

Received 27 October 2017 Accepted 13 December 2017

Edited by C. Massera, Università di Parma, Italy

Keywords: crystal structure; ammonium carboxylate salts; graph set; hydrogen bonding.

CCDC references: 1811019; 1811018; 1811017; 1811016; 1811015; 1811014; 1811013

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\odot}$ ACCESS

580

An investigation to elucidate the factors dictating the crystal structure of seven ammonium carboxylate molecular salts

Jacques Blignaut and Andreas Lemmerer*

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag, PO WITS, 2050, Johannesburg, South Africa. *Correspondence e-mail: andreas.lemmerer@wits.ac.za

The crystal structures of seven ammonium carboxylate salts are reported, namely (RS)-1-phenylethan-1-aminium isonicotinate, $C_8H_{12}N^+ \cdot C_6H_4N_1O_2^-$, (I), (RS)-1-phenylethan-1-aminium flurbiprofenate [or 2-(3-fluoro-4-phenylphenyl)propanoate], $C_8H_{12}N^+ \cdot C_{15}H_{12}FO_2^-$, (II), (RS)-1-phenylethan-1-aminium 2-chloro-4-nitrobenzoate, C₈H₁₂N⁺·C₇H₃ClNO₄⁻, (III), (RS)-1-phenylethan-1aminium 4-iodobenzoate, C₈H₁₂N⁺·C₇H₄IO₂⁻, (IV), (S)-1-cyclohexylethan-1aminium 2-chloro-4-nitrobenzoate, $C_8H_{18}N^+ \cdot C_7H_3CINO_4^-$, (V), 2-(cyclohex-1en-1-yl)ethan-1-aminium 4-bromobenzoate, C₈H₁₆N⁺·C₇H₄BrO₂⁻, (VI), and (S)-1-cyclohexylethan-1-aminium 4-bromobenzoate, $C_8H_{18}N^+ \cdot C_7H_4BrO_2^-$, (VII). Salts (II) to (VII) feature three $N^+ - H \cdots O^-$ hydrogen bonds, which form one-dimensional hydrogen-bonded ladders. Salts (II), (III), (IV), (V) and (VII) have a type **II** ladder system despite the presence of halogen bonding and other intermolecular interactions, whereas (VI) has a type III ladder system. Salt (I) has a unique hydrogen-bonded system of ladders, featuring both N⁺- $H \cdots O^{-}$ and $N^{+} - H \cdots N$ hydrogen bonds owing to the presence of the pyridine functional group. The presence of an additional hydrogen-bond acceptor on the carboxylate cation disrupts the formation of the ubiquitous type II and III ladder found predominately in ammonium carboxylate salts. Halogen bonding, however, has no influence on their formation.

1. Chemical context

Crystal engineering, the conception and synthesis of molecular solid-state structures, is fundamentally based upon the discernment and subsequent exploitation of intermolecular interactions. Thus, primarily non-covalent bonding is used to achieve the organization of molecules and ions in the solid state in order to produce materials with desired properties. Examples of such materials include organic field-effect transistors, hole collectors in organic photovoltaic cells (Snaith, 2013), laser materials (Tessler, 1999) as well as organic light-emitting diodes and semiconductors (Odom *et al.*, 2003). The two principle forces exploited in the design of molecular solids are hydrogen bonding and coordination complexation (Desiraju, 1989).

https://doi.org/10.1107/S2056989017017856

inately form two types of hydrogen-bonded one-dimensional ladders in the solid state (Odendal et al., 2010). These are classified as type II and type III, where type II consists of repeating hydrogen-bonded rings with the descriptor $R_4^3(10)$ (Bernstein et al., 1995), while type III consists of alternating $R_2^2(8)$ and $R_4^4(12)$ rings. The robustness and perturbation of these ladders as a function of the structure and stereochemistry of the constituent ions have been tested via the crystallization of a variety of ammonium carboxylate salts. The seven salts reported here are (see Scheme): (RS)-1-phenylethan-1-aminium isonicotinate, (I), (RS)-1-phenylethan-1aminium flurbiprofenate, (II), (RS)-1-phenylethan-1-aminium 2-chloro-4-nitro-benzoate, (RS)-1-phenylethan-1-(III), aminium 4-iodobenzoate, (IV), (S)-1-cyclohexylethan-1aminium 2-chloro-4-nitro-benzoate, (V), 2-(cyclohex-1-en-1vl)ethan-1-aminium 4-bromobenzoate, (VI), and (S)-1-cyclohexylethan-1-aminium 4-bromobenzoate, (VII).

2. Structural commentary

An amine and a carboxylic acid will combine to form a salt if the difference in pK_a 's is approximately 3 or greater (Bhogala *et al.*, 2005; Lemmerer *et al.*, 2015). Thus, from the differences

Figure 1

Perspective views of compounds (I)–(VII), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate the symmetry-independent $N^+-H\cdots O^-$ or $N^+-H\cdots N$ hydrogen bonds.

in pK_a values depicted in Table S1 in the supporting information, all the compounds considered in this work should be in the form of salts and hence possess charge-assisted hydrogen bonds, which are considered to be a stronger and more robust supramolecular synthon than the same between neutral molecules (Lemmerer *et al.*, 2008*a*). All structures crystallize with a 1:1 ratio of ammonium cation to benzoate anion, with all molecules on general positions. The asymmetric units and atom-numbering schemes are shown in Fig. 1.

3. Supramolecular features

Salt (I) consists of one 1-phenylethan-1-aminium cation and one isonicotinate anion. The ammonium group forms three charge-assisted hydrogen bonds, shown in Fig. 2*a*. The first of these bonds involves the O2 atom of the isonicotinate anion (i) (see Table 1) and is designated *a*. The second involves the O1 atom of the isonicotinate anion in the asymmetric unit and is designated *b*. The third involves the pyridine ring nitrogen of a third isonicotinate anion (ii) and is designated *c*. The *b* and *c* hydrogen bonds form a ring structure involving two of each kind of bond, consisting of two molecules of both 1-phenylethan-1-aminium and isonicotinate (See Fig. 2*a*). The graph set of this pattern is $R_4^4(18)$. A larger $R_8^8(30)$ ring is formed using all three hydrogen bonds involving four of both 1-phenylethan-1-aminium and isonicotinate ions. Overall, this forms a 2-D sheet as shown in Fig. 2*b*. As neither of the two

Table 1 Hydrogen-bon	d geometry (Å, °) for (I).	
	ם מ	ц л	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1B\cdotsO2^{i}$	0.95 (2)	1.80 (2)	2.747 (2)	176 (2)
$N1 - H1C \cdots O1$	0.98 (2)	1.81 (2)	2.783 (2)	174 (2)
$N1 - H1A \cdot \cdot \cdot N2^{ii}$	0.93 (2)	1.93 (2)	2.856 (2)	175 (2)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z.

expected type **II** or type **III** ladders are formed it seems that the additional hydrogen-bond acceptor in the form of the nitrogen atom of the pyridine ring disrupts their formation.

In salt (II), the asymmetric unit consists of one 1-phenylethan-1-aminium cation and one flurbiprofenate anion. Once again the ammonium group of the 1-phenylethan-1-aminium ion forms three charged-assisted hydrogen bonds (Table 2). The first of these bonds involves the O2 atom of the anion while the other two involve the O1 atoms of the carboxylate group of two separate symmetry-related flurbiprofenate anions. These three hydrogen bonds form a type **II** ladder system where each of the O1 atoms behaves as a bifurcated

Figure 2

(a) Detailed view of the three hydrogen bonds forming two types of hydrogen-bonded rings in (I). (b) Side-on view of the two-dimensional, hydrogen-bonded layers formed.

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$) for (II).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdotsO1^{i}$	0.91 (3)	1.91 (3)	2.809 (3)	170 (3)
$N1-H1C\cdots O1^{ii}$	0.90 (3)	1.87 (3)	2.758 (3)	168 (3)
$N1-H1B\cdots O2$	0.95 (3)	1.75 (3)	2.693 (3)	176 (3)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y + 1, z.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for (III).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O1$	0.94 (2)	1.91 (2)	2.829(1)	165 (1)
$N1 - H1B \cdots O2^{i}$	0.94(2)	1.85 (2)	2.789(1)	176 (1)
$N1-H1C\cdotsO1^{ii}$	0.95 (2)	1.84 (2)	2.780 (1)	170 (1)

Symmetry codes: (i) x, y - 1, z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Table 4Hydrogen-bond geometry (Å, °) for (IV).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$		
$N1-H1A\cdots O1$	0.88 (3)	1.92 (3)	2.796 (3)	175 (2)		
$N1 - H1B \cdots O2^{i}$	0.84 (3)	1.88 (3)	2.715 (3)	174 (3)		
$N1 - H1C \cdots O1^{ii}$	0.92 (3)	1.83 (3)	2.735 (2)	169 (3)		

Symmetry codes: (i) x, y + 1, z; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

hydrogen-bond acceptor, linking the rings (Fig. 3*a*). This pattern has translational symmetry through a twofold screw axis along the crystallographic *b* axis which is inherent in the space group $P2_1/n$. As no short contacts such as halogen bonding or π -halogen interactions are observed, the fluorine atom does not disrupt the formation of the expected hydrogen-bonding patterns. However a peculiarity exists. As the cation was present as a racemate, traditionally type **III** ladders are expected to dominate as reported by Lemmerer and co-workers (Lemmerer *et al.*, 2008*b*).

In salt (III), the asymmetric unit consists of one 1-phenylethan-1-aminium cation and one 2-chloro-4-nitro-benzoate anion. The ammonium ion forms three charge-assisted hydrogen bonds to the carboxylate group and not to the nitro group of the 2-chloro-4-nitro-benzoate anion (Table 3). In fact, no relevant non-covalent interactions involving the nitro group are observed. As for compound (II), a type II ladder is formed by the above-mentioned hydrogen bonds, as shown in Fig. 3b. The anions in adjacent rings (related by translation along the b axis) are connected via $C-O \cdots Cl$ halogen bonds $[O \cdot \cdot \cdot Cl = 3.225 (1) \text{ Å}; C - O \cdot \cdot \cdot Cl = 160.5 (1)^{\circ}]$. However, this interaction does not perturb the ladder supramolecular synthons to a significant enough degree to prevent their formation. Once again, both enantiomers of the 1-phenylethan-1-aminium were present and thus type III ladders were expected to form.

In salt (IV), the asymmetric unit consists of one α -methylbenzylammonium cation and one 4-iodobenzoate anion. A type II ladder system is observed (Table 4). An interesting feature of this structure is the π ···halogen interaction between the centre of the aromatic ring of the methyl-

(a) (II)

(c) (IV)

(*b*) (III)

Figure 3 The hydrogen bonding (shown as dashed red lines), halogen bonding (shown as dashed blue lines) and packing diagrams for salts (II)–(VII).

Table 5	
Hydrogen-bond geometry (Å, °) for (V).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdotsO1$ $N1-H1B\cdotsO1^{i}$ $N1-H1C\cdotsO2^{ii}$	0.93 (3)	1.96 (3)	2.869 (2)	167 (2)
	0.93 (3)	1.86 (3)	2.785 (2)	173 (2)
	0.88 (3)	1.99 (3)	2.858 (2)	170 (2)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, -z + 1; (ii) x, y - 1, z.

 Table 6

 Hydrogen-bond geometry (Å, °) for (VI).

	•	· · · ·		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O1$	0.86 (3)	1.89 (3)	2.737 (2)	167 (3)
$N1 - H1B \cdots O2^{i}$	0.94 (3)	1.85 (3)	2.763 (3)	164 (3)
$N1 - H1C \cdots O2^n$	0.86 (3)	1.89 (3)	2.727 (2)	167 (3)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z.

Table 7

		0		
Hydrogen-bond	geometry	(À, °) for	(VII)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1-H1A\cdots O1$	0.91	1.99	2.781 (12)	144
$N1 - H1B \cdots O2^{i}$	0.91	2.06	2.870 (12)	148
$N1-H1C\cdots O1^{ii}$	0.91	1.89	2.718 (10)	150

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

benzylammonium cation and the iodine atom (Fig. 3c). This is possible as, due to its size, iodine is very polarizable and thus the delocalized electrons in the aromatic system can create a permanent dipole in the iodine atom in the solid state. The distance of 3.740 (3) Å is similar to other molecules containing iodine interacting non-covalently with aromatic systems reported in the literature (Nagels *et al.*, 2013). Again, as in salt (III), the halogen bonding does not disrupt the formation of the ladder motif.

In salt (V), the asymmetric unit consists of one (S)-1cyclohexylethylammonium cation and one 2-chloro-4-nitrobenzoate anion, both on general positions. A type **II** ladder is formed as shown in Fig. 3*d*. No hydrogen bonding to the nitro group takes place (Table 5), which is consistent with the results for salt (III). However, a type I Cl···Cl halogen bond is observed with a distance of 3.207 (3) Å that connects adjacent ladders along the *a* axis. As the cation is present as a single enantiomer, the type **II** ladder formation is in line with the previous studies.

In salt (VI), the asymmetric unit consists of one 2-(1cyclohexenyl)ethylammonium cation and one 4-bromobenzoate anion, both on general positions. A type III ladder is observed (Table 6), unique among the salts here reported (Fig. 3e). As in salt (V), the crystal structure is stabilized by halogen bonding, in this case between bromine and oxygen O1 with a distance of 3.253 (3) Å. The halogen bond connects adjacent ladders related by the two-fold screw axis.

In salt (VII), the asymmetric unit consists of one (S)-1cyclohexylethylammonium cation and one 4-bromobenzoate anion, both on general positions. A type **II** ladder is formed (Table 7, Fig. 3*f*). This is expected as the cation is enantiomerically pure (Lemmerer *et al.*, 2008*b*). In contrast to the previous salts that have a halogen atom on the anion, no halogen bonding is observed.

