3 / 2, z+1 / 2$.

[^0]: Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL2017 (Sheldrick, 2015), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008).

