

Received 16 March 2018 Accepted 18 April 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; 2,3-dihydro-1,3benzoxazole ring; semi-empirical *CNDO*/2 method; HOMO; LUMO.

CCDC reference: 1838126

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and theoretical study of *N*,*N*-bis[(5-chloro-2-oxo-2,3-dihydrobenzo[*d*]oxazol-3-yl)methyl]-2-phenylethanamine

Abdullah Aydın,^a* Zeynep Soyer,^b Mehmet Akkurt^c and Orhan Büyükgüngör^d

^aDepartment of Mathematics and Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey. *Correspondence e-mail: aaydin@kastamonu.edu.tr

In the molecular structure of the title compound, $C_{24}H_{19}Cl_2N_3O_4$, the three C atoms of the central *N*,*N*-dimethylmethanamine moiety are bonded to the N atoms of the two 5-chloro-1,3-benzoxazol-2(3*H*)-one groups and to the methyl C atom of the methylbenzene group. One of the nine-membered 2,3-dihydro-1,3-benzoxazole rings and the phenyl ring are almost parallel to each other, making a dihedral angle of 5.30 (18)°, but they are almost normal to the mean plane of the other nine-membered 2,3-dihydro-1,3-benzoxazole ring, subtending dihedral angles of 89.29 (16) and 85.41 (18)°, respectively. The crystal structure features C-H···O hydrogen bonds and π - π stacking interactions [centroid-to-centroid distances = 3.5788 (19) Å, slippage = 0.438 and 3.7773 (16) Å, and slippage = 0.716 Å].

1. Chemical context

2(3H)-Benzoxazolone is a privileged lead molecule for the design of potential bioactive agents, and its derivatives have been shown to posses a broad spectrum of bioactive properties such as anti-HIV (Deng *et al.*, 2006), anticancer (Ivanova *et al.*, 2007), analgesic (Ünlü *et al.*, 2003), anti-inflammatory (Köksal *et al.*, 2005), antinociceptive (Önkol *et al.*, 2001), antimicrobial (Köksal *et al.*, 2002), anticonvulsant (Ucar *et al.*, 1998), anti-malarial (Courtois *et al.*, 2004) and human leukocyte MPO clorinating inhibitor activities (Soyer *et al.*, 2005). In this context, we have investigated another benzoxazolone derivative with formula $C_{24}H_{19}Cl_2N_3O_4$, and report here its synthesis, molecular, crystal and theoretical structures.

research communications

Figure 1

2. Structural commentary

The central part of the title molecule (Fig. 1) comprises an N,N-dimethylmethanamine unit whose three carbon atoms are bonded to the N atoms of the two 5-chloro-1,3-benzox-azol-2(3*H*)-one moieties and to the methyl carbon atom of the methylbenzene group. The nine-membered 2,3-dihydro-1,3-benzoxazole ring (N3/O3/C10–C16) and the phenyl ring (C19–C24) are almost parallel to each other, making a dihedral angle of 5.30 (18)°. These two entities are almost normal to the mean plane of the other 2,3-dihydro-1,3-benzoxazole ring (N1/O1/C1–C7), subtending dihedral angles of 89.29 (16) and 85.41 (18)°, respectively.

The C7-N1-C8-N2, N2-C9-N3-C16, N2-C17-C18-C19 and C17-C18-C19-C24 torsion angles are -90.7 (3), -75.6 (3), -63.6 (3) and 106.1 (4)°, respectively. The bond lengths and angles of the title molecule (Table 1) are normal and correspond to those observed in related benzox-

Figure 2

A view of the crystal packing in the title structure, showing the C-H···O hydrogen bonding and π - π stacking interactions. H atoms not involved in hydrogen bonds are omitted for the sake of clarity. [Symmetry codes: (a) x - 1, y, z; (b) x, y - 1, z; (c) 1 - x, 1 - y, 1 - z.]

Table	e 1
-------	-----

Comparison of experimental (X-ray) and theoretical (*CNDO*/2) bond lenghts and angles (Å, $^{\circ}$) for the title compound.

Bond	X-ray	CNDO/2
Cl1-C4	1.735 (3)	1.7379
Cl2-C14	1.738 (3)	1.7382
O1-C1	1.382 (3)	1.3545
01-C7	1.384 (3)	1.3585
O2-C7	1.202 (3)	1.2091
O3-C10	1.371 (3)	1.3573
O3-C11	1.390 (4)	1.3544
O4-C10	1.200 (4)	1.2090
N1-C6	1.398 (3)	1.3649
N1-C7	1.371 (3)	1.3593
N1-C8	1.491 (3)	1.4587
N2-C8	1.430 (4)	1.4666
N2-C9	1.448 (4)	1.4641
N2-C17	1.463 (4)	1.4672
N3-C9	1.444 (3)	1.4601
N3-C10	1.370 (4)	1.3587
N3-C16	1.393 (3)	1.3663
C17-C18	1.520 (4)	1.5425
C18-C19	1.506 (4)	1.5131
C8-N2-C9	112.5 (2)	110.47
C8-N2-C17	114.76 (19)	112.03
C9-N2-C17	114.5 (2)	110.74
Cl1-C4-C3	118.03 (19)	120.09
Cl1-C4-C5	118.6 (2)	119.73
01-C7-O2	123.0 (3)	124.49
O2-C7-N1	129.6 (3)	127.02
N1-C8-N2	115.9 (2)	112.31
N2-C9-N3	111.3 (2)	111.17
O3-C10-O4	123.5 (3)	124.70
O4-C10-N3	128.3 (3)	126.73
Cl2-C14-C13	118.4 (2)	120.07
Cl2-C14-C15	118.6 (2)	119.71
N2-C17-C18	111.8 (2)	112.23
C17-C18-C19	112.9 (2)	114.03
C18-C19-C20	121.2 (3)	120.60
C18-C19-C24	121.2 (3)	121.28

azolone derivatives (Aydın *et al.*, 2004, 2012, 2017; Allen *et al.*, 1987).