In summary, introducing a pyridine functional group instead of a plain benzene in (I) has altered the hydrogen-bonding pattern usually observed in ammonium carboxylate salts, which generally show the typical type **II** and **III** patterns as seen in (II)–(VII)

4. Synthesis and crystallization

All chemicals were purchased from commercial sources (Sigma Aldrich) and used as received without further purification. Crystals were grown via the slow evaporation of methanol or ethanol solutions under ambient conditions. All solutions contained a 1:1 ratio of amine and acid. Detailed masses and volumes are as follows. For (I): (RS)- α -methylbenzylamine (0.100 g, 0.825 mmol) and isonicotinic acid (0.102 g, 0.825 mmol) in methanol (5 mL); for (II): (RS)- α methylbenzylamine (0.100 g, 0.825 mmol) and flurbiprofen (0.202 g, 0.825 mmol) in ethanol (8 mL); for (III): (RS)- α methylbenzylamine (0.100 g, 0.825 mmol) and 2-chloro-4nitro-benzoic acid (0.166 g, 0.825 mmol) in ethanol (5 mL); for (IV): (RS)- α -methylbenzylamine (0.492 g, 0.406 mmol) and 4-iodobenzoic acid (0.101 g, 0.406 mmol) in ethanol (5 mL); for (V): (S)-1-cyclohexylethylamine (0.0254 g, 0.200 mmol) and 2-chloro-4-nitro-benzoic acid (0.0403 g, 0.200 mmol); for (VI): 2-(1-cyclohexenyl) ethylamine (0.0250 g, 0.200 mmol) and 4-bromobenzoic acid (0.0410 g, 0.200 mmol); and for (VII): (S)-1-cyclohexylethylamine (0.0254 g, 0.200 mmol) and 4-bromobenzoic acid (0.0410 g, 0.200 mmol).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 8. For all compounds, the C-bound H atoms were placed geometrically [C–H bond lengths of 1.00 Å (methine CH), 0.99 Å (ethylene CH₂), 0.98 Å (methylene CH₃) and 0.95 Å (Ar–H)] and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$. The N-bound H atoms were located in difference-Fourier maps and their coordinates and isotropic displacement parameters allowed to refine freely for (I)–(VI). For (VII), the N-bound H atoms were geometrically placed (C–H bond lengths of 0.91 Å) and refined as riding with $U_{iso}(H) = 1.5U_{eq}(C)$.

For the disorder of the atom C4 in the cyclohexene ring of (VI), two alternate positions were found in a difference-Fourier map, and their occupancies refined to final values of 0.77 (2) and 0.23 (2).

6. Related literature

The following references, not cited in the main body of the paper, have been cited in the supporting information: Bouchard *et al.* (2002); Isoda *et al.* (1997); Perrin (1982); Portnov *et al.* (1971); van Sorge *et al.* (1999); Tuckerman *et al.* (1959).

Table 8 Experimental details.

	(I)	(II)	(III)	(IV)
Crystal data				
Chemical formula	$C_{e}H_{12}N^{+}\cdot C_{e}H_{4}NO_{2}^{-}$	$C_{8}H_{12}N^{+}\cdot C_{15}H_{12}FO_{2}^{-}$	$C_{8}H_{12}N^{+}\cdot C_{7}H_{2}ClNO_{4}^{-}$	$C_{\circ}H_{12}N^{+}\cdot C_{7}H_{4}IO_{2}^{-}$
M _r	244.29	365.43	322.74	369.19
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$	Monoclinic, C2/c	Monoclinic, $P2_1/n$
Temperature (K)	173	173	173	173
a, b, c (Å)	9.4094 (5), 9.4697 (5), 15.1613 (9)	12.4146 (4), 5.9101 (2), 27.3645 (9)	15.5817 (7), 6.3914 (3), 31.3238 (14)	9.7224 (5), 6.0571 (3), 24.8767 (12)
α, β, γ (°)	90, 102.247 (3), 90	90, 90.793 (1), 90	90, 100.998 (2), 90	90, 99.527 (2), 90
$V(Å^3)$	1320.19 (13)	2007.58 (11)	3062.2 (2)	1444.77 (12)
Z	4	4	8	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.08	0.08	0.27	2.21
Crystal size (mm)	$0.76 \times 0.33 \times 0.07$	$0.49 \times 0.05 \times 0.03$	$0.47 \times 0.35 \times 0.08$	$0.68\times0.16\times0.04$
Data collection				
Diffractometer	Bruker D8 Venture Photon CCD area detector			
Absorption correction	Integration (<i>XPREP</i> ; Bruker, 2016)			
T_{\min}, T_{\max}	0.95, 0.96	0.984, 0.998	0.903, 0.979	0.508, 0.928
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38822, 3190, 2359	21119, 3729, 3014	18885, 3709, 3218	30978, 3463, 3109
R _{int}	0.101	0.036	0.053	0.051
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.171, 1.05	0.061, 0.174, 1.07	0.035, 0.091, 1.04	0.026, 0.057, 1.13
No. of reflections	3190	3729	3709	3463
No. of parameters	176	256	212	185
No. of restraints	0	0	0	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ A^{-1})$	0.38, -0.40	1.00, -0.50	0.28, -0.32	0.74, -0.38

(V)

(VI)

Crystal data Chemical formula $M_{\rm r}$ Crystal system, space group Temperature (K) a, b, c (Å)

 $\substack{lpha,\ eta,\ \gamma\ (^\circ)\ V\ ({
m \AA}^3)}$ Ż Radiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer

Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters No. of restraints H-atom treatment

 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³)

 $C_8H_{18}N^+ \cdot C_7H_3CINO_4^-$ 328.79 Monoclinic, C2 173 16.2280 (15), 6.4392 (5), 15.5937 (15) 90, 104.289 (4), 90 1579.1 (2) 4 Μο Κα 0.26 $0.51 \times 0.39 \times 0.06$

Bruker D8 Venture Photon CCD area detector Integration (XPREP; Bruker, 2016) 0.910, 0.988 15055, 3837, 3587

0.045

0.032, 0.071, 1.04 3837 211 H atoms treated by a mixture of independent and constrained refinement 0.20, -0.18

 $C_8H_{15}N^+ \cdot C_7H_4BrO_2^-$ 325.22 Monoclinic, P21/n 173 6.4391 (3), 17.0023 (8), 14.1588 (6) 90, 102.241 (2), 90 1514.86 (12) 4 Μο Κα 2.71 $0.68\times0.18\times0.1$

Bruker D8 Venture Photon CCD area detector Integration (XPREP; Bruker, 2016) 0.275, 0.776 30862, 3658, 3302

0.071

0.037, 0.098, 1.05 3658 194 0 H atoms treated by a mixture of independent and constrained refinement 1.01, -1.02

(VII) $C_8H_{18}N^+ \cdot C_7H_4BrO_2^-$ 328.24 Orthorhombic, $P2_12_12_1$ 173 6.2790 (3), 15.6610 (9), 15.8800 (8) 90, 90, 90 1561.57 (14) Μο Κα 2.63 $0.69 \times 0.13 \times 0.10$ Bruker D8 Venture Photon CCD area detector Integration (XPREP; Bruker, 2016) 0.452, 0.846 21006, 2913, 2687 0.068

4

0.078, 0.211, 1.08 2913 174 0 H-atom parameters constrained

1.46, -0.48

. . - - -. .

Table 8 (continued)			
	(V)	(VI)	(VII)
Absolute structure	Flack x determined using 1512 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013).	-	Flack x determined using 1026 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.031 (19)	-	0.068 (9)

Computer programs: APEX3, SAINT-Plus and XPREP (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 1999).

Funding information

This material is based upon work supported financially by the University of the Witwatersrand Friedel Sellschop Grant and the Molecular Sciences Institute. The National Research Foundation National Equipment Programme (UID: 78572) is thanked for financing the purchase of the single-crystal diffractometer. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551-562.
- Bouchard, G., Carrupt, P.-A., Testa, B., Gobry, V. & Girault, H. H. (2002). Chem. Eur. J. 8, 3478-3484.
- Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Isoda, T., Yamasaki, M., Yano, H. & Harada, S. (1997). Faraday Trans. 93, 449-452.
- Kinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441-3449.
- Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008a). Cryst. Growth Des. 8, 1106–1109.
- Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008b). CrystEngComm, 10, 1605-1612.
- Lemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591–3595.
- Nagels, N., Hauchecorne, D. & Herrebout, W. (2013). Molecules, 18, 6829-6851.
- Odendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398-2408.
- Odom, S. A., Parkin, S. R. & Anthony, J. E. (2003). Org. Lett. 5, 4245-4248.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Perrin, D. D. (1982). Ionization Constants of Organic Acids and Bases in Aqueous Solution, 2nd edition. Oxford: Pergamon.
- Portnov, M. A., Al'tshuler, G. N., Vaisman, M. N., Dubinina, T. A. & Yakhontov, L. N. (1971). Pharm. Chem. J. 5, 426-428.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Snaith, H. J. (2013). J. Phys. Chem. Lett. 4, 3623-3630.
- Sorge, A. A. van, Wijnen, P., van Delft, J., Carballosa Coré-Bodelier, V. M. W. & van Haeringen, N. (1999). Pharm. World Sci. 21, 91-95.
- Tessler, N. (1999). Adv. Mater. 11, 363-370.
- Tuckerman, M. M., Mayer, J. R. & Nachod, F. C. (1959). J. Am. Chem. Soc. 81, 92-94.

Acta Cryst. (2018). E74, 580-586 [https://doi.org/10.1107/S2056989017017856]

An investigation to elucidate the factors dictating the crystal structure of seven ammonium carboxylate molecular salts

Jacques Blignaut and Andreas Lemmerer

Computing details

For all structures, data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT-Plus* (Bruker, 2016); data reduction: *SAINT-Plus* (Bruker, 2016) and *XPREP* (Bruker, 2016); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

(RS)-1-Phenylethan-1-aminium pyridine-4-carboxylate (I)

Crystal data

 $C_{8}H_{12}N^{+}C_{6}H_{4}NO_{2}^{-}$ $M_{r} = 244.29$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 9.4094 (5) Å b = 9.4697 (5) Å c = 15.1613 (9) Å $\beta = 102.247$ (3)° V = 1320.19 (13) Å³ Z = 4

Data collection

Bruker D8 Venture Photon CCD area detector diffractometer Graphite monochromator ω scans Absorption correction: integration (XPREP; Bruker, 2016) $T_{\min} = 0.95$, $T_{\max} = 0.96$ 38822 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.171$ S = 1.053190 reflections 176 parameters F(000) = 520 $D_x = 1.229 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8190 reflections $\theta = 2.4-24.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.76 \times 0.33 \times 0.07 \text{ mm}$

3190 independent reflections 2359 reflections with $I > 2\sigma(I)$ $R_{int} = 0.101$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -20 \rightarrow 20$

0 restraints 0 constraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0941P)^2 + 0.2604P]$ where $P = (F_o^2 + 2F_c^2)/3$

$$(\Delta/\sigma)_{\rm max} < 0.001$$

 $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$$

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.36397 (17)	0.73101 (15)	0.23522 (11)	0.0356 (4)
C2	0.37700 (18)	0.82392 (16)	0.16665 (12)	0.0379 (4)
H2	0.469713	0.861634	0.164378	0.045*
C3	0.25688 (19)	0.86235 (18)	0.10161 (13)	0.0427 (4)
Н3	0.267388	0.924437	0.054193	0.051*
C4	0.1213 (2)	0.8100 (2)	0.10587 (13)	0.0475 (4)
H4	0.038141	0.837452	0.06192	0.057*
C5	0.1068 (2)	0.7180 (2)	0.17387 (15)	0.0536 (5)
Н5	0.013626	0.68193	0.176604	0.064*
C6	0.22735 (19)	0.6783 (2)	0.23802 (14)	0.0471 (4)
H6	0.216714	0.614276	0.284453	0.057*
C7	0.49410 (18)	0.68555 (16)	0.30626 (11)	0.0368 (4)
H7	0.45852	0.621973	0.349619	0.044*
C8	0.5745 (2)	0.80785 (18)	0.35973 (13)	0.0482 (5)
H8A	0.657613	0.771497	0.404167	0.072*
H8B	0.508569	0.858155	0.390937	0.072*
H8C	0.609192	0.872738	0.318543	0.072*
C10	0.71054 (19)	0.61304 (16)	0.01922 (13)	0.0421 (4)
H10	0.783407	0.575032	0.066354	0.051*
C11	0.6532 (2)	0.53314 (17)	-0.05587 (13)	0.0475 (5)
H11	0.690245	0.440511	-0.059585	0.057*
C12	0.49964 (18)	0.71011 (17)	-0.11664 (12)	0.0389 (4)
H12	0.424163	0.744187	-0.163695	0.047*
C13	0.55272 (17)	0.79860 (15)	-0.04510 (11)	0.0363 (4)
H13	0.515779	0.891799	-0.044027	0.044*
C14	0.66020 (16)	0.75029 (15)	0.02501 (11)	0.0320 (3)
C15	0.72087 (15)	0.84180 (15)	0.10609 (11)	0.0312 (3)
N1	0.59829 (15)	0.60289 (13)	0.26409 (10)	0.0340 (3)
N2	0.54883 (16)	0.57833 (14)	-0.12346 (10)	0.0420 (4)
01	0.76355 (12)	0.78218 (11)	0.18042 (8)	0.0382 (3)
O2	0.72283 (14)	0.97236 (11)	0.09234 (8)	0.0446 (3)
H1A	0.549 (2)	0.541 (2)	0.2211 (14)	0.047 (5)*
H1B	0.664 (2)	0.560 (2)	0.3127 (15)	0.052 (6)*
H1C	0.651 (2)	0.666 (2)	0.2308 (13)	0.048 (5)*

	r 711	T 722	1 733	T 712	T 713	T 723
	$U^{\prime\prime}$	U ²²	Uss	U^{12}	U^{13}	U^{23}
C1	0.0372 (8)	0.0231 (7)	0.0463 (9)	0.0016 (6)	0.0086 (7)	-0.0025 (6)
C2	0.0364 (8)	0.0255 (7)	0.0519 (10)	-0.0001 (6)	0.0096 (7)	0.0012 (6)
C3	0.0484 (10)	0.0293 (8)	0.0496 (10)	0.0068 (7)	0.0083 (8)	0.0036 (7)
C4	0.0390 (9)	0.0436 (10)	0.0559 (11)	0.0110 (7)	0.0014 (8)	-0.0045 (8)
C5	0.0341 (9)	0.0560 (12)	0.0707 (13)	-0.0025 (8)	0.0108 (9)	0.0024 (10)
C6	0.0417 (10)	0.0423 (9)	0.0589 (11)	-0.0042 (7)	0.0140 (8)	0.0066 (8)
C7	0.0404 (9)	0.0261 (7)	0.0431 (9)	0.0004 (6)	0.0069 (7)	0.0009 (6)
C8	0.0546 (11)	0.0343 (9)	0.0517 (11)	0.0016 (7)	0.0022 (8)	-0.0112 (7)
C10	0.0445 (9)	0.0232 (7)	0.0519 (10)	0.0068 (6)	-0.0048 (7)	-0.0022 (7)
C11	0.0547 (10)	0.0228 (8)	0.0590 (11)	0.0073 (7)	-0.0015 (9)	-0.0078 (7)
C12	0.0375 (8)	0.0281 (8)	0.0467 (9)	0.0012 (6)	-0.0008(7)	-0.0020 (6)
C13	0.0375 (8)	0.0208 (7)	0.0477 (9)	0.0031 (6)	0.0024 (7)	-0.0002 (6)
C14	0.0313 (7)	0.0194 (6)	0.0442 (8)	-0.0012 (5)	0.0055 (6)	0.0002 (6)
C15	0.0279 (7)	0.0211 (7)	0.0429 (8)	0.0007 (5)	0.0033 (6)	0.0001 (6)
N1	0.0360 (7)	0.0182 (6)	0.0443 (8)	0.0009 (5)	0.0006 (6)	0.0011 (5)
N2	0.0465 (8)	0.0250 (7)	0.0510 (8)	-0.0025 (6)	0.0026 (6)	-0.0068 (6)
O1	0.0390 (6)	0.0294 (6)	0.0423 (7)	-0.0036 (4)	0.0000 (5)	0.0034 (5)
O2	0.0582 (8)	0.0181 (5)	0.0509 (7)	-0.0017 (5)	-0.0036 (6)	-0.0010 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.387 (2)	C8—H8C	0.98
C1—C6	1.388 (2)	C10—C11	1.378 (2)
C1—C7	1.512 (2)	C10—C14	1.392 (2)
C2—C3	1.382 (2)	C10—H10	0.95
С2—Н2	0.95	C11—N2	1.331 (2)
C3—C4	1.383 (3)	C11—H11	0.95
С3—Н3	0.95	C12—N2	1.343 (2)
C4—C5	1.378 (3)	C12—C13	1.378 (2)
C4—H4	0.95	C12—H12	0.95
C5—C6	1.381 (3)	C13—C14	1.381 (2)
С5—Н5	0.95	C13—H13	0.95
С6—Н6	0.95	C14—C15	1.513 (2)
C7—N1	1.500 (2)	C15—O1	1.2482 (18)
С7—С8	1.520 (2)	C15—O2	1.2546 (18)
С7—Н7	1	N1—H1A	0.93 (2)
C8—H8A	0.98	N1—H1B	0.95 (2)
C8—H8B	0.98	N1—H1C	0.98 (2)
C2—C1—C6	118.74 (16)	H8A—C8—H8C	109.5
C2—C1—C7	121.84 (14)	H8B—C8—H8C	109.5
C6—C1—C7	119.41 (15)	C11—C10—C14	119.06 (16)
C3—C2—C1	120.86 (16)	C11—C10—H10	120.5
С3—С2—Н2	119.6	C14—C10—H10	120.5
C1—C2—H2	119.6	N2-C11-C10	123.73 (15)

