

Received 8 March 2018 Accepted 11 April 2018

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 4,6-diaminopyrimidine; sulfanyl; acetamide; pyridine; pyrazine; hydrogen bonding; offset π - π interactions; Hirshfeld surface.

CCDC references: 1836419; 1836418

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Manisha Choudhury,^a Vijayan Viswanathan,^a Ajay Kumar Timiri,^b Barij Nayan Sinha,^b Venkatesan Jayaprakash^b and Devadasan Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesta, Ranchi 835215, Jharkhand, India. *Correspondence e-mail: shirai2011@gmail.com

In the title compounds, $C_{11}H_{12}N_6OS$ (I) and $C_{10}H_{11}N_7OS$ (II), the diaminopyrimidine ring makes dihedral angles of 71.10 (9)° with the pyridine ring in (I) and 62.93 (15)° with the pyrazine ring in (II). The ethanamine group, $-CH_{2^-}C(=O)-NH-$ lies in the plane of the pyridine and pyrazine rings in compounds (I) and (II), respectively. In both compounds, there is an intramolecular N- $H \cdots N$ hydrogen bond forming an S(7) ring motif and a short $C-H \cdots O$ interaction forming an S(6) loop. In the crystals of both compounds, molecules are linked by pairs of $N-H \cdots N$ hydrogen bonds, forming inversion dimers with $R_2^2(8)$ ring motifs. In (I), the dimers are linked by $N-H \cdots O$ and $N-H \cdots N$ hydrogen bonds, forming layers parallel to $(1\overline{11})$. The layers are linked by offset $\pi-\pi$ interactions [intercentroid distance = 3.777(1) Å], forming a threedimensional supramolecular structure. In (II), the dimers are linked by N- $H \cdots O$, $N-H \cdots N$ and $C-H \cdots O$ hydrogen bonds, also forming a threedimensional supramolecular structure.

1. Chemical context

An important property of diaminopyrimidine derivatives is their inhibition potential against cancer targets. Because of the limited capacity of drugs that can cure cancer, there is always an urgent requirement for new chemotherapeutics. 2,4-Diaminopyrimidine derivatives combined with arylthiazole derivatives have shown to possess significant anti-proliferation properties against breast cancer cell lines (Zhou et al., 2015). 2,4-Diaminopyrimidine derivatives have shown significant inhibitory activity against influenza viruses (Kimura et al., 2006). A series of 2,4- diaminopyrimidine derivatives were evaluated against Bacillus anthracis, which showed inhibition (Nammalwar et al., 2012). Dihvdrofolate reductase inhibitor drugs such as pyrimethamine, trimetrexate and piritrexim (Nelson & Rosowsky, 2001) and the antibiotics iclaprim and trimethoprim all include diaminopyrimidine as the fundamental structural motif. Diaminopyrimidine derivatives have also shown anti-retroviral activity (Hocková et al., 2004), antibacterial (Kandeel et al., 1994) and potential anti-microbial properties (Holla et al., 2006). As part of our own studies in this area, we report herein on the syntheses, crystal structures and Hirshfeld surface analyses of the title compounds, 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(pyridin-2-yl)acetamide (I) and 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(pyrazin-2-yl)acetamide (II).

2. Structural commentary

The molecular structure of compounds (I) and (II) are shown in the Figs. 1 and 2, respectively. Compound (I) crystallizes in the triclinic space group $P\overline{1}$ and compound (II) crystallizes in the monoclinic space group $P2_1/c$. In both the compounds, there is an intramolecular N-H···N hydrogen bond forming an S(7) ring motif and a short C-H···O interaction forming an S(6) loop; see Tables 1 and 2 for details of the hydrogen bonding. The nitrogen atoms N1 and N2 lie in the plane of the pyrimidine ring to which they are attached [deviations are -0.0269 (17) and 0.0521 (16) Å, respectively, for compound (I), and 0.0350 (28) and 0.0284 (28) Å, respectively, for compound (II)]. The diaminopyrimidine ring makes a dihedral angle of 71.10 (9)° with the pyridine ring in compound (I) and a dihedral angle of 62.93 (15)° with the pyrazine ring in

Figure 1

The molecular structure of the compound (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intramolecular $N-H\cdots N$ and $C-H\cdots O$ hydrogen bonds (see Table 1) are shown as dashed lines.