3. Supramolecular features

The crystal structure features weak intermolecular C–H···O hydrogen bonds (Table 2, Fig. 2) between a methylene group and a carbonyl O atom of a neighbouring molecule. π – π stacking interactions [Cg1··· $Cg3^{ii}$ = 3.5788 (19) Å, slippage = 0.438 Å and Cg2··· $Cg2^{iii}$ = 3.7773 (16) Å, slippage = 0.716 Å, symmetry codes: (ii) x, -1 + y, z, (iii) 1 - x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are the centroids of the O3/N3/C10/C11/C16 2,3-dihydro-1,3-oxazole ring, the C1–C6 benzene ring and the C19–C24 phenyl ring, respectively] additionally consolidate the crystal packing.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C8-H8A\cdots O4^{i}$	0.97	2.51	3.037 (4)	114

Symmetry code: (i) x - 1, y, z.

4. Theoretical calculations

Semi-empirical molecular orbital (MO) calculations of the title molecule were carried out using the *CNDO*/2 method (Pople & Segal, 1966). It is based on the *Complete Neglect of Differential Overlap* integral approximation. The semi-empirical *CNDO*/2 parameterization is widely used to derive bond lengths, bond angles, torsion angles, atom charges, *HOMO* and *LUMO* energy levels, dipole moments, polarizability, *etc.* The spatial view of the title compound calculated as a closed-shell in a vacuum at 0 K is shown in Fig. 3.

In the title molecule, the calculated charges on the Cl1, Cl2, O1, O2, O3, O4, N1, N2 and N3 atoms are -0.164, -0.226, -0.424, -0.228, -0.431, -0.117, -0.187 and $-0.112 e^-$, respectively. The calculated dipole moment is about 2.122 Debye. The *HOMO* and *LUMO* energy levels are -10.7480 and 3.4691 eV, respectively.

The calculated bond lengths and angles of the title molecule are consistent with those obtained by X-ray structure determination within error limits (Table 1). Looking at Figs. 1 and 3, the experimental and calculated conformations appear to be quite different. This is supported by the torsion angles N1– C8–N2–C17 [experimental 70.5 (3), calculated 58.25°], N1– C8–N2–C9 [-62.8 (3), -177.78°], N2–C17–C18–C19 [-63.6 (3), -150.35°], C18–C17–N2–C8 [84.1 (3), -95.53°] and C9–N2–C17–18 [143.5 (2), -140.65°]. The small differences between the theoretical and experimental results are due to the calculations being in a vacuum and at 0 K.

5. Synthesis and crystallization

4-Chloro-2-aminophenol (10 mmol), urea (50 mmol) and $37\%_{wt}$ HCl (2.5 ml) were irradiated (300 W, 413 K) for 15 min in a microwave oven. After completion of the reaction (monitored with TLC), water (10 ml) was added to the reaction mixture and stirred at room temperature for 1 h. The resulting precipitate was filtered and washed with water. After drying the precipitate, crystallization from ethanol–water (1:1 v/v) yielded 5-chloro-2(3*H*)-benzoxazolone. This compound

Figure 3 The molecular structure of the title compound calculated using the *CNDO*/2 method.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{24}H_{19}Cl_2N_3O_4$
M _r	484.32
Crystal system, space group	Triclinic, P1
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.4028 (5), 7.4432 (5), 22.4616 (15)
α, β, γ (°)	97.255 (5), 90.274 (5), 114.784 (5)
$V(Å^3)$	1112.36 (14)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.33
Crystal size (mm)	$0.61\times0.26\times0.04$
Data collection	
Diffractometer	Stoe IPDS 2
Absorption correction	Integration (X-RED32; Stoe & Cie, 2002)
T_{\min}, T_{\max}	0.901, 0.987
No. of measured, independent and	15409, 4604, 2261
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.083
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.628
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.089, 0.87
No. of reflections	4604
No. of parameters	298
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	0.13, -0.17

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(2 mmol) was dissolved in methanol (5 ml). Phenethylamine (2 mmol) and $37\%_{wt}$ formalin (2.5 mmol) were added to this solution. The mixture was then stirred vigorously for 1 h. The resulting precipitate was filtered and washed with cold methanol. The crude product was recrystallized from methanol, yield 40%; m.p. 427 K.

IR v_{max} (FTIR/ATR): 3062, 2862, 1769, 1038 cm⁻¹; ¹H NMR (CDCl₃): δ 2.79 (2H, *t*, *J* = 6.8 Hz, NCH₂CH₂), 3.14 (2H, *t*, *J* = 7.0 Hz, CH₂CH₂-phenyl) 4.90 (4H, *s*, 2 × CH₂), 6.88–7.16 (11H, *m*, Ar-H) ppm; MS (ESI) *m*/*z* (%): 315 (100), 317 (37), 484 (*M* + H, 3), 486 (*M* + H + 2, 1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93 (aromatic) and 0.97 (methylene) Å and $U_{iso} = 1.2U_{eq}(C)$.