G2 G2 G4	110 (0 (17)		110.1
C2—C3—C4	119.69 (17)	N2—C11—H11	118.1
С2—С3—Н3	120.2	C10-C11-H11	118.1
С4—С3—Н3	120.2	N2—C12—C13	123.55 (16)
C5—C4—C3	120.01 (17)	N2—C12—H12	118.2
C5—C4—H4	120	C13—C12—H12	118.2
C3—C4—H4	120	C12—C13—C14	119.25 (14)
C4—C5—C6	120.16 (17)	С12—С13—Н13	120.4
С4—С5—Н5	119.9	C14—C13—H13	120.4
С6—С5—Н5	119.9	C13—C14—C10	117.66 (15)
C5—C6—C1	120.53 (17)	C13—C14—C15	121.61 (13)
С5—С6—Н6	119.7	C10-C14-C15	120.73 (14)
С1—С6—Н6	119.7	O1—C15—O2	125.63 (15)
N1—C7—C1	110.42 (13)	O1—C15—C14	117.90 (13)
N1—C7—C8	109.18 (14)	O2—C15—C14	116.46 (14)
C1—C7—C8	113.54 (13)	C7—N1—H1A	110.8 (12)
N1—C7—H7	107.8	C7—N1—H1B	105.6 (12)
С1—С7—Н7	107.8	H1A—N1—H1B	115.0 (18)
С8—С7—Н7	107.8	C7—N1—H1C	110.6 (12)
С7—С8—Н8А	109.5	H1A—N1—H1C	104.9 (16)
С7—С8—Н8В	109.5	H1B—N1—H1C	110.0 (17)
H8A—C8—H8B	109.5	C11—N2—C12	116.73 (14)
С7—С8—Н8С	109.5		
C6—C1—C2—C3	-0.7 (2)	C14—C10—C11—N2	-1.5 (3)
C7—C1—C2—C3	179.00 (15)	N2-C12-C13-C14	-1.4 (3)
C1—C2—C3—C4	1.4 (3)	C12-C13-C14-C10	0.4 (2)
C2—C3—C4—C5	-1.1 (3)	C12—C13—C14—C15	-178.95 (14)
C3—C4—C5—C6	0.2 (3)	C11—C10—C14—C13	0.9 (3)
C4—C5—C6—C1	0.5 (3)	C11—C10—C14—C15	-179.69 (16)
C2-C1-C6-C5	-0.2 (3)	C13-C14-C15-O1	148.63 (15)
C7—C1—C6—C5	-179.94 (17)	C10-C14-C15-O1	-30.7 (2)
C2-C1-C7-N1	-64.54 (19)	C13—C14—C15—O2	-30.9 (2)
C6—C1—C7—N1	115.18 (17)	C10-C14-C15-O2	149.70 (16)
C2—C1—C7—C8	58.5 (2)	C10-C11-N2-C12	0.6 (3)
C6—C1—C7—C8	-121.83 (18)	C13—C12—N2—C11	0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>B</i> ····O2 ⁱ	0.95 (2)	1.80 (2)	2.747 (2)	176 (2)
N1—H1 <i>C</i> …O1	0.98 (2)	1.81 (2)	2.783 (2)	174 (2)
N1—H1A····N2 ⁱⁱ	0.93 (2)	1.93 (2)	2.856 (2)	175 (2)

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*.

(RS)-1-Phenylethan-1-aminium 2-(3-fluoro-4-phenylphenyl)propanoate (II)

Crystal data

 $C_{8}H_{12}N^{+}C_{15}H_{12}FO_{2}^{-}$ $M_{r} = 365.43$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 12.4146 (4) Å b = 5.9101 (2) Å c = 27.3645 (9) Å $\beta = 90.793$ (1)° V = 2007.58 (11) Å³ Z = 4

Data collection

Bruker D8 Venture Photon CCD area detector
diffractometer
Graphite monochromator
ω scans
Absorption correction: integration
(XPREP; Bruker, 2016)
$T_{\min} = 0.984, \ T_{\max} = 0.998$
21119 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.061$ and constrained refinement $wR(F^2) = 0.174$ $w = 1/[\sigma^2(F_o^2) + (0.0822P)^2 + 1.6935P]$ S = 1.07where $P = (F_0^2 + 2F_c^2)/3$ 3729 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 1.00 \text{ e } \text{\AA}^{-3}$ 256 parameters $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$ 0 restraints 0 constraints

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 776

 $\theta = 3.3 - 28.1^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 173 K

 $R_{\rm int} = 0.036$

 $k = -7 \rightarrow 7$ $l = -33 \rightarrow 33$

Needle, colourless

 $0.49 \times 0.05 \times 0.03 \text{ mm}$

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ $h = -15 \rightarrow 15$

3729 independent reflections 3014 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.209 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8586 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.04935 (18)	0.8642 (4)	0.27025 (8)	0.0329 (5)	
C2	1.0760 (2)	1.0387 (5)	0.30184 (9)	0.0417 (6)	
H2	1.031358	1.168965	0.303281	0.05*	
C3	1.1675 (2)	1.0250 (6)	0.33148 (10)	0.0530(7)	
H3	1.184766	1.1449	0.353363	0.064*	
C4	1.2332 (2)	0.8381 (6)	0.32915 (12)	0.0601 (8)	
H4	1.29587	0.828908	0.349338	0.072*	

C5	1.2079 (2)	0.6647 (6)	0.29759 (15)	0.0674 (9)
H5	1.253609	0.536126	0.295793	0.081*
C6	1.1162 (2)	0.6766 (5)	0.26840 (12)	0.0520 (7)
H6	1.098886	0.555252	0.246917	0.062*
C7	0.95219 (18)	0.8788 (4)	0.23622 (8)	0.0334 (5)
H7	0.941499	0.727244	0.220658	0.04*
C8	0.9665 (2)	1.0510 (5)	0.19606 (9)	0.0466 (7)
H8A	1.031382	1.014686	0.177604	0.07*
H8B	0.90358	1.047944	0.174065	0.07*
H8C	0.973963	1.202164	0.210442	0.07*
C9	0.72402 (18)	0.2856 (4)	0.39881 (8)	0.0358 (5)
C10	0.66307 (19)	0.0970 (4)	0.38683 (8)	0.0367 (5)
H10	0.694035	-0.023957	0.368967	0.044*
C11	0.55715 (18)	0.0859 (4)	0.40101 (8)	0.0329 (5)
C12	0.50615 (17)	0.2529 (4)	0.42747 (7)	0.0284 (5)
C13	0.56906 (18)	0.4412 (4)	0.43937 (8)	0.0327 (5)
H13	0.537912	0.561242	0.457442	0.039*
C14	0.67580 (19)	0.4579 (4)	0.42552 (8)	0.0366 (5)
H14	0.716474	0.588155	0.434344	0.044*
C15	0.39177 (17)	0.2360 (4)	0.44248 (7)	0.0293 (5)
C16	0.35361 (19)	0.0448 (4)	0.46614 (8)	0.0362 (5)
H16	0.400371	-0.079872	0.471962	0.043*
C17	0.2475 (2)	0.0349 (5)	0.48133 (9)	0.0437 (6)
H17	0.222173	-0.096227	0.497663	0.052*
C18	0.1787 (2)	0.2137 (5)	0.47289 (9)	0.0471 (7)
H18	0.106092	0.206011	0.483266	0.057*
C19	0.2158 (2)	0.4046 (5)	0.44923 (9)	0.0448 (6)
H19	0.168487	0.528178	0.443247	0.054*
C20	0.32183 (19)	0.4161 (4)	0.43423 (8)	0.0360 (5)
H20	0.346918	0.548087	0.418186	0.043*
C21	0.83900 (19)	0.3060 (5)	0.38057 (10)	0.0484 (7)
H21	0.861763	0.153443	0.368734	0.058*
C22	0.9186 (2)	0.3812 (8)	0.41767 (12)	0.0823 (13)
H22A	0.989972	0.389687	0.402947	0.123*
H22B	0.898205	0.530877	0.42989	0.123*
H22C	0.920409	0.273085	0.44482	0.123*
C23	0.83496 (16)	0.4652 (4)	0.33647 (8)	0.0329 (5)
N1	0.85361 (16)	0.9339 (4)	0.26431 (8)	0.0319 (4)
01	0.83181 (13)	0.3767 (3)	0.29437 (6)	0.0388 (4)
O2	0.83086 (15)	0.6720 (3)	0.34405 (6)	0.0470 (5)
F1	0.49883 (12)	-0.0979 (2)	0.38696 (6)	0.0499 (4)
H1A	0.797 (2)	0.927 (5)	0.2430 (11)	0.045 (7)*
H1C	0.857 (2)	1.077 (5)	0.2754 (10)	0.044 (7)*
H1B	0.848 (2)	0.838 (5)	0.2918 (11)	0.046 (8)*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0316 (11)	0.0356 (13)	0.0316 (11)	0.0004 (10)	0.0037 (9)	0.0034 (10)
C2	0.0384 (13)	0.0474 (15)	0.0391 (13)	0.0060 (11)	-0.0021 (10)	-0.0042 (11)
C3	0.0493 (16)	0.069 (2)	0.0401 (14)	-0.0014 (14)	-0.0093 (11)	-0.0036 (13)
C4	0.0421 (15)	0.074 (2)	0.0642 (18)	0.0028 (15)	-0.0166 (13)	0.0232 (17)
C5	0.0456 (17)	0.0524 (19)	0.104 (3)	0.0130 (14)	-0.0061 (16)	0.0169 (18)
C6	0.0447 (15)	0.0367 (14)	0.0746 (19)	0.0029 (12)	-0.0002 (13)	-0.0020 (13)
C7	0.0342 (12)	0.0346 (12)	0.0315 (11)	-0.0024 (10)	0.0025 (9)	-0.0048 (9)
C8	0.0420 (14)	0.0638 (18)	0.0339 (12)	-0.0147 (13)	-0.0048 (10)	0.0077 (12)
C9	0.0315 (11)	0.0412 (13)	0.0346 (12)	0.0054 (10)	-0.0007 (9)	0.0152 (10)
C10	0.0396 (13)	0.0340 (13)	0.0366 (12)	0.0095 (10)	0.0060 (10)	0.0060 (10)
C11	0.0386 (12)	0.0277 (12)	0.0325 (11)	-0.0003 (9)	0.0001 (9)	0.0020 (9)
C12	0.0331 (11)	0.0295 (12)	0.0226 (10)	0.0023 (9)	-0.0021 (8)	0.0039 (9)
C13	0.0406 (12)	0.0304 (12)	0.0269 (11)	0.0006 (10)	-0.0008(9)	0.0008 (9)
C14	0.0374 (12)	0.0378 (13)	0.0342 (12)	-0.0058 (10)	-0.0070 (9)	0.0076 (10)
C15	0.0335 (11)	0.0318 (12)	0.0226 (10)	-0.0008 (9)	-0.0015 (8)	-0.0035 (9)
C16	0.0396 (13)	0.0369 (13)	0.0323 (11)	-0.0005 (10)	0.0011 (9)	0.0028 (10)
C17	0.0434 (14)	0.0506 (16)	0.0373 (13)	-0.0098 (12)	0.0033 (10)	0.0033 (12)
C18	0.0326 (13)	0.0670 (19)	0.0418 (14)	-0.0058 (12)	0.0021 (10)	-0.0127 (13)
C19	0.0360 (13)	0.0499 (16)	0.0482 (14)	0.0093 (11)	-0.0061 (11)	-0.0097 (12)
C20	0.0373 (12)	0.0341 (13)	0.0364 (12)	0.0018 (10)	-0.0049 (9)	-0.0014 (10)
C21	0.0325 (13)	0.0591 (17)	0.0536 (15)	0.0087 (12)	0.0033 (11)	0.0232 (13)
C22	0.0402 (16)	0.150 (4)	0.0564 (18)	-0.001 (2)	-0.0051 (14)	0.017 (2)
C23	0.0228 (11)	0.0351 (13)	0.0409 (13)	0.0012 (9)	0.0041 (9)	0.0070 (10)
N1	0.0315 (10)	0.0283 (11)	0.0358 (11)	-0.0018 (8)	0.0007 (8)	-0.0004 (9)
01	0.0368 (9)	0.0327 (9)	0.0467 (10)	0.0030 (7)	-0.0031 (7)	-0.0041 (7)
O2	0.0644 (12)	0.0327 (10)	0.0445 (10)	-0.0038 (8)	0.0175 (8)	-0.0023 (8)
F1	0.0514 (9)	0.0378 (8)	0.0609 (9)	-0.0053 (7)	0.0103 (7)	-0.0134 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.383 (3)	C12—C15	1.487 (3)	
C1—C6	1.386 (4)	C13—C14	1.387 (3)	
C1—C7	1.516 (3)	C13—H13	0.95	
C2—C3	1.389 (4)	C14—H14	0.95	
С2—Н2	0.95	C15—C16	1.389 (3)	
C3—C4	1.375 (4)	C15—C20	1.390 (3)	
С3—Н3	0.95	C16—C17	1.388 (3)	
C4—C5	1.374 (5)	C16—H16	0.95	
C4—H4	0.95	C17—C18	1.376 (4)	
C5—C6	1.384 (4)	C17—H17	0.95	
С5—Н5	0.95	C18—C19	1.383 (4)	
С6—Н6	0.95	C18—H18	0.95	
C7—N1	1.490 (3)	C19—C20	1.386 (3)	
С7—С8	1.510 (3)	C19—H19	0.95	
С7—Н7	1	C20—H20	0.95	