Table 1	
Hydrogen-bond geometry	(Å, °) for (I).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N5−H5···N3	0.86 (2)	2.18 (2)	2.975 (2)	154 (2)
$C8-H8\cdots O1$	0.93	2.31	2.894 (2)	121
$N2-H2B\cdots N4^{i}$	0.88(2)	2.20(2)	3.082 (2)	178 (2)
$N1-H1A\cdots N6^{ii}$	0.86(2)	2.38 (2)	3.174 (2)	155 (2)
$N2-H2A\cdots O1^{iii}$	0.86 (2)	2.13 (2)	2.956 (2)	159 (2)

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1, y + 1, z.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N5−H5···N3	0.82 (3)	2.25 (3)	2.993 (4)	151 (3)
C8−H8···O1	0.93	2.24	2.854 (4)	123
$N2-H2B\cdots N4^{i}$	1.00 (3)	2.11 (3)	3.092 (4)	169 (3)
$N1-H1A\cdotsO1^{ii}$	0.86 (3)	2.06 (4)	2.904 (4)	167 (3)
$N2-H2A\cdots N7^{iii}$	0.85 (3)	2.41 (3)	3.235 (4)	164 (3)
$C9-H9\cdots O1^{iv}$	0.93	2.56	3.368 (4)	145

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) x - 1, y, z; (iv) $-x + \frac{5}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

compound (II). In (I) the ethanamine group (N5/O1/C6/C5) and the pyridine ring are coplanar, as evidenced by torsion angle C7–N5–C6–C5 = 179.1 (2)°. In (II) the ethanamine group (N5/O1/C6/C5) and pyrazine ring also lie in a plane [C7–N5–C6–C5 = 177.6 (3)°]. Bond lengths C4–S1 [1.768 (2) Å] and C5–S1 [1.802 (2) Å] for compound (I), and C4–S1 [1.768 (3) Å] and C5–S1 [1.795 (3) Å] for compound (II), are comparable with values reported for similar compounds (see Section 4. *Database survey*).

3. Supramolecular features

The crystal packing in compound (I) is illustrated in Fig. 3, and that for compound (II) in Fig. 4. Details of the hydrogenbonding geometry in compound (I) are given in Table 1 and in

The molecular structure of the compound (II), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intramolecular N-H···N and C-H···O hydrogen bonds (see Table 2) are shown as dashed lines.

research communications

Table 2 for (II). In the crystals of both compounds, molecules are linked by pairs of $N2-H2B\cdots N4^{i}$ hydrogen bonds, forming inversion dimers with $R_{2}^{2}(8)$ ring motifs (Figs. 3 and 4, respectively).

In the crystal of (I), the dimers are linked by N2– H2A···O1ⁱⁱⁱ hydrogen bonds, forming ribbons along [010], enclosing $R_4^4(18)$ ring motifs. Adjacent ribbons are linked by N1–H1A···N6ⁱⁱ hydrogen bonds, forming sheets lying parallel to the (111) plane, see Fig. 3. The layers are linked by offset π - π interactions, forming a three-dimensional supramolecular structure [Cg··· $Cg^v = 3.777$ (1) Å, interplanar distance = 3.483 (1) Å, slippage = 1.459 Å, Cg is the centroid of the pyridine ring (N6/C7–C11); symmetry code: (v) –x + 1, –y, –z + 1)].

In the crystal of (II), the dimers are linked by N1– $H1A\cdots O^{ii}$, N2– $H2A\cdots N7^{iii}$ and C9– $H9\cdots O1^{iv}$ hydrogen bonds (Table 2), forming a three-dimensional supramolecular structure (Fig. 4). In contrast, in the crystal of (II) there are no $\pi-\pi$ interactions present.

4. Database survey

A search of the Cambridge Structure Database (Version 5.39, last update February 2018; Groom *et al.*, 2016) for [(4,6-di-aminopyrmidin-2-yl)sulfanyl]acetamide yielded nine hits,

A view normal to the $(1\overline{11})$ plane of the crystal packing of compound (I). The hydrogen bonds (see Table 1) are shown as dashed lines and C-bound H atoms have been omitted for clarity.

A view along the a axis of the crystal packing of compound (II). The hydrogen bonds (see Table 2) are shown as dashed lines, and C-bound H atoms have been omitted for clarity.

eight of which have a substituted phenyl substituent in place of the pyridine ring in (I) and the pyrazine ring in (II), and one a naphthalene group (JARPOK; Subasri *et al.*, 2017*a*). They include the following analogues: 3-nitrophenyl (ARAROC; Subasri *et al.*, 2016), 2-chlorophenyl (ARARUI; Subasri *et al.*, 2016), 2-methylphenyl (GOKWIO; Subasri *et al.*, 2014), 4-fluorophenyl (JARPUQ; Subasri *et al.*, 2017*a*), 2,4-dimethylphenyl (JAXFIA; Choudhury *et al.*, 2017), 3-methoxyphenyl (JAXFOG; Choudhury *et al.*, 2017), 4-chlorophenyl (KAPQIE; Subasri *et al.*, 2017*b*), and 3-chlorophenyl (KAPQOK; Subasri *et al.*, 2017*b*).