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Aydın, A., Önkol, T., Akkurt, M., Büyükgüngör, O. & Ünlü, S. (2004). *Acta Cryst.* E60, 0244–0245.
- Aydın, A., Soyer, Z., Akkurt, M. & Büyükgüngör, O. (2012). Acta Cryst. E68, 01544–01545.
- Aydın, A., Soyer, Z., Akkurt, M. & Büyükgüngör, O. (2017). Univ. J. Phys. Appl. 11, 57–61.
- Courtois, M., Mincheva, Z., Andreu, F., Rideau, M. & Viaud-Massuard, M. C. (2004). J. Enzyme Inhib. Med. Chem. 19, 559–565.
- Deng, B. L., Cullen, M. D., Zhou, Z., Hartman, T. L., Buckheit, R. W. Jr, Pannecouque, C., Clercq, E. D., Fanwick, P. E. & Cushman, M. (2006). Bioorg. Med. Chem. 14, 2366–2374.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ivanova, Y., Momekov, G., Petrov, O., Karaivanova, M. & Kalcheva, V. (2007). Eur. J. Med. Chem. 42, 1382–1387.

- Köksal, M., Gökhan, N., Erdoğan, H., Ozalp, M. & Ekizoğlu, M. (2002). II Farmaco. 57, 535–538.
- Köksal, M., Gökhan, N., Küpeli, E., Yesilada, E. & Erdoğan, H. (2005). Arch. Pharm. Pharm. Med. Chem. 338, 117–125.
- Önkol, T., Ito, S., Yıldırım, E., Erol, K. & Şahin, M. F. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 17–20.
- Pople, J. A. & Segal, G. A. (1966). J. Chem. Phys. 44, 3289-3296.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soyer, Z., Baş, M., Pabuçcuoğlu, A. & Pabuçcuoğlu, V. (2005). Arch. Pharm. Chem. Life Sci. 338, 405–410.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Ucar, H., Van derpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). *J. Med. Chem.* **41**, 1138–1145.
- Ünlü, S., Önkol, T., Dündar, Y., Ökçelik, B., Küpeli, E., Yeşilada, E., Noyanalpan, N. & Şahin, M. F. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 353–361.

supporting information

Acta Cryst. (2018). E74, 757-760 [https://doi.org/10.1107/S2056989018005984]

Crystal structure and theoretical study of *N*,*N*-bis[(5-chloro-2-oxo-2,3-dihydro-benzo[*d*]oxazol-3-yl)methyl]-2-phenylethanamine

Abdullah Aydın, Zeynep Soyer, Mehmet Akkurt and Orhan Büyükgüngör

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

N,N-Bis[(5-chloro-2-oxo-2,3-dihydrobenzo[d]oxazol-3-yl)methyl]-2-phenylethanamine

Crystal data

 $C_{24}H_{19}Cl_2N_3O_4$ $M_r = 484.32$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.4028 (5) Å b = 7.4432 (5) Å c = 22.4616 (15) Å $a = 97.255 (5)^{\circ}$ $\beta = 90.274 (5)^{\circ}$ $\gamma = 114.784 (5)^{\circ}$ $V = 1112.36 (14) \text{ Å}^{3}$

Data collection

Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Plane graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ ω scans Absorption correction: integration (XRED-32; Stoe & Cie, 2002)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.089$ S = 0.874604 reflections 298 parameters 0 restraints Z = 2 F(000) = 500 $D_x = 1.446 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 12292 reflections $\theta = 1.8-27.2^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 296 K Plate, light yellow $0.61 \times 0.26 \times 0.04 \text{ mm}$

 $T_{\min} = 0.901, T_{\max} = 0.987$ 15409 measured reflections 4604 independent reflections 2261 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.083$ $\theta_{\text{max}} = 26.5^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -28 \rightarrow 28$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0273P)^2]$	$\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or	equivalent isotrop	pic displacement	parameters	$(Å^2)$)
----------------------------------	----------------	--------------------	------------------	------------	---------	---

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
Cl1	0.33895 (11)	0.91821 (11)	0.55979 (3)	0.0695 (3)	
C12	-0.03618 (13)	0.22527 (15)	0.03733 (4)	0.0993 (4)	
01	0.1417 (3)	0.1051 (3)	0.45148 (8)	0.0614 (7)	
O2	0.0466 (3)	-0.0234 (3)	0.35320 (9)	0.0774 (8)	
03	0.7070 (3)	0.3740 (3)	0.16410 (8)	0.0729 (8)	
O4	0.7524 (3)	0.3741 (4)	0.26394 (9)	0.0931 (10)	
N1	0.1491 (3)	0.3147 (3)	0.38837 (9)	0.0519 (7)	
N2	0.2740 (3)	0.4370 (3)	0.29248 (8)	0.0487 (8)	
N3	0.4467 (3)	0.3171 (3)	0.21984 (9)	0.0542 (8)	
C1	0.1949 (3)	0.2919 (4)	0.48420 (11)	0.0502 (9)	
C2	0.2325 (4)	0.3444 (4)	0.54484 (11)	0.0567 (10)	
C3	0.2776 (3)	0.5405 (4)	0.56779 (11)	0.0548 (9)	
C4	0.2845 (3)	0.6740 (4)	0.52899 (11)	0.0490 (9)	
C5	0.2442 (3)	0.6204 (4)	0.46734 (11)	0.0487 (9)	
C6	0.2011 (3)	0.4255 (4)	0.44584 (10)	0.0465 (9)	
C7	0.1063 (4)	0.1186 (4)	0.39202 (12)	0.0598 (11)	
C8	0.1117 (4)	0.3782 (4)	0.33094 (10)	0.0548 (9)	
C9	0.3282 (4)	0.2752 (4)	0.27152 (11)	0.0560 (10)	
C10	0.6446 (4)	0.3553 (4)	0.22130 (13)	0.0671 (11)	
C11	0.5420 (4)	0.3407 (4)	0.12702 (12)	0.0570 (10)	
C12	0.5348 (4)	0.3392 (5)	0.06646 (13)	0.0723 (11)	
C13	0.3512 (5)	0.2999 (5)	0.03966 (12)	0.0706 (11)	
C14	0.1891 (4)	0.2687 (4)	0.07364 (12)	0.0622 (11)	
C15	0.1980 (4)	0.2725 (4)	0.13546 (12)	0.0575 (10)	
C16	0.3809 (4)	0.3077 (4)	0.16085 (10)	0.0507 (9)	
C17	0.4427 (4)	0.6267 (4)	0.31468 (11)	0.0577 (10)	
C18	0.4109 (5)	0.8042 (4)	0.29870 (11)	0.0722 (11)	
C19	0.3978 (5)	0.8067 (4)	0.23191 (13)	0.0697 (11)	
C20	0.5647 (6)	0.8579 (5)	0.19940 (15)	0.0932 (14)	
C21	0.5538 (8)	0.8637 (6)	0.13801 (19)	0.122 (2)	
C22	0.3763 (11)	0.8152 (7)	0.1095 (2)	0.136 (3)	
C23	0.2082 (9)	0.7639 (6)	0.1404 (2)	0.121 (2)	