C8—H8A	0.98	C21—C22	1.475 (4)
C8—H8B	0.98	C21—C23	1.531 (3)
C8—H8C	0.98	C21—H21	1
C9—C10	1.384 (3)	C22—H22A	0.98
C9—C14	1.394 (4)	C22—H22B	0.98
C9—C21	1.523 (3)	C22—H22C	0.98
C10—C11	1.378 (3)	$C_{23} - O_{2}^{2}$	1.241 (3)
C10—H10	0.95	C23—01	1 265 (3)
C11—F1	1 358 (3)	N1—H1A	0.91(3)
C11—C12	1 383 (3)	N1—H1C	0.90(3)
C12 - C13	1 396 (3)	N1—H1B	0.95(3)
012 013	1.590 (5)		0.95 (5)
C2—C1—C6	118.8 (2)	C12—C13—H13	119.1
C2—C1—C7	121.5 (2)	C13—C14—C9	120.7 (2)
C6—C1—C7	119.7 (2)	C13—C14—H14	119.7
C1—C2—C3	120.6 (2)	C9—C14—H14	119.7
C1—C2—H2	119.7	C16—C15—C20	118.8 (2)
C3—C2—H2	119.7	C16—C15—C12	121.1 (2)
C4—C3—C2	120.0 (3)	C20—C15—C12	120.0(2)
C4—C3—H3	120	C17—C16—C15	120.3(2)
C2-C3-H3	120	C17—C16—H16	119.8
$C_{5}-C_{4}-C_{3}$	1199(3)	C15—C16—H16	119.8
C5-C4-H4	120	C18 - C17 - C16	120.4 (2)
C3—C4—H4	120	C18—C17—H17	119.8
C4-C5-C6	1202(3)	C16—C17—H17	119.8
C4—C5—H5	119.9	C17 - C18 - C19	119.0 119.7(2)
C6-C5-H5	119.9	C17 - C18 - H18	120.2
C_{5} C_{6} C_{1}	120 5 (3)	C19-C18-H18	120.2
C5—C6—H6	119.7	C_{18} C_{19} C_{20}	120.2 120.1(2)
C1-C6-H6	119.7	C18 - C19 - H19	110.0
N1 - C7 - C8	109.5 (2)	C_{20} C_{19} H_{19}	119.9
N1 - C7 - C1	109.3(2) 110 34 (18)	C_{19} C_{20} C_{15} C_{15}	120.5(2)
C_{8} C_{7} C_{1}	112 63 (19)	$C_{19} = C_{20} = C_{13}$	110.7
N1_C7_H7	108.1	$C_{15} = C_{20} = H_{20}$	119.7
C8-C7-H7	108.1	$C_{22}^{22} - C_{21}^{21} - C_{9}^{9}$	119.7 114.8(2)
$C_1 = C_7 = H_7$	108.1	$C_{22} = C_{21} = C_{3}$	114.0(2)
$C_1 - C_2 - H_{A}$	109.5	$C_{22} = C_{21} = C_{23}$	106.63(18)
C7 - C8 - H8B	109.5	C_{22} C_{21} C_{23} C	107.8
H8A - C8 - H8B	109.5	C9-C21-H21	107.8
C7 - C8 - H8C	109.5	C^{23} C^{21} H^{21}	107.8
H8A - C8 - H8C	109.5	C_{21} C_{22} H_{22A}	109.5
H8B-C8-H8C	109.5	$C_{21} = C_{22} = H_{22R}$	109.5
C10-C9-C14	118 4 (2)	$H_{22} = C_{22} = H_{22} = H$	109.5
C10 - C9 - C14	119.7 (2)	$C_{21} - C_{22} - H_{22C}$	109.5
$C_{10} = C_{21} = C_{21}$	117.0(2) 121.7(2)	$H_{22} = C_{22} = H_{22} C_{22}$	109.5
$C_{11} = C_{10} = C_{21}$	121.7(2) 1195(2)	$H_{22} = C_{22} = H_{22} C_{22}$	109.5
C11-C10-H10	120.3	02-023-01	1240(2)
C_{10} H10	120.3	02 - C23 - C1	127.0(2) 1183(2)
	140.0	02 - 023 - 021	110.5 (2)

F1—C11—C10 F1—C11—C12 C10—C11—C12 C11—C12—C13	117.7 (2) 118.2 (2) 124.0 (2) 115.6 (2)	O1—C23—C21 C7—N1—H1A C7—N1—H1C H1A—N1—H1C	117.6 (2) 107.0 (17) 110.5 (18) 107 (2)
C11 - C12 - C15	122.9 (2)	C7—N1—H1B	110.3 (17)
C13 - C12 - C13	121.50 (19)	HIA—NI—HIB	115 (2)
C14 - C13 - C12	121.8 (2)	HIC—NI—HIB	108 (2)
C14—C13—H13	119.1		
C6—C1—C2—C3	-0.6(4)	C10—C9—C14—C13	-0.5(3)
C7—C1—C2—C3	-177.7(2)	C21—C9—C14—C13	176.3 (2)
C1—C2—C3—C4	0.8 (4)	C11—C12—C15—C16	50.7 (3)
C2—C3—C4—C5	-0.2 (5)	C13—C12—C15—C16	-129.4 (2)
C3—C4—C5—C6	-0.5 (5)	C11—C12—C15—C20	-131.3 (2)
C4C5C1	0.7 (5)	C13—C12—C15—C20	48.6 (3)
C2—C1—C6—C5	-0.1 (4)	C20-C15-C16-C17	-0.2(3)
C7—C1—C6—C5	177.1 (3)	C12-C15-C16-C17	177.9 (2)
C2-C1-C7-N1	-53.5 (3)	C15—C16—C17—C18	0.4 (4)
C6-C1-C7-N1	129.5 (2)	C16—C17—C18—C19	-0.2 (4)
C2—C1—C7—C8	69.3 (3)	C17—C18—C19—C20	-0.2 (4)
C6—C1—C7—C8	-107.8 (3)	C18—C19—C20—C15	0.4 (4)
C14—C9—C10—C11	0.7 (3)	C16—C15—C20—C19	-0.2 (3)
C21—C9—C10—C11	-176.2 (2)	C12-C15-C20-C19	-178.3 (2)
C9—C10—C11—F1	177.5 (2)	C10—C9—C21—C22	-134.9 (3)
C9—C10—C11—C12	-0.7 (3)	C14—C9—C21—C22	48.3 (4)
F1-C11-C12-C13	-177.81 (18)	C10—C9—C21—C23	100.7 (3)
C10-C11-C12-C13	0.4 (3)	C14—C9—C21—C23	-76.1 (3)
F1-C11-C12-C15	2.1 (3)	C22—C21—C23—O2	-46.8 (3)
C10-C11-C12-C15	-179.7 (2)	C9—C21—C23—O2	79.5 (3)
C11—C12—C13—C14	-0.2 (3)	C22—C21—C23—O1	135.9 (3)
C15—C12—C13—C14	179.93 (19)	C9—C21—C23—O1	-97.8 (3)
C12-C13-C14-C9	0.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····O1 ⁱ	0.91 (3)	1.91 (3)	2.809 (3)	170 (3)
N1—H1C···O1 ⁱⁱ	0.90 (3)	1.87 (3)	2.758 (3)	168 (3)
N1—H1 <i>B</i> …O2	0.95 (3)	1.75 (3)	2.693 (3)	176 (3)

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) x, y+1, z.

(RS)-1-Phenylethan-1-aminium 2-chloro-4-nitrobenzoate (III)

<i>a</i> = 15.5817 (7) Å
b = 6.3914 (3) Å
c = 31.3238 (14) Å
$\beta = 100.998 \ (2)^{\circ}$

 $V = 3062.2 (2) Å^{3}$ Z = 8 F(000) = 1344 $D_{x} = 1.4 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 Å$ Cell parameters from 8180 reflections

Data collection

Bruker D8 Venture Photon CCD area detector diffractometer Graphite monochromator ω scans Absorption correction: integration (XPREP; Bruker, 2016) $T_{\min} = 0.903, T_{\max} = 0.979$ 18885 measured reflections

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.035$
$wR(F^2) = 0.091$
S = 1.04
3709 reflections
212 parameters
0 restraints
0 constraints

 $\theta = 2.7-28.3^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.47 \times 0.35 \times 0.08 \text{ mm}$

3709 independent reflections 3218 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -20 \rightarrow 20$ $k = -8 \rightarrow 8$ $l = -41 \rightarrow 41$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.046P)^2 + 1.4672P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.31 \text{ e } \text{Å}^{-3}$

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.09581 (10)	0.3921 (3)	0.05256 (5)	0.0435 (4)
H1	0.088661	0.371465	0.022052	0.052*
C2	0.09009 (10)	0.2257 (3)	0.07959 (5)	0.0440 (4)
H2	0.079856	0.089053	0.067772	0.053*
C3	0.09920 (9)	0.2562 (2)	0.12412 (5)	0.0360 (3)
Н3	0.094958	0.140054	0.142536	0.043*
C4	0.11437 (8)	0.4538 (2)	0.14197 (4)	0.0263 (3)
C5	0.12131 (11)	0.6209 (2)	0.11467 (5)	0.0412 (3)
Н5	0.132454	0.757299	0.126471	0.049*
C6	0.11206 (12)	0.5899 (3)	0.07006 (5)	0.0492 (4)
H6	0.116926	0.705265	0.051546	0.059*
C7	0.12507 (8)	0.4829 (2)	0.19075 (4)	0.0261 (3)
H7	0.108406	0.348778	0.20347	0.031*
C8	0.06945 (9)	0.6569 (2)	0.20441 (4)	0.0353 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8A	0.007558	0.627874	0.193002	0.053*
H8B	0.085549	0.790563	0.192793	0.053*
H8C	0.079383	0.664261	0.236219	0.053*
N1	0.21931 (6)	0.52603 (17)	0.20964 (3)	0.0233 (2)
H1A	0.2343 (10)	0.661 (3)	0.2022 (5)	0.035 (4)*
H1B	0.2564 (10)	0.429 (3)	0.1998 (5)	0.034 (4)*
H1C	0.2276 (10)	0.518 (2)	0.2403 (5)	0.033 (4)*
C9	0.33113 (8)	0.90589 (19)	0.14294 (4)	0.0244 (2)
C10	0.37797 (7)	0.72139 (19)	0.15321 (4)	0.0236 (2)
C11	0.39367 (8)	0.5834 (2)	0.12153 (4)	0.0277 (3)
H11	0.423888	0.455476	0.128894	0.033*
C12	0.36346 (9)	0.6399 (2)	0.07865 (4)	0.0330 (3)
C13	0.32140 (11)	0.8263 (2)	0.06657 (4)	0.0386 (3)
H13	0.303972	0.862985	0.03679	0.046*
C14	0.30526 (9)	0.9589 (2)	0.09922 (4)	0.0332 (3)
H14	0.276081	1.087962	0.091646	0.04*
C15	0.30282 (7)	1.04387 (19)	0.17704 (4)	0.0238 (2)
N2	0.37830 (10)	0.4929 (2)	0.04459 (4)	0.0453 (3)
01	0.25740 (6)	0.95511 (14)	0.20132 (3)	0.0280 (2)
O2	0.32294 (6)	1.23110 (14)	0.17769 (3)	0.0323 (2)
O3	0.41721 (10)	0.33069 (19)	0.05555 (4)	0.0595 (4)
O4	0.35101 (12)	0.5415 (2)	0.00671 (4)	0.0796 (5)
C11	0.42338 (2)	0.66402 (5)	0.20708 (2)	0.02886 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0479 (8)	0.0530 (10)	0.0283 (6)	0.0043 (7)	0.0041 (6)	-0.0096 (6)
C2	0.0523 (9)	0.0377 (9)	0.0410 (8)	-0.0035 (7)	0.0058 (7)	-0.0159 (7)
C3	0.0414 (7)	0.0285 (7)	0.0380 (7)	-0.0027 (6)	0.0071 (6)	-0.0027 (6)
C4	0.0260 (5)	0.0264 (7)	0.0264 (6)	-0.0023 (5)	0.0051 (4)	-0.0016 (5)
C5	0.0664 (10)	0.0279 (7)	0.0295 (7)	-0.0040 (7)	0.0095 (6)	-0.0011 (5)
C6	0.0767 (11)	0.0428 (9)	0.0283 (7)	0.0003 (8)	0.0106 (7)	0.0048 (6)
C7	0.0276 (5)	0.0258 (6)	0.0260 (6)	-0.0049 (5)	0.0078 (4)	0.0010 (5)
C8	0.0308 (6)	0.0439 (9)	0.0334 (7)	0.0035 (6)	0.0113 (5)	-0.0021 (6)
N1	0.0283 (5)	0.0208 (5)	0.0221 (5)	-0.0008(4)	0.0080 (4)	-0.0002 (4)
C9	0.0294 (6)	0.0209 (6)	0.0244 (5)	-0.0018 (4)	0.0093 (4)	-0.0007 (4)
C10	0.0267 (5)	0.0246 (6)	0.0200 (5)	-0.0031 (4)	0.0059 (4)	0.0000 (4)
C11	0.0331 (6)	0.0240 (6)	0.0275 (6)	0.0020 (5)	0.0097 (5)	-0.0007 (5)
C12	0.0474 (7)	0.0300 (7)	0.0247 (6)	0.0032 (6)	0.0145 (5)	-0.0030 (5)
C13	0.0591 (9)	0.0362 (8)	0.0222 (6)	0.0069 (6)	0.0119 (6)	0.0040 (5)
C14	0.0482 (7)	0.0268 (7)	0.0267 (6)	0.0073 (6)	0.0121 (5)	0.0052 (5)
C15	0.0272 (5)	0.0223 (6)	0.0220 (5)	0.0013 (4)	0.0052 (4)	-0.0004 (4)
N2	0.0727 (9)	0.0388 (8)	0.0279 (6)	0.0080 (6)	0.0186 (6)	-0.0049 (5)
01	0.0368 (5)	0.0249 (5)	0.0251 (4)	-0.0034 (4)	0.0127 (3)	-0.0024 (3)
O2	0.0407 (5)	0.0201 (5)	0.0396 (5)	-0.0024 (4)	0.0167 (4)	-0.0030 (4)
O3	0.0975 (10)	0.0428 (7)	0.0406 (6)	0.0242 (7)	0.0192 (6)	-0.0079 (5)
O4	0.1472 (14)	0.0678 (9)	0.0243 (5)	0.0380 (9)	0.0182 (7)	-0.0036 (6)