C24	0.2183 (6)	0.7582 (5)	0.20128 (15)	0.0887 (14)	
H2	0.22790	0.25200	0.56970	0.0680*	
H3	0.30310	0.58280	0.60900	0.0660*	
Н5	0.24630	0.71120	0.44220	0.0580*	
H8A	-0.00220	0.26870	0.30880	0.0660*	
H8B	0.07580	0.48940	0.34060	0.0660*	
H9A	0.40320	0.25540	0.30360	0.0670*	
H9B	0.20820	0.15270	0.26090	0.0670*	
H12	0.64670	0.36320	0.04440	0.0870*	
H13	0.33700	0.29450	-0.00180	0.0850*	
H15	0.08810	0.25270	0.15810	0.0690*	
H17A	0.56300	0.62780	0.29750	0.0690*	
H17B	0.46100	0.63870	0.35800	0.0690*	
H18A	0.28880	0.80080	0.31520	0.0870*	
H18B	0.52020	0.92670	0.31720	0.0870*	
H20	0.68740	0.88940	0.21890	0.1120*	
H21	0.66850	0.90090	0.11680	0.1460*	
H22	0.36810	0.81670	0.06830	0.1640*	
H23	0.08630	0.73270	0.12030	0.1450*	
H24	0.10250	0.72110	0.22200	0.1070*	