<u>Cl1</u>	0.02955 (16)	0.03213 (18) 0.0	0.00106 (1	1) -0.00007 (11) -0.00070 (11)
Geome	etric parameters (A	Å, °)		
C1—C	2	1.373 (2)	N1—H1B	0.940 (16)
C1—C	6	1.382 (2)	N1—H1C	0.946 (16)
С1—Н	[1	0.95	C9—C10	1.3919 (17)
С2—С	23	1.389 (2)	C9—C14	1.3933 (17)
С2—Н	[2	0.95	C9—C15	1.5143 (16)
С3—С	4	1.3833 (19)	C10-C11	1.3837 (17)
С3—Н	[3	0.95	C10-Cl1	1.7397 (11)
C4—C	25	1.3848 (19)	C11—C12	1.3836 (18)
C4—C	27	1.5167 (16)	C11—H11	0.95
С5—С	6	1.391 (2)	C12—C13	1.377 (2)
С5—Н	[5	0.95	C12—N2	1.4726 (17)
С6—Н	[6	0.95	C13—C14	1.3876 (19)
C7—N	[1	1.5003 (15)	C13—H13	0.95
С7—С	28	1.5206 (19)	C14—H14	0.95
С7—Н	[7	1	C15—O2	1.2362 (15)
С8—Н	[8A	0.98	C15—O1	1.2675 (14)
С8—Н	[8B	0.98	N2—O3	1.2171 (17)
С8—Н	18C	0.98	N2—O4	1.2216 (17)
N1—H	[1A	0.937 (17)		
С2—С	C1—C6	119.52 (13)	C7—N1—H1.	A 110.0 (9)
С2—С	C1—H1	120.2	C7—N1—H1	B 111.4 (9)
С6—С	21—H1	120.2	H1A—N1—H	I1B 109.4 (13)
C1—C	22—C3	120.29 (14)	C7—N1—H1	C 108.9 (9)
C1—C	22—H2	119.9	H1A—N1—H	I1C 107.9 (13)
С3—С	22—H2	119.9	H1B—N1—H	11C 109.0 (13)
С4—С	23—C2	120.72 (14)	C10—C9—C1	14 118.28 (11)
С4—С	23—НЗ	119.6	C10—C9—C1	15 122.74 (10)
С2—С	23—Н3	119.6	C14—C9—C1	15 118.89 (11)
С3—С	24—C5	118.82 (12)	C11—C10—C	29 122.05 (11)
С3—С	24—C7	119.75 (12)	C11—C10—C	Cl1 117.81 (9)
С5—С	24—C7	121.41 (12)	C9—C10—Cl	1 120.07 (9)
С4—С	25—C6	120.33 (14)	C12—C11—C	C10 117.13 (12)
С4—С	25—H5	119.8	C12—C11—H	111 121.4
С6—С	25—H5	119.8	C10-C11-H	111 121.4
C1—C	26—C5	120.30 (15)	C13—C12—C	211 123.24 (12)
С1—С	26—H6	119.8	C13—C12—N	N2 119.02 (12)
С5—С	26—H6	119.8	C11—C12—N	117.74 (12)
N1-C	С7—С4	109.33 (9)	C12—C13—C	C14 118.00 (12)
N1-C	С7—С8	108.79 (10)	C12—C13—H	113 121
С4—С	с7—С8	114.45 (11)	C14—C13—H	113 121
N1-C	27—Н7	108	C13—C14—C	29 121.11 (12)
С4—С	27—H7	108	C13—C14—H	114 119.4
С8—С	27—H7	108	C9—C14—H	14 119.4

109.5	O2—C15—O1	126.32 (11)
109.5	O2—C15—C9	117.92 (10)
109.5	O1—C15—C9	115.71 (11)
109.5	O3—N2—O4	123.54 (13)
109.5	O3—N2—C12	118.55 (12)
109.5	O4—N2—C12	117.91 (13)
1.0 (2)	Cl1—C10—C11—C12	-174.67 (10)
-0.2 (2)	C10-C11-C12-C13	1.7 (2)
-0.7 (2)	C10-C11-C12-N2	-178.93 (12)
-179.33 (13)	C11—C12—C13—C14	-3.0 (2)
0.8 (2)	N2-C12-C13-C14	177.66 (14)
179.39 (14)	C12—C13—C14—C9	0.3 (2)
-0.9 (3)	C10-C9-C14-C13	3.5 (2)
0.0 (3)	C15—C9—C14—C13	-173.03 (13)
107.18 (13)	C10—C9—C15—O2	126.58 (13)
-71.41 (16)	C14—C9—C15—O2	-57.09 (16)
-130.51 (13)	C10-C9-C15-O1	-55.96 (15)
50.90 (17)	C14—C9—C15—O1	120.37 (13)
-4.84 (18)	C13—C12—N2—O3	178.42 (16)
171.52 (11)	C11—C12—N2—O3	-0.9 (2)
172.07 (10)	C13—C12—N2—O4	-1.3 (2)
-11.58 (16)	C11—C12—N2—O4	179.34 (16)
2.30 (18)		
	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 $1.0 (2)$ $-0.2 (2)$ $-0.7 (2)$ $-179.33 (13)$ $0.8 (2)$ $179.39 (14)$ $-0.9 (3)$ $0.0 (3)$ $107.18 (13)$ $-71.41 (16)$ $-130.51 (13)$ $50.90 (17)$ $-4.84 (18)$ $171.52 (11)$ $172.07 (10)$ $-11.58 (16)$ $2.30 (18)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A…O1	0.94 (2)	1.91 (2)	2.829 (1)	165 (1)
N1—H1 <i>B</i> ···O2 ⁱ	0.94 (2)	1.85 (2)	2.789(1)	176 (1)
N1—H1C···O1 ⁱⁱ	0.95 (2)	1.84 (2)	2.780(1)	170 (1)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1/2, *y*-1/2, -*z*+1/2.

(RS)-1-Phenylethan-1-aminium 4-iodobenzoate (IV)

Crystal data

 $C_8H_{12}N^+ C_7H_4IO_2^ M_r = 369.19$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.7224 (5) Å b = 6.0571 (3) Å c = 24.8767 (12) Å $\beta = 99.527$ (2)° V = 1444.77 (12) Å³ Z = 4 F(000) = 728 $D_x = 1.697 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9122 reflections $\theta = 3.3-28.3^{\circ}$ $\mu = 2.21 \text{ mm}^{-1}$ T = 173 KPlate, orange $0.68 \times 0.16 \times 0.04 \text{ mm}$ Data collection

Bruker D8 Venture Photon CCD area detector diffractometer Graphite monochromator ω scans Absorption correction: integration (XPREP; Bruker, 2016) $T_{\min} = 0.508, T_{\max} = 0.928$ 30978 measured reflections	3463 independent reflections 3109 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -8 \rightarrow 8$ $l = -32 \rightarrow 32$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.057$ S = 1.13 3463 reflections 185 parameters 0 restraints 0 constraints	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0189P)^2 + 1.5669P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.74$ e Å ⁻³ $\Delta\rho_{min} = -0.38$ e Å ⁻³
Special details	

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F 1			• •		182
Fractional atomic coordinates	and isotropic or	eauivalent isotropic d	isplacement	parameters	(A^2)
					(<i>,</i>

				TT 4/TT
	x	<i>y</i>	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.4776 (2)	0.5625 (4)	0.30540 (9)	0.0228 (4)
C2	0.5527 (2)	0.3668 (4)	0.30591 (9)	0.0264 (5)
H2	0.600702	0.334421	0.276565	0.032*
C3	0.5584 (2)	0.2182 (4)	0.34868 (10)	0.0273 (5)
H3	0.611349	0.086327	0.348888	0.033*
C4	0.4864 (2)	0.2631 (4)	0.39109 (10)	0.0277 (5)
H4	0.488952	0.161314	0.420293	0.033*
C5	0.4111 (2)	0.4563 (4)	0.39071 (9)	0.0292 (5)
Н5	0.361284	0.486833	0.419662	0.035*
C6	0.4075 (2)	0.6059 (4)	0.34849 (9)	0.0273 (5)
H6	0.356522	0.739462	0.348997	0.033*
C7	0.4644 (2)	0.7258 (4)	0.25903 (10)	0.0263 (5)
H7	0.440241	0.872568	0.273366	0.032*
C8	0.3496 (3)	0.6640 (5)	0.21243 (11)	0.0361 (6)
H8A	0.366585	0.515084	0.199602	0.054*
H8B	0.348559	0.769447	0.182486	0.054*
H8C	0.259354	0.667562	0.225099	0.054*
N1	0.5992 (2)	0.7512 (3)	0.23771 (8)	0.0214 (4)
H1A	0.621 (3)	0.633 (5)	0.2208 (10)	0.023 (6)*

H1B	0.591 (3)	0.858 (5)	0.2159 (11)	0.026 (7)*
H1C	0.670 (3)	0.780 (4)	0.2662 (12)	0.031 (7)*
C9	0.5029 (2)	0.3948 (4)	0.10780 (8)	0.0204 (4)
C10	0.5399 (2)	0.6044 (4)	0.09238 (9)	0.0233 (4)
H10	0.623639	0.670573	0.110297	0.028*
C11	0.4551 (2)	0.7177 (4)	0.05091 (9)	0.0249 (4)
H11	0.480966	0.860353	0.040232	0.03*
C12	0.3327 (2)	0.6210 (4)	0.02534 (8)	0.0240 (4)
C13	0.2946 (2)	0.4109 (4)	0.03976 (9)	0.0279 (5)
H13	0.210789	0.344932	0.021782	0.034*
C14	0.3806 (2)	0.2995 (4)	0.08068 (9)	0.0246 (4)
H14	0.355719	0.155055	0.0905	0.029*
C15	0.5894 (2)	0.2737 (4)	0.15462 (9)	0.0220 (4)
01	0.68527 (16)	0.3835 (3)	0.18395 (6)	0.0249 (3)
O2	0.5591 (2)	0.0792 (3)	0.16235 (7)	0.0375 (4)
I1	0.19967 (2)	0.79494 (3)	-0.03513 (2)	0.03359 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0175 (10)	0.0242 (11)	0.0258 (11)	-0.0025 (8)	0.0005 (8)	0.0018 (9)
C2	0.0263 (11)	0.0296 (12)	0.0245 (11)	0.0037 (9)	0.0076 (9)	0.0029 (9)
C3	0.0279 (11)	0.0245 (11)	0.0292 (12)	0.0029 (9)	0.0039 (9)	0.0025 (9)
C4	0.0262 (11)	0.0326 (13)	0.0239 (11)	-0.0014 (9)	0.0029 (9)	0.0042 (9)
C5	0.0254 (11)	0.0395 (14)	0.0236 (11)	0.0012 (10)	0.0063 (9)	-0.0019 (10)
C6	0.0226 (11)	0.0278 (12)	0.0308 (12)	0.0048 (9)	0.0023 (9)	-0.0002 (10)
C7	0.0219 (10)	0.0269 (11)	0.0300 (12)	0.0042 (9)	0.0036 (9)	0.0039 (9)
C8	0.0250 (12)	0.0472 (16)	0.0339 (13)	0.0017 (11)	-0.0019 (10)	0.0057 (12)
N1	0.0213 (9)	0.0191 (10)	0.0224 (9)	-0.0012 (7)	-0.0009 (7)	0.0037 (8)
C9	0.0229 (10)	0.0205 (10)	0.0183 (9)	0.0012 (8)	0.0046 (8)	0.0004 (8)
C10	0.0251 (11)	0.0214 (11)	0.0224 (10)	-0.0032 (9)	0.0010 (8)	0.0002 (9)
C11	0.0330 (12)	0.0201 (10)	0.0219 (10)	0.0008 (9)	0.0056 (9)	0.0036 (9)
C12	0.0290 (11)	0.0242 (11)	0.0178 (10)	0.0077 (9)	0.0010 (8)	-0.0010 (9)
C13	0.0263 (11)	0.0264 (12)	0.0289 (12)	-0.0016 (9)	-0.0017 (9)	-0.0023 (10)
C14	0.0264 (11)	0.0193 (10)	0.0275 (11)	-0.0030 (9)	0.0031 (9)	0.0017 (9)
C15	0.0258 (10)	0.0216 (10)	0.0189 (10)	0.0019 (8)	0.0047 (8)	0.0020 (8)
O1	0.0251 (8)	0.0259 (8)	0.0218 (7)	0.0011 (6)	-0.0020 (6)	0.0004 (6)
O2	0.0508 (11)	0.0234 (9)	0.0334 (9)	-0.0059 (8)	-0.0069 (8)	0.0109 (7)
I1	0.03935 (10)	0.03639 (10)	0.02241 (9)	0.01375 (7)	-0.00260 (6)	0.00224 (6)

Geometric parameters (Å, °)

C1—C6	1.387 (3)	N1—H1A	0.88 (3)	
C1—C2	1.391 (3)	N1—H1B	0.84 (3)	
C1—C7	1.509 (3)	N1—H1C	0.92 (3)	
C2—C3	1.388 (3)	C9—C10	1.390 (3)	
С2—Н2	0.95	C9—C14	1.392 (3)	
C3—C4	1.386 (3)	C9—C15	1.509 (3)	

С3—Н3	0.95	C10—C11	1.391 (3)
C4—C5	1.380 (3)	C10—H10	0.95
C4—H4	0.95	C11—C12	1.383 (3)
C5—C6	1.383 (3)	C11—H11	0.95
С5—Н5	0.95	C12-C13	1 389 (3)
С6—Н6	0.95	C12 $U12$	2.098(2)
C7 N1	1 501 (3)	C_{12} C_{14}	1.382(3)
C7 C8	1.501(3) 1.517(3)	C13 H13	0.05
C7 H7	1.517 (5)	C13—H14	0.95
	1	$C_{14} = 1114$	0.35
	0.98	C15 - O2	1.237 (3)
C8—H8B	0.98	01501	1.272 (3)
С8—Н8С	0.98		
C6—C1—C2	118.6 (2)	H8B—C8—H8C	109.5
C6—C1—C7	118.4 (2)	C7—N1—H1A	112.5 (17)
C2-C1-C7	123.0 (2)	C7—N1—H1B	108.3 (18)
$C_{3} - C_{2} - C_{1}$	120.9(2)	H1A - N1 - H1B	109 (2)
C_{3} C_{2} H_{2}	119.5	C7-N1-H1C	109(2) 1094(17)
C1 - C2 - H2	119.5	$H_1 A - N_1 - H_1 C$	109.4(17) 108(2)
$C_1 = C_2 = H_2$	119.5 110.7(2)	HIR NI HIC	100(2)
C4 = C3 = C2	119.7 (2)	$\frac{1110}{110} \frac{110}{10} \frac{110}{$	110(2)
$C_4 - C_5 - H_3$	120.2	C10 - C9 - C14	110.9(2)
C2—C3—H3	120.2	C10-C9-C15	121.37 (19)
C_{3}	119.7 (2)	C14-C9-C15	119.64 (19)
C5—C4—H4	120.1	C9—C10—C11	120.5 (2)
C3—C4—H4	120.1	C9—C10—H10	119.8
C4—C5—C6	120.5 (2)	C11—C10—H10	119.8
C4—C5—H5	119.8	C12—C11—C10	119.4 (2)
С6—С5—Н5	119.8	C12—C11—H11	120.3
C5—C6—C1	120.6 (2)	C10-C11-H11	120.3
С5—С6—Н6	119.7	C11—C12—C13	121.0 (2)
С1—С6—Н6	119.7	C11—C12—I1	119.89 (17)
N1—C7—C1	111.61 (18)	C13—C12—I1	119.08 (16)
N1—C7—C8	109.3 (2)	C14—C13—C12	118.9 (2)
C1—C7—C8	112.4 (2)	C14—C13—H13	120.6
N1—C7—H7	107.8	C12—C13—H13	120.6
C1—C7—H7	107.8	C13—C14—C9	121.2 (2)
C8—C7—H7	107.8	C13-C14-H14	119.4
C7 - C8 - H8A	109.5	C9-C14-H14	119.1
C7 - C8 - H8B	109.5	$0^{2}-C15-01$	125.4(2)
	109.5	$O_2 C_{15} O_1$	123.4(2) 117.8(2)
C7 C9 H9C	109.5	02 - C15 - C9	117.0(2) 116.76(10)
	109.5	01-013-09	110.70 (19)
Н8А—С8—Н8С	109.5		
C6—C1—C2—C3	-0.4 (3)	C15—C9—C10—C11	-176.7 (2)
C7—C1—C2—C3	-178.0(2)	C9—C10—C11—C12	0.6 (3)
C1—C2—C3—C4	1.1 (4)	C10—C11—C12—C13	-1.2 (3)
C2-C3-C4-C5	-0.7(4)	C10-C11-C12-I1	177.56 (16)
C3—C4—C5—C6	-0.3 (4)	C11—C12—C13—C14	0.6 (3)
	/		

C4—C5—C6—C1 C2—C1—C6—C5 C7—C1—C6—C5 C6—C1—C7—N1 C2—C1—C7—N1 C6—C1—C7—C8 C2—C1—C7—C8	1.1 (4) -0.7 (3) 177.0 (2) 142.4 (2) -40.0 (3) -94.4 (3) 83.2 (3)	I1—C12—C13—C14 C12—C13—C14—C9 C10—C9—C14—C13 C15—C9—C14—C13 C10—C9—C15—O2 C14—C9—C15—O2 C10—C9—C15—O2 C10—C9—C15—O1	-178.18 (17) 0.7 (3) -1.3 (3) 176.2 (2) -172.3 (2) 10.3 (3) 9.7 (3)
C2—C1—C7—C8	83.2 (3)	C10-C9-C15-O1	9.7 (3)
C14—C9—C10—C11	0.7 (3)	C14-C9-C15-O1	-167.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
N1—H1A…O1	0.88 (3)	1.92 (3)	2.796 (3)	175 (2)	
N1—H1 <i>B</i> ····O2 ⁱ	0.84 (3)	1.88 (3)	2.715 (3)	174 (3)	
N1—H1 <i>C</i> …O1 ⁱⁱ	0.92 (3)	1.83 (3)	2.735 (2)	169 (3)	

Symmetry codes: (i) x, y+1, z; (ii) -x+3/2, y+1/2, -z+1/2.

(S)-1-Cyclohexylethan-1-aminium 2-chloro-4-nitrobenzoate (V)

Crystal data

$C_8H_{18}N^+ \cdot C_7H_3CINO_4^-$
$M_r = 328.79$
Monoclinic, C2
Hall symbol: C 2y
<i>a</i> = 16.2280 (15) Å
<i>b</i> = 6.4392 (5) Å
<i>c</i> = 15.5937 (15) Å
$\beta = 104.289 \ (4)^{\circ}$
$V = 1579.1 (2) \text{ Å}^3$
Z = 4

Data collection

Bruker D8 Venture Photon CCD area detector	3837 independent
diffractometer	3587 reflections w
Graphite monochromator	$R_{\rm int} = 0.045$
ω scans	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} =$
Absorption correction: integration	$h = -21 \rightarrow 21$
(XPREP; Bruker, 2016)	$k = -8 \rightarrow 8$
$T_{\min} = 0.910, \ T_{\max} = 0.988$	$l = -20 \rightarrow 20$
15055 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.071$ *S* = 1.04 3837 reflections 211 parameters 1 restraint 0 constraints Hydrogen site location: mixed

F(000) = 696 $D_{\rm x} = 1.383 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 8605 reflections $\theta = 3.2 - 31.0^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.51 \times 0.39 \times 0.06 \text{ mm}$

reflections ith $I > 2\sigma(I)$ 3.2°

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0364P)^2 + 0.5174P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.004$ $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack *x* determined using 1512 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et* al., 2013). Absolute structure parameter: -0.031 (19)

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
C1	0.92062 (12)	-0.0254 (3)	0.72741 (12)	0.0222 (4)
H1	0.983347	-0.000692	0.746046	0.027*
C2	0.87885 (13)	0.1383 (4)	0.77418 (11)	0.0276 (4)
H2A	0.816318	0.121419	0.755933	0.033*
H2B	0.892781	0.278499	0.755797	0.033*
C3	0.90886 (14)	0.1200 (4)	0.87506 (12)	0.0298 (4)
H3A	0.97047	0.150661	0.894021	0.036*
H3B	0.878531	0.223348	0.902958	0.036*
C4	0.89238 (14)	-0.0959 (4)	0.90568 (13)	0.0306 (5)
H4A	0.830328	-0.121076	0.892148	0.037*
H4B	0.915094	-0.106021	0.97058	0.037*
C5	0.93408 (15)	-0.2602 (4)	0.86040 (14)	0.0324 (5)
H5A	0.919488	-0.39978	0.878797	0.039*
H5B	0.996635	-0.244287	0.879238	0.039*
C6	0.90493 (14)	-0.2421 (3)	0.75965 (13)	0.0278 (4)
H6A	0.935834	-0.345333	0.73236	0.033*
H6B	0.843477	-0.274321	0.740347	0.033*
C7	0.89437 (13)	-0.0078 (3)	0.62578 (12)	0.0245 (4)
H7	0.913554	-0.13714	0.600976	0.029*
C8	0.93451 (14)	0.1751 (4)	0.59025 (14)	0.0345 (5)
H8A	0.996473	0.168179	0.612246	0.052*
H8B	0.91942	0.170527	0.525424	0.052*
H8C	0.913611	0.304811	0.61009	0.052*
C9	0.67604 (12)	0.3841 (3)	0.70870 (12)	0.0195 (4)
C10	0.63111 (11)	0.1984 (3)	0.68641 (12)	0.0199 (4)
C11	0.61854 (12)	0.0605 (3)	0.74977 (13)	0.0224 (4)
H11	0.589347	-0.067073	0.733844	0.027*
C12	0.65033 (12)	0.1160 (3)	0.83759 (12)	0.0236 (4)
C13	0.69029 (14)	0.3020 (3)	0.86335 (13)	0.0265 (4)
H13	0.708769	0.338067	0.924157	0.032*
C14	0.70281 (13)	0.4352 (3)	0.79816 (12)	0.0244 (4)
H14	0.730308	0.564495	0.814713	0.029*
C15	0.70359 (12)	0.5207 (3)	0.64162 (12)	0.0206 (4)
N1	0.79918 (11)	0.0076 (3)	0.59071 (10)	0.0213 (3)
N2	0.64113 (13)	-0.0332 (3)	0.90616 (12)	0.0327 (4)
01	0.74062 (9)	0.4280 (2)	0.59039 (9)	0.0255 (3)
O2	0.69186 (10)	0.7100 (2)	0.64544 (10)	0.0288 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

03	0.61108 (15)	-0.2043 (3)	0.88266 (13)	0.0522 (5)
04	0.66539 (14)	0.0207 (3)	0.98356 (11)	0.0488 (5)
Cl1	0.58672 (3)	0.13764 (8)	0.57637 (3)	0.03040 (13)
H1A	0.7792 (15)	0.139 (5)	0.5991 (15)	0.030 (6)*
H1B	0.7824 (16)	-0.011 (4)	0.5295 (17)	0.032 (6)*
H1C	0.7717 (16)	-0.091 (4)	0.6117 (17)	0.028 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0220 (9)	0.0239 (9)	0.0206 (9)	0.0011 (8)	0.0051 (7)	-0.0010 (7)
C2	0.0404 (10)	0.0216 (8)	0.0208 (8)	0.0048 (10)	0.0076 (7)	-0.0005 (9)
C3	0.0385 (10)	0.0301 (11)	0.0204 (8)	0.0028 (10)	0.0063 (8)	-0.0052 (9)
C4	0.0323 (11)	0.0393 (13)	0.0199 (9)	0.0020 (10)	0.0060 (8)	0.0038 (9)
C5	0.0374 (12)	0.0304 (11)	0.0271 (10)	0.0064 (10)	0.0033 (9)	0.0070 (8)
C6	0.0328 (11)	0.0233 (10)	0.0259 (10)	0.0036 (9)	0.0047 (8)	-0.0001 (8)
C7	0.0259 (10)	0.0284 (10)	0.0201 (9)	0.0008 (8)	0.0078 (7)	-0.0020 (8)
C8	0.0345 (11)	0.0439 (15)	0.0270 (10)	-0.0082 (10)	0.0114 (8)	0.0029 (9)
С9	0.0203 (8)	0.0188 (9)	0.0197 (9)	0.0028 (7)	0.0054 (7)	0.0007 (7)
C10	0.0181 (8)	0.0231 (9)	0.0170 (8)	0.0015 (7)	0.0013 (7)	-0.0010 (6)
C11	0.0206 (9)	0.0211 (9)	0.0260 (9)	-0.0004 (7)	0.0068 (7)	0.0002 (7)
C12	0.0239 (8)	0.0269 (10)	0.0227 (8)	0.0034 (9)	0.0106 (7)	0.0062 (8)
C13	0.0304 (10)	0.0330 (11)	0.0168 (9)	0.0004 (9)	0.0075 (8)	-0.0016 (8)
C14	0.0300 (10)	0.0237 (9)	0.0204 (9)	-0.0036 (8)	0.0075 (8)	-0.0047 (7)
C15	0.0210 (9)	0.0216 (10)	0.0178 (8)	-0.0005 (8)	0.0021 (7)	0.0015 (7)
N1	0.0278 (9)	0.0195 (8)	0.0175 (8)	-0.0011 (7)	0.0073 (6)	0.0000 (6)
N2	0.0385 (10)	0.0340 (10)	0.0309 (10)	0.0101 (8)	0.0187 (8)	0.0118 (8)
01	0.0337 (8)	0.0258 (7)	0.0195 (6)	0.0030 (6)	0.0112 (6)	0.0026 (6)
O2	0.0376 (8)	0.0197 (7)	0.0322 (8)	0.0007 (6)	0.0143 (7)	0.0031 (6)
O3	0.0801 (15)	0.0340 (10)	0.0509 (11)	-0.0100 (10)	0.0321 (10)	0.0099 (8)
O4	0.0711 (13)	0.0519 (11)	0.0261 (8)	0.0079 (10)	0.0171 (8)	0.0137 (8)
Cl1	0.0323 (2)	0.0334 (2)	0.0200 (2)	-0.0058 (2)	-0.00398 (16)	-0.0016 (2)

Geometric parameters (Å, °)

C1—C6	1.525 (3)	C8—H8B	0.98
C1—C2	1.532 (3)	C8—H8C	0.98
C1—C7	1.540 (3)	C9—C14	1.394 (3)
C1—H1	1	C9—C10	1.399 (3)
С2—С3	1.532 (2)	C9—C15	1.516 (3)
C2—H2A	0.99	C10—C11	1.381 (3)
C2—H2B	0.99	C10—Cl1	1.7340 (18)
C3—C4	1.515 (3)	C11—C12	1.386 (3)
С3—НЗА	0.99	C11—H11	0.95
С3—Н3В	0.99	C12—C13	1.374 (3)
C4—C5	1.520 (3)	C12—N2	1.472 (3)
C4—H4A	0.99	C13—C14	1.383 (3)
C4—H4B	0.99	C13—H13	0.95

C5—C6	1.529 (3)	C14—H14	0.95
С5—Н5А	0.99	C15—O2	1.238 (2)
С5—Н5В	0.99	C15—O1	1.262 (2)
С6—Н6А	0.99	N1—H1A	0.93 (3)
С6—Н6В	0.99	N1—H1B	0.93 (3)
C7—N1	1 509 (3)	N1—H1C	0.88(3)
C7 - C8	1 515 (3)	N2-04	1.224(3)
C7 H7	1	N2 O3	1.224(3) 1 224(3)
	0.08	112-05	1.224 (3)
Co-mon	0.98		
$C_{6} - C_{1} - C_{2}$	110.06 (16)	N1—C7—H7	107.6
C6-C1-C7	112 35 (16)	C8-C7-H7	107.6
C_{2} C_{1} C_{7}	112.33 (16)	$C_1 C_7 H_7$	107.6
$C_{2} = C_{1} = C_{1}$	106.0	C7 C8 H8A	107.0
$C_0 = C_1 = H_1$	106.9	C7 C9 U9D	109.5
C2C1H1	106.9		109.5
	106.9	H8A - C8 - H8B	109.5
C1—C2—C3	111.71 (17)	C/—C8—H8C	109.5
C1—C2—H2A	109.3	H8A—C8—H8C	109.5
C3—C2—H2A	109.3	H8B—C8—H8C	109.5
C1—C2—H2B	109.3	C14—C9—C10	117.70 (17)
С3—С2—Н2В	109.3	C14—C9—C15	118.77 (17)
H2A—C2—H2B	107.9	C10—C9—C15	123.29 (17)
C4—C3—C2	110.99 (18)	С11—С10—С9	122.15 (17)
С4—С3—НЗА	109.4	C11—C10—Cl1	117.66 (15)
С2—С3—НЗА	109.4	C9—C10—Cl1	120.17 (14)
C4—C3—H3B	109.4	C10—C11—C12	117.15 (18)
С2—С3—Н3В	109.4	C10—C11—H11	121.4
H_{3A} $-C_{3}$ $-H_{3B}$	108	C12—C11—H11	121.4
C_{3} C_{4} C_{5}	111 02 (17)	C13 - C12 - C11	123 21 (18)
$C_3 - C_4 - H_4 \Delta$	109.4	C13 - C12 - N2	123.21(10) 118.79(17)
$C_5 = C_4 = H_{4A}$	109.4	$C_{11} = C_{12} = N_2$	118.79(17)
C_{3} C_{4} H_{4} C_{2} C_{4} H_{4} H_{4}	109.4	C12 - C12 - C14	118.00(19)
$C_5 = C_4 = H_4 D_5$	109.4	C12 - C13 - C14	118.05 (17)
	109.4	C12—C13—H13	121
H4A - C4 - H4B	108		121
C4—C5—C6	111.33 (17)	C13—C14—C9	121.56 (19)
C4—C5—H5A	109.4	C13—C14—H14	119.2
C6—C5—H5A	109.4	C9—C14—H14	119.2
C4—C5—H5B	109.4	O2—C15—O1	126.8 (2)
C6—C5—H5B	109.4	O2—C15—C9	117.60 (18)
H5A—C5—H5B	108	O1—C15—C9	115.48 (17)
C1—C6—C5	111.95 (17)	C7—N1—H1A	111.8 (15)
С1—С6—Н6А	109.2	C7—N1—H1B	112.1 (15)
С5—С6—Н6А	109.2	H1A—N1—H1B	104 (2)
C1—C6—H6B	109.2	C7—N1—H1C	112.6 (17)
С5—С6—Н6В	109.2	H1A—N1—H1C	112 (2)
Н6А—С6—Н6В	107.9	H1B—N1—H1C	104 (2)
N1—C7—C8	108.09 (17)	O4—N2—O3	123.90 (19)
N1—C7—C1	112.08 (15)	O4—N2—C12	117.8 (2)