Atomic displacement parameters $(Å^2)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0777 (5)	0.0615 (5)	0.0641 (5)	0.0269 (4)	0.0050 (4)	-0.0006 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0934 (6)	0.1463 (9)	0.0720 (6)	0.0683 (6)	-0.0183 (5)	0.0007 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0774 (12)	0.0546 (12)	0.0547 (12)	0.0289 (10)	0.0104 (9)	0.0128 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.1047 (16)	0.0566 (13)	0.0598 (13)	0.0252 (12)	0.0167 (11)	0.0014 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0563 (11)	0.1035 (16)	0.0651 (13)	0.0394 (12)	0.0080 (10)	0.0133 (12)
N1 $0.0590(13)$ $0.0511(13)$ $0.0451(12)$ $0.0215(11)$ $0.0062(10)$ $0.0117(10)$ N2 $0.0526(13)$ $0.0542(14)$ $0.0412(12)$ $0.0238(12)$ $0.0059(10)$ $0.0094(10)$ N3 $0.0562(14)$ $0.0671(15)$ $0.0434(13)$ $0.0297(12)$ $0.0032(10)$ $0.0090(10)$ C1 $0.0504(15)$ $0.0532(17)$ $0.0506(16)$ $0.0255(14)$ $0.0034(12)$ $0.0068(10)$ C2 $0.0639(17)$ $0.0652(19)$ $0.0477(16)$ $0.0313(15)$ $0.0018(13)$ $0.0170(10)$ C3 $0.0542(15)$ $0.0677(19)$ $0.0441(14)$ $0.0268(15)$ $0.0000(12)$ $0.0100(12)$ C4 $0.0458(15)$ $0.0503(16)$ $0.0505(16)$ $0.0204(13)$ $0.0030(12)$ $0.0051(10)$ C5 $0.0485(14)$ $0.0529(16)$ $0.0472(15)$ $0.0226(13)$ $0.0077(11)$ $0.0119(10)$ C6 $0.0449(14)$ $0.0559(17)$ $0.0414(15)$ $0.0226(13)$ $0.0077(11)$ $0.0119(10)$ C7 $0.0707(19)$ $0.061(2)$ $0.0515(18)$ $0.0301(17)$ $0.01141(14)$ $0.0125(10)$ C8 $0.0573(16)$ $0.0670(18)$ $0.0432(15)$ $0.0233(15)$ $0.0062(13)$ $0.0117(10)$ C10 $0.0627(19)$ $0.084(2)$ $0.0610(19)$ $0.0375(17)$ $0.0037(15)$ $0.0097(10)$ C11 $0.0551(17)$ $0.0645(18)$ $0.0553(17)$ $0.0290(15)$ $0.0049(13)$ $0.0084(10)$ C12 $0.074(2)$ $0.097(2)$ $0.0583(19)$ $0.04455(19)$ $0.0214(15)$ $0.0207(16)$ <		0.0797 (15)	0.142 (2)	0.0701 (14)	0.0601 (15)	-0.0131 (12)	0.0120 (14)
N2 $0.0526(13)$ $0.0542(14)$ $0.0412(12)$ $0.0238(12)$ $0.0059(10)$ $0.0094(10)$ N3 $0.0562(14)$ $0.0671(15)$ $0.0434(13)$ $0.0297(12)$ $0.0032(10)$ $0.0090(10)$ C1 $0.0504(15)$ $0.0532(17)$ $0.0506(16)$ $0.0255(14)$ $0.0034(12)$ $0.0068(10)$ C2 $0.0639(17)$ $0.0652(19)$ $0.0477(16)$ $0.0313(15)$ $0.0018(13)$ $0.0170(10)$ C3 $0.0542(15)$ $0.0677(19)$ $0.0441(14)$ $0.0268(15)$ $0.0000(12)$ $0.0100(12)$ C4 $0.0458(15)$ $0.0503(16)$ $0.0505(16)$ $0.0224(13)$ $0.0030(12)$ $0.0051(10)$ C5 $0.0445(14)$ $0.0529(16)$ $0.0472(15)$ $0.0226(13)$ $0.0077(11)$ $0.0119(16)$ C6 $0.0449(14)$ $0.0559(17)$ $0.0414(15)$ $0.0226(13)$ $0.0077(11)$ $0.0119(16)$ C7 $0.0707(19)$ $0.061(2)$ $0.0515(18)$ $0.0301(17)$ $0.0141(14)$ $0.0125(16)$ C8 $0.0573(16)$ $0.0670(18)$ $0.0432(15)$ $0.0238(15)$ $0.0062(13)$ $0.0117(16)$ C9 $0.0674(17)$ $0.0600(18)$ $0.0432(15)$ $0.0233(15)$ $0.0062(13)$ $0.0117(16)$ C10 $0.0627(19)$ $0.084(2)$ $0.0610(19)$ $0.0375(17)$ $0.0037(15)$ $0.0097(16)$ C11 $0.0551(17)$ $0.097(2)$ $0.0583(19)$ $0.0455(19)$ $0.0214(15)$ $0.0207(16)$ C13 $0.090(2)$ $0.092(2)$ $0.0431(16)$ $0.0499(19)$ $0.0109(16)$ $0.0146(16)$		0.0590 (13)	0.0511 (13)	0.0451 (12)	0.0215 (11)	0.0062 (10)	0.0117 (10)
N3 $0.0562 (14)$ $0.0671 (15)$ $0.0434 (13)$ $0.0297 (12)$ $0.0032 (10)$ $0.0090 (12)$ C1 $0.0504 (15)$ $0.0532 (17)$ $0.0506 (16)$ $0.0255 (14)$ $0.0034 (12)$ $0.0068 (12)$ C2 $0.0639 (17)$ $0.0652 (19)$ $0.0477 (16)$ $0.0313 (15)$ $0.0018 (13)$ $0.0170 (12)$ C3 $0.0542 (15)$ $0.0677 (19)$ $0.0441 (14)$ $0.0268 (15)$ $0.0000 (12)$ $0.0100 (12)$ C4 $0.0458 (15)$ $0.0503 (16)$ $0.0505 (16)$ $0.0204 (13)$ $0.0030 (12)$ $0.0051 (16)$ C5 $0.0485 (14)$ $0.0529 (16)$ $0.0472 (15)$ $0.0224 (13)$ $0.0068 (11)$ $0.0127 (16)$ C6 $0.0449 (14)$ $0.0559 (17)$ $0.0414 (15)$ $0.0226 (13)$ $0.0077 (11)$ $0.0119 (16)$ C7 $0.0707 (19)$ $0.061 (2)$ $0.0515 (18)$ $0.0301 (17)$ $0.0141 (14)$ $0.0125 (12) (12) (12) (12) (12) (12) (12) (12)$		0.0526 (13)	0.0542 (14)	0.0412 (12)	0.0238 (12)	0.0059 (10)	0.0094 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0562 (14)	0.0671 (15)	0.0434 (13)	0.0297 (12)	0.0032 (10)	0.0090 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0504 (15)	0.0532 (17)	0.0506 (16)	0.0255 (14)	0.0034 (12)	0.0068 (13)