C8—C7—C1	113.51 (17)	O3—N2—C12	118.32 (19)
C6—C1—C2—C3 C7—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C2—C1—C6—C5	55.1 (2) -178.10 (17) -56.3 (2) 56.1 (2) -55.7 (2) -54.7 (2)	Cl1—Cl0—Cl1—Cl2 Cl0—Cl1—Cl2—Cl3 Cl0—Cl1—Cl2—N2 Cl1—Cl2—Cl3—Cl4 N2—Cl2—Cl3—Cl4 Cl2—Cl3—Cl4—C9	-176.58 (14) 2.3 (3) -177.19 (17) -3.2 (3) 176.29 (18) 0.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177.98 (16) $55.5 (2)$ $76.3 (2)$ $-49.2 (2)$ $-160.87 (18)$ $73.6 (2)$ $-4.8 (3)$ $169.42 (18)$ $173.55 (15)$ $-12.2 (3)$	C10-C9-C14-C13 C15-C9-C14-C13 C14-C9-C15-O2 C10-C9-C15-O2 C14-C9-C15-O1 C10-C9-C15-O1 C13-C12-N2-O4 C11-C12-N2-O4 C13-C12-N2-O3 C11-C12-N2-O3	3.9 (3) -170.65 (18) -50.9 (3) 134.9 (2) 125.41 (19) -48.8 (3) 4.1 (3) -176.37 (19) -174.7 (2) 4.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A…O1	0.93 (3)	1.96 (3)	2.869 (2)	167 (2)
N1—H1 <i>B</i> ···O1 ⁱ	0.93 (3)	1.86 (3)	2.785 (2)	173 (2)
N1—H1C···O2 ⁱⁱ	0.88 (3)	1.99 (3)	2.858 (2)	170 (2)

Symmetry codes: (i) -x+3/2, y-1/2, -z+1; (ii) x, y-1, z.

2-(Cyclohex-1-en-1-yl)ethan-1-aminium 4-bromobenzoate (VI)

Crystal	data
---------	------

F(000) = 668
$D_{\rm x} = 1.426 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 9914 reflections
$\theta = 3.2 - 28.3^{\circ}$
$\mu = 2.71 \text{ mm}^{-1}$
T = 173 K
Rods, colourless
$0.68 \times 0.18 \times 0.1 \text{ mm}$
3658 independent reflections
3302 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.071$
$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
$h = -8 \rightarrow 8$
$k = -22 \longrightarrow 22$
$l = -18 \rightarrow 18$

Refinement

Special details

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.037$	and constrained refinement
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0477P)^2 + 1.5945P]$
S = 1.05	where $P = (F_0^2 + 2F_c^2)/3$
3658 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
194 parameters	$\Delta \rho_{\rm max} = 1.01 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -1.02 \ m e \ m \AA^{-3}$
0 constraints	

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	isotropic or equival	ent isotropic displacem	ent parameters $(Å^2)$
		· · · · · · · · · · · · · · · · · · ·	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.9952 (4)	0.55176 (13)	0.35862 (16)	0.0297 (5)	
C2	1.2265 (4)	0.56748 (17)	0.38957 (19)	0.0394 (6)	
H2A	1.272267	0.599559	0.339287	0.047*	
H2B	1.303568	0.516784	0.393878	0.047*	
C3	1.2903 (4)	0.6097 (2)	0.4859 (2)	0.0482 (7)	
H3A	1.29862	0.571138	0.538886	0.058*	0.77 (2)
H3B	1.433308	0.632993	0.491224	0.058*	0.77 (2)
H3C	1.367424	0.571718	0.533684	0.058*	0.23 (2)
H3D	1.39227	0.651718	0.47853	0.058*	0.23 (2)
C4A	1.1367 (7)	0.6733 (4)	0.4972 (5)	0.0337 (12)	0.77 (2)
H4A	1.137787	0.714401	0.447738	0.04*	0.77 (2)
H4B	1.182544	0.697969	0.561611	0.04*	0.77 (2)
C4B	1.126 (3)	0.6445 (19)	0.5257 (16)	0.046 (5)	0.23 (2)
H4C	1.143892	0.622775	0.591802	0.055*	0.23 (2)
H4D	1.161962	0.701067	0.533582	0.055*	0.23 (2)
C5	0.9110 (4)	0.64165 (17)	0.4868 (2)	0.0432 (6)	
H5A	0.818606	0.655783	0.528143	0.052*	0.77 (2)
H5B	0.809547	0.672265	0.510406	0.052*	0.23 (2)
C6	0.8522 (4)	0.58524 (15)	0.40311 (17)	0.0337 (5)	
H6	0.706363	0.572658	0.380575	0.04*	
C7	0.9225 (4)	0.49832 (14)	0.27304 (16)	0.0342 (5)	
H7A	0.77838	0.478269	0.273552	0.041*	
H7B	1.019715	0.452701	0.277803	0.041*	
C8	0.9188 (4)	0.54181 (13)	0.17902 (15)	0.0278 (4)	
H8A	0.833004	0.590296	0.177594	0.033*	
H8B	1.065383	0.557518	0.176224	0.033*	
C9	0.2632 (3)	0.32298 (12)	0.19291 (14)	0.0213 (4)	
C10	0.4191 (3)	0.29872 (13)	0.27194 (15)	0.0253 (4)	

H10	0.559631	0.318645	0.279912	0.03*	
C11	0.3711 (3)	0.24585 (13)	0.33893 (15)	0.0271 (4)	
H11	0.477044	0.229697	0.392839	0.033*	
C12	0.1660 (3)	0.21718 (12)	0.32558 (15)	0.0240 (4)	
C13	0.0081 (3)	0.23954 (13)	0.24739 (16)	0.0278 (4)	
H13	-0.131731	0.218908	0.239255	0.033*	
C14	0.0588 (3)	0.29276 (13)	0.18123 (15)	0.0257 (4)	
H14	-0.047572	0.308672	0.127369	0.031*	
C15	0.3204 (3)	0.38114 (12)	0.12140 (15)	0.0237 (4)	
N1	0.8286 (3)	0.49309 (12)	0.09315 (13)	0.0242 (4)	
01	0.5104 (3)	0.39903 (11)	0.13033 (13)	0.0366 (4)	
O2	0.1681 (3)	0.40722 (10)	0.05740 (12)	0.0327 (4)	
Br1	0.09846 (4)	0.14745 (2)	0.41940 (2)	0.03754 (10)	
H1A	0.716 (5)	0.4690 (18)	0.100 (2)	0.039 (8)*	
H1B	0.928 (5)	0.456 (2)	0.082 (2)	0.042 (8)*	
H1C	0.809 (5)	0.5244 (19)	0.045 (2)	0.042 (8)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0350 (11)	0.0303 (11)	0.0227 (10)	-0.0081 (9)	0.0036 (8)	0.0016 (8)
C2	0.0284 (11)	0.0489 (15)	0.0409 (13)	-0.0036 (10)	0.0075 (10)	-0.0104 (11)
C3	0.0314 (12)	0.0606 (18)	0.0491 (16)	-0.0057 (12)	0.0004 (11)	-0.0145 (14)
C4A	0.0330 (17)	0.037 (2)	0.030 (2)	-0.0094 (16)	0.0043 (15)	-0.0051 (17)
C4B	0.052 (8)	0.056 (13)	0.028 (8)	-0.010 (8)	0.006 (6)	-0.010 (7)
C5	0.0326 (12)	0.0538 (16)	0.0428 (14)	-0.0036 (11)	0.0072 (11)	-0.0164 (12)
C6	0.0263 (10)	0.0398 (12)	0.0339 (12)	-0.0060 (9)	0.0042 (9)	-0.0052 (10)
C7	0.0464 (13)	0.0322 (11)	0.0229 (10)	-0.0104 (10)	0.0049 (9)	0.0003 (9)
C8	0.0304 (11)	0.0277 (10)	0.0242 (10)	-0.0053 (8)	0.0037 (8)	0.0021 (8)
C9	0.0226 (9)	0.0218 (9)	0.0205 (9)	0.0003 (7)	0.0069 (7)	-0.0016 (7)
C10	0.0199 (9)	0.0289 (10)	0.0262 (10)	-0.0027 (8)	0.0029 (7)	-0.0005 (8)
C11	0.0250 (10)	0.0307 (11)	0.0232 (9)	0.0004 (8)	-0.0002 (8)	0.0029 (8)
C12	0.0267 (10)	0.0213 (9)	0.0249 (10)	-0.0002 (7)	0.0074 (8)	0.0032 (7)
C13	0.0203 (9)	0.0309 (11)	0.0316 (11)	-0.0030 (8)	0.0041 (8)	0.0059 (9)
C14	0.0218 (9)	0.0288 (10)	0.0248 (10)	-0.0007 (8)	0.0007 (7)	0.0041 (8)
C15	0.0279 (10)	0.0233 (9)	0.0223 (9)	-0.0006 (8)	0.0105 (8)	-0.0014 (7)
N1	0.0229 (8)	0.0297 (9)	0.0204 (8)	-0.0029 (7)	0.0055 (7)	0.0039 (7)
01	0.0305 (8)	0.0442 (10)	0.0365 (9)	-0.0120 (7)	0.0101 (7)	0.0054 (7)
O2	0.0322 (8)	0.0390 (9)	0.0291 (8)	0.0059 (7)	0.0112 (6)	0.0137 (7)
Br1	0.03653 (15)	0.03802 (16)	0.03819 (15)	-0.00282 (9)	0.00818 (10)	0.01726 (10)

Geometric parameters (Å, °)

C1—C6	1.347 (3)	С7—Н7А	0.99	
C1—C2	1.485 (3)	C7—H7B	0.99	
C1—C7	1.508 (3)	C8—N1	1.484 (3)	
C2—C3	1.519 (4)	C8—H8A	0.99	
C2—H2A	0.99	C8—H8B	0.99	

С2—Н2В	0.99	C9—C14	1.390 (3)
C3—C4B	1.429 (18)	C9—C10	1.398 (3)
C3—C4A	1.497 (6)	C9—C15	1.515 (3)
С3—НЗА	0.99	C10—C11	1.388 (3)
С3—НЗВ	0.99	С10—Н10	0.95
C3—H3C	0.99	C11—C12	1.383 (3)
C3—H3D	0.99	C11—H11	0.95
C4A—C5	1.527 (5)	C12—C13	1.388 (3)
C4A—H4A	0.99	C12—Br1	1.898 (2)
C4A—H4B	0.99	C13—C14	1.390(3)
C4B-C5	1 377 (18)	C13—H13	0.95
C4B—H4C	0.99	C14—H14	0.95
C4B—H4D	0.99	C15-01	1 241 (3)
C5-C6	1 509 (3)	$C_{15} = 0^{2}$	1 266 (3)
C5—H5A	0.95	N1—H1A	0.86(3)
C5—H5B	0.95	N1—H1B	0.00(3)
C6—H6	0.95	N1—H1C	0.86(3)
C7-C8	1 519 (3)		0.00(3)
0, 00	1.517 (5)		
C6—C1—C2	121.9 (2)	C5—C6—H6	118.2
C6-C1-C7	120.3(2)	C1-C7-C8	110.83 (19)
C2-C1-C7	117.8 (2)	C1—C7—H7A	109.5
C1-C2-C3	114.4 (2)	C8—C7—H7A	109.5
C1 - C2 - H2A	108.7	C1—C7—H7B	109.5
C3-C2-H2A	108.7	C8—C7—H7B	109.5
C1-C2-H2B	108.7	H7A - C7 - H7B	108.1
C3-C2-H2B	108.7	N1 - C8 - C7	112 16 (18)
$H_2A - C_2 - H_2B$	107.6	N1—C8—H8A	109.2
C4B-C3-C2	117.9 (7)	C7—C8—H8A	109.2
C4A-C3-C2	112.3 (3)	N1—C8—H8B	109.2
C4A—C3—H3A	109.2	C7—C8—H8B	109.2
C2-C3-H3A	109.2	H8A—C8—H8B	107.9
C4A—C3—H3B	109.2	C14-C9-C10	119.17 (19)
C^2 — C^3 — H^3B	109.2	C14-C9-C15	121 33 (18)
H3A—C3—H3B	107.9	C10—C9—C15	119.49 (18)
C4B—C3—H3C	107.8	C11—C10—C9	120.78 (19)
C2—C3—H3C	107.8	C11—C10—H10	119.6
C4B—C3—H3D	107.8	C9—C10—H10	119.6
C2—C3—H3D	107.8	C12—C11—C10	118.66 (19)
H3C—C3—H3D	107.2	C12—C11—H11	120.7
C3-C4A-C5	111.8 (4)	C10-C11-H11	120.7
C3—C4A—H4A	109.3	$C_{11} - C_{12} - C_{13}$	121.97 (19)
C5—C4A—H4A	109.3	$C_{11} - C_{12} - B_{r_1}$	118.58 (15)
C3-C4A-H4B	109.3	C13 - C12 - Br1	119.43 (16)
C5—C4A—H4B	109.3	C12-C13-C14	118.59 (19)
H4A—C4A—H4B	107.9	C12—C13—H13	120.7
C5—C4B—C3	126.4 (11)	C14—C13—H13	120.7
C5-C4B-H4C	105 7	C9-C14-C13	120 83 (19)

C3—C4B—H4C	105.7	C9—C14—H14	119.6
C5—C4B—H4D	105.7	C13—C14—H14	119.6
C3—C4B—H4D	105.7	O1—C15—O2	125.8 (2)
H4C—C4B—H4D	106.2	O1—C15—C9	117.77 (19)
C4B—C5—C6	113.6 (7)	O2—C15—C9	116.46 (18)
C6—C5—C4A	112.0 (3)	C8—N1—H1A	111 (2)
С6—С5—Н5А	124	C8—N1—H1B	110.6 (18)
С4А—С5—Н5А	124	H1A—N1—H1B	109 (3)
C4B—C5—H5B	123.2	C8—N1—H1C	106 (2)
С6—С5—Н5В	123.2	H1A—N1—H1C	114 (3)
C1—C6—C5	123.6 (2)	H1B—N1—H1C	106 (3)
С1—С6—Н6	118.2		
C6—C1—C2—C3	11.9 (4)	C14—C9—C10—C11	-0.8 (3)
C7—C1—C2—C3	-169.8 (2)	C15—C9—C10—C11	179.63 (19)
C1—C2—C3—C4B	-13.2 (17)	C9—C10—C11—C12	0.4 (3)
C1—C2—C3—C4A	-40.6 (5)	C10-C11-C12-C13	0.2 (3)
C2—C3—C4A—C5	57.2 (6)	C10-C11-C12-Br1	-178.05 (16)
C2—C3—C4B—C5	2 (4)	C11—C12—C13—C14	-0.4 (3)
C3—C4B—C5—C6	10 (4)	Br1-C12-C13-C14	177.80 (16)
C3—C4A—C5—C6	-43.8 (6)	C10-C9-C14-C13	0.5 (3)
C2-C1-C6-C5	0.6 (4)	C15—C9—C14—C13	-179.9 (2)
C7—C1—C6—C5	-177.7 (2)	C12—C13—C14—C9	0.1 (3)
C4B-C5-C6-C1	-11.7 (17)	C14—C9—C15—O1	-172.3 (2)
C4A—C5—C6—C1	15.5 (5)	C10-C9-C15-O1	7.3 (3)
C6—C1—C7—C8	100.0 (3)	C14—C9—C15—O2	7.7 (3)
C2—C1—C7—C8	-78.4 (3)	C10—C9—C15—O2	-172.70 (19)
C1—C7—C8—N1	-174.6 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1A…O1	0.86(3)	1.89 (3)	2.737 (2)	167 (3)
N1— $H1B$ ···O2 ⁱ	0.94 (3)	1.85 (3)	2.763 (3)	164 (3)
N1—H1C···O2 ⁱⁱ	0.86 (3)	1.89 (3)	2.727 (2)	167 (3)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*.

(S)-1-Cyclohexylethan-1-aminium 4-bromobenzoate' (VII)

Crystal data

$C_8H_{18}N^+ \cdot C_7H_4BrO_2^-$	F(000) = 680
$M_r = 328.24$	$D_{\rm x} = 1.396 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 9958 reflections
a = 6.2790 (3) Å	$\theta = 3.5 - 28.1^{\circ}$
b = 15.6610 (9) Å	$\mu = 2.63 \text{ mm}^{-1}$
c = 15.8800 (8) Å	T = 173 K
$V = 1561.57 (14) \text{ Å}^3$	Needle, colourless
Z = 4	$0.69 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Bruker D8 Venture Photon CCD area detector diffractometer Graphite monochromator ω scans Absorption correction: integration (XPREP; Bruker, 2016) $T_{min} = 0.452, T_{max} = 0.846$ 21006 measured reflections <i>Refinement</i>	2913 independent reflections 2687 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -7 \rightarrow 7$ $k = -18 \rightarrow 18$ $l = -19 \rightarrow 19$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.078$ $wR(F^2) = 0.211$ S = 1.08 2913 reflections 174 parameters 0 restraints 0 constraints Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1114P)^{2} + 6.6115P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.46 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.48 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 1026 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons <i>et</i> <i>al.</i> , 2013) Absolute structure parameter: 0.068 (9)

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional	atomic	coordinates	and	isotrop	oic or	equivalent	t isotroj	pic dis	placement	parameters	$(Å^2)$)
						4				1	· · ·	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.773 (2)	0.0775 (8)	0.3199 (7)	0.053 (3)	
H1	0.740942	0.015006	0.317739	0.064*	
C2	0.612 (2)	0.1220 (11)	0.2688 (8)	0.068 (4)	
H2A	0.638924	0.184264	0.269256	0.082*	
H2B	0.467953	0.111721	0.292398	0.082*	
C3	0.624 (3)	0.0862 (13)	0.1743 (9)	0.084 (5)	
H3A	0.595663	0.024063	0.173633	0.1*	
H3B	0.516609	0.114896	0.138545	0.1*	
C4	0.844 (2)	0.1039 (11)	0.1413 (8)	0.077 (5)	
H4A	0.85316	0.08645	0.081516	0.093*	
H4B	0.873874	0.165911	0.144629	0.093*	
C5	1.005 (3)	0.0565 (12)	0.1911 (10)	0.083 (5)	
H5A	1.149674	0.066472	0.168707	0.1*	
H5B	0.974778	-0.005537	0.19016	0.1*	
C6	0.984 (3)	0.0910 (11)	0.2780 (10)	0.080 (5)	
H6A	1.013382	0.153146	0.276219	0.097*	
H6B	1.096015	0.064487	0.313464	0.097*	
C7	0.762 (2)	0.1051 (7)	0.4107 (7)	0.056 (3)	

H7	0.882202	0.075639	0.44015	0.067*
C8	0.563 (3)	0.0786 (10)	0.4553 (8)	0.086 (6)
H8A	0.468938	0.128083	0.461722	0.129*
H8B	0.599286	0.05585	0.510964	0.129*
H8C	0.490145	0.034387	0.422389	0.129*
N1	0.7938 (13)	0.1998 (5)	0.4253 (4)	0.0331 (16)
H1A	0.691137	0.229515	0.397416	0.05*
H1B	0.924273	0.215652	0.40592	0.05*
H1C	0.784863	0.21113	0.481408	0.05*
C9	0.4242 (17)	0.3282 (6)	0.2666 (6)	0.036 (2)
C10	0.631 (2)	0.3587 (7)	0.2719 (7)	0.051 (3)
H10	0.690085	0.370093	0.325852	0.061*
C11	0.7566 (19)	0.3734 (7)	0.2006 (6)	0.047 (2)
H11	0.899884	0.392507	0.204207	0.057*
C12	0.6544 (19)	0.3577 (6)	0.1225 (7)	0.046 (2)
C13	0.4508 (18)	0.3286 (7)	0.1153 (7)	0.043 (2)
H13	0.394001	0.31832	0.0608	0.052*
C14	0.321 (2)	0.3131 (6)	0.1868 (6)	0.043 (2)
H14	0.177757	0.294286	0.182502	0.052*
C15	0.2958 (14)	0.3029 (6)	0.3460 (5)	0.0276 (18)
01	0.4108 (15)	0.2878 (6)	0.4104 (5)	0.061 (2)
O2	0.1043 (14)	0.3044 (6)	0.3421 (5)	0.058 (2)
Br1	0.8185 (2)	0.37723 (9)	0.02444 (6)	0.0586 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.059 (7)	0.061 (6)	0.040 (6)	-0.010 (6)	0.009 (5)	-0.008 (5)
C2	0.067 (8)	0.080 (8)	0.058 (7)	0.024 (8)	0.014 (6)	-0.014 (7)
C3	0.083 (10)	0.126 (14)	0.043 (7)	0.023 (9)	-0.018 (7)	-0.023 (8)
C4	0.080 (9)	0.110 (12)	0.042 (6)	0.018 (9)	0.026 (7)	0.019 (7)
C5	0.083 (11)	0.104 (12)	0.063 (9)	0.005 (10)	-0.005 (8)	-0.020 (9)
C6	0.068 (9)	0.098 (11)	0.076 (10)	-0.020 (8)	0.018 (8)	-0.044 (8)
C7	0.081 (9)	0.047 (6)	0.039 (6)	-0.012 (5)	-0.009 (5)	-0.004(5)
C8	0.137 (15)	0.080 (9)	0.042 (7)	-0.059 (10)	0.017 (8)	-0.014 (6)
N1	0.032 (4)	0.050 (4)	0.018 (3)	0.002 (4)	-0.004 (3)	0.001 (3)
C9	0.040 (5)	0.040 (5)	0.028 (5)	-0.008(4)	0.003 (4)	0.004 (4)
C10	0.074 (8)	0.046 (6)	0.033 (5)	0.002 (5)	0.004 (5)	0.002 (4)
C11	0.070 (7)	0.045 (5)	0.027 (4)	-0.010 (5)	0.003 (4)	0.001 (4)
C12	0.055 (6)	0.044 (5)	0.038 (5)	0.007 (5)	0.011 (5)	-0.001 (4)
C13	0.049 (6)	0.048 (6)	0.032 (5)	0.003 (5)	-0.003 (5)	-0.002 (4)
C14	0.066 (7)	0.036 (4)	0.026 (5)	0.001 (5)	-0.005 (5)	0.006 (4)
C15	0.025 (4)	0.040 (4)	0.018 (4)	0.005 (4)	0.006 (3)	0.001 (3)
O1	0.059 (5)	0.093 (6)	0.031 (4)	0.015 (5)	0.007 (4)	0.008 (4)
O2	0.048 (5)	0.082 (6)	0.044 (5)	-0.001 (4)	0.010 (4)	0.013 (4)
Brl	0.0598 (7)	0.0877 (8)	0.0283 (5)	0.0091 (7)	0.0127 (5)	0.0065 (5)

Geometric parameters (Å, °)

C1—C2	1.475 (19)	C8—H8A	0.98	
C1—C6	1.498 (19)	C8—H8B	0.98	
C1—C7	1.507 (16)	C8—H8C	0.98	
C1—H1	1	N1—H1A	0.91	
C2—C3	1.604 (18)	N1—H1B	0.91	
C2—H2A	0.99	N1—H1C	0.91	
C2—H2B	0.99	C9—C10	1.389 (17)	
C3—C4	1.50 (2)	C9—C14	1.442 (14)	
С3—НЗА	0.99	C9—C15	1.548 (12)	
С3—Н3В	0.99	C10—C11	1.397 (15)	
C4—C5	1.48 (2)	C10—H10	0.95	
C4—H4A	0.99	C11—C12	1.418 (15)	
C4—H4B	0.99	C11—H11	0.95	
C5—C6	1.49 (2)	C12—C13	1.362 (17)	
С5—Н5А	0.99	C12—Br1	1.892 (11)	
С5—Н5В	0.99	C13—C14	1.418 (15)	
С6—Н6А	0.99	C13—H13	0.95	
С6—Н6В	0.99	C14—H14	0.95	
C7—C8	1.50 (2)	C15—O2	1.204 (12)	
C7—N1	1.515 (13)	C15—O1	1.273 (12)	
С7—Н7	1			
C2—C1—C6	107.4 (12)	C1—C7—N1	114.9 (9)	
C2—C1—C7	111.0 (11)	C8—C7—H7	106.3	
C6—C1—C7	115.2 (11)	С1—С7—Н7	106.3	
C2—C1—H1	107.7	N1—C7—H7	106.3	
С6—С1—Н1	107.7	C7—C8—H8A	109.5	
С7—С1—Н1	107.7	C7—C8—H8B	109.5	
C1—C2—C3	108.4 (11)	H8A—C8—H8B	109.5	
C1—C2—H2A	110	C7—C8—H8C	109.5	
С3—С2—Н2А	110	H8A—C8—H8C	109.5	
C1—C2—H2B	110	H8B—C8—H8C	109.5	
C3—C2—H2B	110	C7—N1—H1A	109.5	
H2A—C2—H2B	108.4	C7—N1—H1B	109.5	
C4—C3—C2	107.9 (13)	H1A—N1—H1B	109.5	
C4—C3—H3A	110.1	C7—N1—H1C	109.5	
С2—С3—НЗА	110.1	H1A—N1—H1C	109.5	
С4—С3—Н3В	110.1	H1B—N1—H1C	109.5	
C2—C3—H3B	110.1	C10—C9—C14	122.0 (10)	
НЗА—СЗ—НЗВ	108.4	C10—C9—C15	121.8 (9)	
C5—C4—C3	110.3 (13)	C14—C9—C15	116.1 (9)	
С5—С4—Н4А	109.6	C9—C10—C11	122.3 (11)	
C3—C4—H4A	109.6	C9—C10—H10	118.8	
C5—C4—H4B	109.6	C11—C10—H10	118.8	
C3—C4—H4B	109.6	C10-C11-C12	115.2 (11)	
H4A—C4—H4B	108.1	C10—C11—H11	122.4	

C4—C5—C6	104.8 (15)	C12—C11—H11	122.4
С4—С5—Н5А	110.8	C13—C12—C11	123.8 (10)
С6—С5—Н5А	110.8	C13—C12—Br1	119.8 (9)
C4—C5—H5B	110.8	C11—C12—Br1	116.5 (9)
С6—С5—Н5В	110.8	C12—C13—C14	121.9 (10)
H5A—C5—H5B	108.9	С12—С13—Н13	119
C5—C6—C1	115.8 (13)	C14—C13—H13	119
С5—С6—Н6А	108.3	C13—C14—C9	114.7 (11)
С1—С6—Н6А	108.3	C13—C14—H14	122.6
С5—С6—Н6В	108.3	C9—C14—H14	122.6
C1—C6—H6B	108.3	O2—C15—O1	127.7 (9)
H6A—C6—H6B	107.4	O2—C15—C9	118.2 (8)
C8—C7—C1	114.4 (11)	O1—C15—C9	114.0 (8)
C8—C7—N1	108.0 (11)		
C6—C1—C2—C3	56.2 (16)	C15—C9—C10—C11	173.2 (10)
C7—C1—C2—C3	-177.1 (13)	C9-C10-C11-C12	2.1 (16)
C1—C2—C3—C4	-60.0 (18)	C10-C11-C12-C13	-1.5 (16)
C2—C3—C4—C5	63.5 (19)	C10-C11-C12-Br1	179.8 (8)
C3—C4—C5—C6	-62.2 (18)	C11—C12—C13—C14	1.4 (17)
C4—C5—C6—C1	62 (2)	Br1-C12-C13-C14	-179.9 (8)
C2-C1-C6-C5	-61.5 (19)	C12—C13—C14—C9	-1.8 (15)
C7—C1—C6—C5	174.3 (14)	C10-C9-C14-C13	2.5 (14)
C2—C1—C7—C8	67.0 (16)	C15—C9—C14—C13	-173.7 (9)
C6—C1—C7—C8	-170.7 (15)	C10-C9-C15-O2	155.7 (11)
C2-C1-C7-N1	-58.7 (15)	C14—C9—C15—O2	-28.1 (14)
C6-C1-C7-N1	63.5 (17)	C10-C9-C15-O1	-20.1 (14)
C14—C9—C10—C11	-2.8 (17)	C14—C9—C15—O1	156.1 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
N1—H1A…O1	0.91	1.99	2.781 (12)	144
N1—H1 <i>B</i> ····O2 ⁱ	0.91	2.06	2.870 (12)	148
N1—H1C···O1 ⁱⁱ	0.91	1.89	2.718 (10)	150

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, -y+1/2, -z+1.