C3 $0.0542 (15)$ $0.0677 (19)$ $0.0441 (14)$ $0.0268 (15)$ $0.0000 (12)$ $0.0100 (12)$ C4 $0.0458 (15)$ $0.0503 (16)$ $0.0505 (16)$ $0.0204 (13)$ $0.0030 (12)$ $0.0051 (12)$ C5 $0.0485 (14)$ $0.0529 (16)$ $0.0472 (15)$ $0.0224 (13)$ $0.0068 (11)$ $0.0127 (12)$ C6 $0.0449 (14)$ $0.0559 (17)$ $0.0414 (15)$ $0.0226 (13)$ $0.0077 (11)$ $0.0119 (12)$ C7 $0.0707 (19)$ $0.061 (2)$ $0.0515 (18)$ $0.0301 (17)$ $0.0141 (14)$ $0.0125 (12)$ C8 $0.0573 (16)$ $0.0670 (18)$ $0.0434 (14)$ $0.0294 (15)$ $0.0018 (12)$ $0.0086 (12)$ C9 $0.0674 (17)$ $0.0600 (18)$ $0.0432 (15)$ $0.0283 (15)$ $0.0062 (13)$ $0.0117 (12)$ C10 $0.0627 (19)$ $0.084 (2)$ $0.0610 (19)$ $0.0375 (17)$ $0.0037 (15)$ $0.0097 (12)$ C11 $0.0551 (17)$ $0.097 (2)$ $0.0583 (19)$ $0.0455 (19)$ $0.0214 (15)$ $0.0207 (12)$ C13 $0.090 (2)$ $0.092 (2)$ $0.0431 (16)$ $0.0499 (19)$ $0.0109 (16)$ $0.0146 (12)$		0.0639 (17)	0.0652 (19)	0.0477 (16)	0.0313 (15)	0.0018 (13)	0.0170 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0542 (15)	0.0677 (19)	0.0441 (14)	0.0268 (15)	0.0000 (12)	0.0100 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0458 (15)	0.0503 (16)	0.0505 (16)	0.0204 (13)	0.0030 (12)	0.0051 (13)
C6 $0.0449(14)$ $0.0559(17)$ $0.0414(15)$ $0.0226(13)$ $0.0077(11)$ $0.0119(12)$ C7 $0.0707(19)$ $0.061(2)$ $0.0515(18)$ $0.0301(17)$ $0.0141(14)$ $0.0125(12)$ C8 $0.0573(16)$ $0.0670(18)$ $0.0434(14)$ $0.0294(15)$ $0.0018(12)$ $0.0086(12)$ C9 $0.0674(17)$ $0.0600(18)$ $0.0432(15)$ $0.0283(15)$ $0.0062(13)$ $0.0117(12)$ C10 $0.0627(19)$ $0.084(2)$ $0.0610(19)$ $0.0375(17)$ $0.0037(15)$ $0.0097(12)$ C11 $0.0551(17)$ $0.0645(18)$ $0.0553(17)$ $0.0290(15)$ $0.0049(13)$ $0.0084(12)$ C12 $0.074(2)$ $0.097(2)$ $0.0583(19)$ $0.0455(19)$ $0.0214(15)$ $0.0207(12)$ C13 $0.090(2)$ $0.092(2)$ $0.0431(16)$ $0.0499(19)$ $0.0109(16)$ $0.0146(12)$		0.0485 (14)	0.0529 (16)	0.0472 (15)	0.0224 (13)	0.0068 (11)	0.0127 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0449 (14)	0.0559 (17)	0.0414 (15)	0.0226 (13)	0.0077 (11)	0.0119 (13)
C8 0.0573 (16) 0.0670 (18) 0.0434 (14) 0.0294 (15) 0.0018 (12) 0.0086 (17) C9 0.0674 (17) 0.0600 (18) 0.0432 (15) 0.0283 (15) 0.0062 (13) 0.0117 (17) C10 0.0627 (19) 0.084 (2) 0.0610 (19) 0.0375 (17) 0.0037 (15) 0.0097 (17) C11 0.0551 (17) 0.0645 (18) 0.0553 (17) 0.0290 (15) 0.0049 (13) 0.0084 (2) C12 0.074 (2) 0.097 (2) 0.0583 (19) 0.0455 (19) 0.0214 (15) 0.0207 (17) C13 0.090 (2) 0.092 (2) 0.0431 (16) 0.0499 (19) 0.0109 (16) 0.0146 (17)		0.0707 (19)	0.061 (2)	0.0515 (18)	0.0301 (17)	0.0141 (14)	0.0125 (15)
C9 0.0674 (17) 0.0600 (18) 0.0432 (15) 0.0283 (15) 0.0062 (13) 0.0117 (12) C10 0.0627 (19) 0.084 (2) 0.0610 (19) 0.0375 (17) 0.0037 (15) 0.0097 (12) C11 0.0551 (17) 0.0645 (18) 0.0553 (17) 0.0290 (15) 0.0049 (13) 0.0084 (2) C12 0.074 (2) 0.097 (2) 0.0583 (19) 0.0455 (19) 0.0214 (15) 0.0207 (12) C13 0.090 (2) 0.092 (2) 0.0431 (16) 0.0499 (19) 0.0109 (16) 0.0146 (12)		0.0573 (16)	0.0670 (18)	0.0434 (14)	0.0294 (15)	0.0018 (12)	0.0086 (13)
C10 0.0627 (19) 0.084 (2) 0.0610 (19) 0.0375 (17) 0.0037 (15) 0.0097 (15) C11 0.0551 (17) 0.0645 (18) 0.0553 (17) 0.0290 (15) 0.0049 (13) 0.0084 (2) C12 0.074 (2) 0.097 (2) 0.0583 (19) 0.0455 (19) 0.0214 (15) 0.0207 (15) C13 0.090 (2) 0.092 (2) 0.0431 (16) 0.0499 (19) 0.0109 (16) 0.0146 (15)		0.0674 (17)	0.0600 (18)	0.0432 (15)	0.0283 (15)	0.0062 (13)	0.0117 (13)
C11 0.0551 (17) 0.0645 (18) 0.0553 (17) 0.0290 (15) 0.0049 (13) 0.0084 (17) C12 0.074 (2) 0.097 (2) 0.0583 (19) 0.0455 (19) 0.0214 (15) 0.0207 (17) C13 0.090 (2) 0.092 (2) 0.0431 (16) 0.0499 (19) 0.0109 (16) 0.0146 (17))	0.0627 (19)	0.084 (2)	0.0610 (19)	0.0375 (17)	0.0037 (15)	0.0097 (17)
C12 0.074 (2) 0.097 (2) 0.0583 (19) 0.0455 (19) 0.0214 (15) 0.0207 (15) C13 0.090 (2) 0.092 (2) 0.0431 (16) 0.0499 (19) 0.0109 (16) 0.0146 (15)		0.0551 (17)	0.0645 (18)	0.0553 (17)	0.0290 (15)	0.0049 (13)	0.0084 (14)
C13 0.090 (2) 0.092 (2) 0.0431 (16) 0.0499 (19) 0.0109 (16) 0.0146 (16)	2	0.074 (2)	0.097 (2)	0.0583 (19)	0.0455 (19)	0.0214 (15)	0.0207 (17)
		0.090 (2)	0.092 (2)	0.0431 (16)	0.0499 (19)	0.0109 (16)	0.0146 (15)
C14 $0.0710(19)$ $0.072(2)$ $0.0510(17)$ $0.0381(17)$ $-0.0010(14)$ $0.0069(10)$	ŀ	0.0710 (19)	0.072 (2)	0.0510 (17)	0.0381 (17)	-0.0010 (14)	0.0069 (15)
C15 0.0579 (16) 0.0672 (19) 0.0540 (16) 0.0325 (15) 0.0094 (13) 0.0097 (14)	;	0.0579 (16)	0.0672 (19)	0.0540 (16)	0.0325 (15)	0.0094 (13)	0.0097 (14)

supporting information

C16	0.0576 (16)	0.0556 (16)	0.0438 (15)	0.0283 (14)	0.0075 (13)	0.0087 (12)	
C17	0.0647 (17)	0.0614 (18)	0.0443 (15)	0.0243 (16)	0.0019 (13)	0.0070 (13)	
C18	0.102 (2)	0.0616 (19)	0.0517 (17)	0.0336 (18)	0.0064 (16)	0.0067 (15)	
C19	0.107 (2)	0.0455 (17)	0.0530 (18)	0.0285 (18)	0.0043 (18)	0.0077 (14)	
C20	0.121 (3)	0.075 (2)	0.071 (2)	0.028 (2)	0.017 (2)	0.0145 (19)	
C21	0.188 (5)	0.091 (3)	0.073 (3)	0.041 (3)	0.045 (3)	0.029 (2)	
C22	0.254 (7)	0.086 (3)	0.066 (3)	0.069 (4)	-0.008 (4)	0.013 (2)	
C23	0.184 (5)	0.090 (3)	0.088 (3)	0.061 (3)	-0.041 (3)	0.002 (3)	
C24	0.123 (3)	0.070 (2)	0.074 (2)	0.042 (2)	-0.011 (2)	0.0095 (18)	

Geometric parameters (Å, °)

Cl1—C4	1.735 (3)	C15—C16	1.373 (4)
Cl2—C14	1.738 (3)	C17—C18	1.520 (4)
O1—C1	1.382 (3)	C18—C19	1.506 (4)
O1—C7	1.384 (3)	C19—C20	1.375 (6)
O2—C7	1.202 (3)	C19—C24	1.377 (6)
O3—C10	1.371 (3)	C20—C21	1.388 (5)
O3—C11	1.390 (4)	C21—C22	1.343 (10)
O4—C10	1.200 (4)	C22—C23	1.361 (10)
N1—C6	1.398 (3)	C23—C24	1.376 (6)
N1—C7	1.371 (3)	C2—H2	0.9300
N1—C8	1.491 (3)	С3—Н3	0.9300
N2—C8	1.430 (4)	С5—Н5	0.9300
N2—C9	1.448 (4)	C8—H8A	0.9700
N2—C17	1.463 (4)	C8—H8B	0.9700
N3—C9	1.444 (3)	С9—Н9А	0.9700
N3—C10	1.370 (4)	С9—Н9В	0.9700
N3—C16	1.393 (3)	C12—H12	0.9300
C1—C2	1.362 (3)	С13—Н13	0.9300
C1—C6	1.383 (4)	C15—H15	0.9300
C2—C3	1.381 (4)	C17—H17A	0.9700
C3—C4	1.388 (4)	C17—H17B	0.9700
C4—C5	1.387 (3)	C18—H18A	0.9700
C5—C6	1.369 (4)	C18—H18B	0.9700
C11—C12	1.360 (4)	C20—H20	0.9300
C11—C16	1.368 (4)	C21—H21	0.9300
C12—C13	1.382 (5)	C22—H22	0.9300
C13—C14	1.377 (5)	С23—Н23	0.9300
C14—C15	1.386 (4)	C24—H24	0.9300
C1—O1—C7	107.7 (2)	C19—C20—C21	121.3 (4)
C10—O3—C11	107.1 (2)	C20—C21—C22	119.5 (5)
C6—N1—C7	109.6 (2)	C21—C22—C23	120.6 (4)
C6—N1—C8	128.6 (2)	C22—C23—C24	120.1 (6)
C7—N1—C8	121.2 (2)	C19—C24—C23	120.8 (4)
C8—N2—C9	112.5 (2)	C1—C2—H2	121.00
C8—N2—C17	114.76 (19)	C3—C2—H2	121.00

CO NO C17	1145(2)	62 62 112	100.00
C9—N2—C17	114.5 (2)	C2—C3—H3	120.00
C9—N3—C10	123.4 (2)	С4—С3—Н3	120.00
C9—N3—C16	127.5 (2)	C4—C5—H5	122.00
C10—N3—C16	108.9 (2)	C6—C5—H5	122.00
01—C1—C2	127.6 (2)	N1—C8—H8A	108.00
O1—C1—C6	109.5 (2)	N1—C8—H8B	108.00
C2—C1—C6	122.9 (2)	N2—C8—H8A	108.00
C1—C2—C3	117.2 (2)	N2—C8—H8B	108.00
C2—C3—C4	119.5 (2)	H8A—C8—H8B	107.00
Cl1—C4—C3	118.03 (19)	N2—C9—H9A	109.00
Cl1 - C4 - C5	118.6 (2)	N2—C9—H9B	109.00
$C_{3}-C_{4}-C_{5}$	1233(2)	N3-C9-H9A	109.00
C_{4} C_{5} C_{6}	115.8(2)	N3_C9_H9B	109.00
N1 C6 C1	115.0(2) 105.7(2)	$H_{0A} = C_{0} = H_{0B}$	109.00
N1C6C5	103.7(2) 122.2(2)	$\begin{array}{ccc} 11 & 12 & 112 \\ 11 & 12 & 12$	100.00
$NI = C_0 = C_3$	133.2(2)	C12 - C12 - H12	122.00
C1 - C0 - C3	121.1(2)	C13-C12-H12	122.00
01 - 02	123.0 (3)	С12—С13—Н13	120.00
OI-C/-NI	107.5 (2)	C14—C13—H13	120.00
O2—C7—N1	129.6 (3)	C14—C15—H15	122.00
N1—C8—N2	115.9 (2)	C16—C15—H15	122.00
N2—C9—N3	111.3 (2)	N2—C17—H17A	109.00
O3—C10—O4	123.5 (3)	N2—C17—H17B	109.00
O3—C10—N3	108.3 (2)	C18—C17—H17A	109.00
O4—C10—N3	128.3 (3)	C18—C17—H17B	109.00
O3—C11—C12	127.0 (3)	H17A—C17—H17B	108.00
O3—C11—C16	109.4 (2)	C17—C18—H18A	109.00
C12—C11—C16	123.5 (3)	C17—C18—H18B	109.00
C11—C12—C13	115.9 (3)	C19—C18—H18A	109.00
C12—C13—C14	120.7 (3)	C19—C18—H18B	109.00
Cl2—C14—C13	118.4 (2)	H18A—C18—H18B	108.00
Cl2 - Cl4 - Cl5	118.6(2)	C19—C20—H20	119.00
C_{13} C_{14} C_{15}	123.0(3)	C_{21} C_{20} H_{20}	119.00
C_{14} C_{15} C_{16}	125.0(3) 115.1(3)	C_{20} C_{20} H_{20} H_{21}	120.00
$N_{2} = C_{10} = C_{10}$	115.1(3) 106.2(3)	$C_{20} = C_{21} = H_{21}$	120.00
$N_{2} = C_{16} = C_{15}$	100.3(3)	$C_{22} = C_{21} = H_{21}$	120.00
	132.1(3)	$C_{21} = C_{22} = H_{22}$	120.00
CII = CI0 = CI3	121.0(2)	C23—C22—H22	120.00
$N_2 = C_1 / = C_{10} / C_{10}$	111.8 (2)	C22—C23—H23	120.00
C17—C18—C19	112.9 (2)	C24—C23—H23	120.00
C18—C19—C20	121.2 (3)	С19—С24—Н24	120.00
C18—C19—C24	121.2 (3)	C23—C24—H24	120.00
C20—C19—C24	117.7 (3)		
C7—O1—C1—C2	176.3 (3)	O1—C1—C2—C3	-178.1 (3)
C7—O1—C1—C6	-2.3 (3)	C2-C1-C6-N1	-178.4 (3)
C1	3.4 (3)	C2-C1-C6-C5	-0.7 (4)
C1-01-C7-02	-175.8 (3)	O1—C1—C6—C5	178.0 (2)
C11—O3—C10—N3	-1.7 (3)	C1—C2—C3—C4	-0.6 (4)
C11—O3—C10—O4	179.4 (3)	C2—C3—C4—Cl1	179.3 (2)
	× /		× /

C10-03-C11-C16	1.8 (3)	C2—C3—C4—C5	1.3 (4)
C10-O3-C11-C12	-178.1 (3)	C3—C4—C5—C6	-1.6 (4)
C8—N1—C7—O1	-175.2 (2)	Cl1—C4—C5—C6	-179.6 (2)
C6-N1-C7-O1	-3.3 (3)	C4—C5—C6—N1	178.3 (3)
C6—N1—C8—N2	99.0 (3)	C4—C5—C6—C1	1.3 (4)
C7—N1—C8—N2	-90.7 (3)	C12—C11—C16—C15	-0.8 (5)
C7—N1—C6—C1	1.9 (3)	C12-C11-C16-N3	178.7 (3)
C8—N1—C6—C1	173.1 (3)	O3—C11—C12—C13	179.3 (3)
C7—N1—C6—C5	-175.4 (3)	C16—C11—C12—C13	-0.6 (5)
C8—N1—C6—C5	-4.3 (5)	O3—C11—C16—N3	-1.1 (3)
C6—N1—C7—O2	175.9 (3)	O3—C11—C16—C15	179.4 (2)
C8—N1—C7—O2	3.9 (5)	C11—C12—C13—C14	1.2 (5)
C17—N2—C8—N1	-70.5 (3)	C12—C13—C14—C15	-0.6 (5)
C9—N2—C17—C18	143.5 (2)	C12—C13—C14—Cl2	178.7 (3)
C8—N2—C9—N3	162.6 (2)	Cl2—C14—C15—C16	-180.0 (2)
C9—N2—C8—N1	62.8 (3)	C13—C14—C15—C16	-0.7 (4)
C8—N2—C17—C18	-84.1 (3)	C14—C15—C16—C11	1.4 (4)
C17—N2—C9—N3	-64.0 (3)	C14-C15-C16-N3	-178.0 (3)
C9—N3—C10—O3	175.6 (2)	N2-C17-C18-C19	-63.6 (3)
C16—N3—C10—O3	1.1 (3)	C17—C18—C19—C20	-74.1 (4)
C10—N3—C16—C11	0.0 (3)	C17—C18—C19—C24	106.1 (4)
C9—N3—C16—C15	5.2 (5)	C18—C19—C20—C21	-178.9 (3)
C9—N3—C10—O4	-5.6 (5)	C24—C19—C20—C21	1.0 (5)
C16—N3—C10—O4	179.9 (3)	C18—C19—C24—C23	179.0 (3)
C10—N3—C16—C15	179.5 (3)	C20—C19—C24—C23	-0.9 (5)
C10—N3—C9—N2	110.9 (3)	C19—C20—C21—C22	-1.1 (6)
C16—N3—C9—N2	-75.6 (3)	C20—C21—C22—C23	1.1 (7)
C9—N3—C16—C11	-174.2 (2)	C21—C22—C23—C24	-1.0 (7)
C6—C1—C2—C3	0.3 (4)	C22—C23—C24—C19	0.9 (6)
O1-C1-C6-N1	0.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C8—H8A····O4 ⁱ	0.97	2.51	3.037 (4)	114
С9—Н9А…О4	0.97	2.56	2.921 (4)	102
C17—H17A…N3	0.97	2.54	2.944 (3)	105

Symmetry code: (i) x-1, y, z.