In these eight compounds, the diaminopyrimidine and benzene rings are inclined to one another by dihedral angles varying from *ca* 42.25 to 78.33°. The dihedral angle between the diaminopyrimidine and the pyridine ring in (I) is 71.10 (9)° and with the pyrazine ring in (II) is 62.93 (15)°, well within these limits. As in the title compounds, there is also an intramolecular $N-H\cdots N$ hydrogen bond present in all eight compounds, stabilizing the folded conformation of each molecule. In the crystals of all but two compounds (ARAROC and JARPUQ), molecules are linked by pairs of $N-H\cdots N$

research communications

Figure 5

Ball and stick, Hirshfeld surface and electrostatic potential surface diagrams for compound (I).

hydrogen bonds, involving the 4,6-diaminopyrimidine moieties, forming inversion dimers with $R_2^2(8)$ ring motifs, as for compounds (I) and (II).

5. Hirshfeld surface analysis

In Figs. 5 and 6, the ball and stick model of the front and back views of the compounds (I) and (II), respectively, and the intermolecular contacts are shown by conventional mapping of d_{norm} on the molecular Hirshfeld surfaces, where the redspot areas denote intermolecular contacts involved in the hydrogen-bonding interactions (McKinnon et al., 2007). The electrostatic potential is mapped on the Hirshfeld surface using the STO-3G basis set at the Hartree-Fock theory over the range of ± 0.025 a.u. The positive electrostatic potential (blue region) over the surface shows hydrogen-donor potential, and the hydrogen-bond acceptors are shown by negative electrostatic potential (red regions); see Figs. 5 and 6. The twodimensional fingerprint plots [Fig. 7 for (I) and Fig. 8 for (II)] are deconvoluted to highlight atom-pair close contacts by which different atomic types, overlapping the full fingerprint can be separated based on different interaction types. For compound (I), intermolecular H...H contacts of 39.1% are the most significant, followed by 17.7% for $N \cdot \cdot \cdot H/H \cdot \cdot \cdot N$, 12% for C···H/H···C, 9.3% for O···H/H···O, 8.4% for S···H/ $H \cdots S$ and 4.1% for $C \cdots C$ contacts. In contrast, for compound

Figure 6

Ball and stick, Hirshfeld surface and electrostatic potential surface diagrams for compound (II).

Figure 7

The 2D fingerprint plot for all the intermolecular contacts for compound (I).

(II) the H···H contacts at 28.2% are significantly lower than in (I), while the N···H/H···N contacts at 27% are significantly higher than in (I). The C···C contacts at only 1.9% are much lower than in (I) where offset $\pi - \pi$ interactions are observed in the crystal structure.

6. Synthesis and crystallization

Compound (I): To a solution of 4, 6-diamino-pyrimidine-2thiol (0.5 g; 3.52 mmol) in 25 ml of ethanol, (0.2g; 3.52 mmol) potassium hydroxide was added and refluxed for about 30 min. Then an equimolar quantity of 2-chloro-*N*-(pyridin-2yl)acetamide (3.52 mmol) was added to the above reaction mixture and it was refluxed for 5 h. Evaporation of the organic layer under vacuum provided compound (I). After purification, the compound was crystallized from ethanol solution by slow evaporation of the solvent giving yellow block-like crystals.

Compound (II): To a solution of 4, 6-diamino-pyrimidine-2thiol (0.5 g; 3.52 mmol) in 25 ml of ethanol, (0.2g; 3.52 mmol) potassium hydroxide was added and refluxed for about

Figure 8 The 2D fingerprint plot for all the intermolecular contacts for compound (II).

research communications

Table	3	
Experi	mental	details

	(I)	(II)
Crystal data		
Chemical formula	C11H12NcOS	C10H11N2OS
М.,	276.33	277.32
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	293	293
a, b, c (Å)	7.2341 (2), 9.3852 (2), 9.7971 (2)	12.1333 (5), 8.1561 (3), 12.8442 (5)
α, β, γ (°)	95.820 (1), 91.116 (1), 105.682 (1)	90, 94,307 (3), 90
$V(A^3)$	636.33 (3)	1267.48 (9)
Z	2	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.26	0.26
Crystal size (mm)	$0.30 \times 0.25 \times 0.20$	$0.28\times0.25\times0.20$
Data collection		
Diffractometer	Bruker SMART APEXII area-detector	Bruker SMART APEXII area-detector
Absorption correction	Multi-scan (SADABS; Bruker, 2008)	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, \hat{T}_{\max}	0.742, 0.841	0.723, 0.863
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9447, 2605, 2160	11968, 3124, 1320
R _{int}	0.020	0.084
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.626	0.667
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.094, 1.05	0.054, 0.126, 0.94
No. of reflections	2605	3124
No. of parameters	192	192
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.23, -0.20	0.20, -0.23

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

30 min. Then an equimolar quantity of 2-chloro-*N*-(pyrazin-2-yl)acetamide (3.52 mmol) was added to the above reaction mixture and it was refluxed for 5.5 h. Evaporation of the organic layer under vacuum resulted in compound (II). After purification, the compound was crystallized from ethanol solution by slow evaporation of the solvent giving yellow block-like crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For both compounds, the NH₂ and NH H atoms were located in difference-Fourier maps and freely refined, and the C-bound H atoms were placed in calculated positions and refined in the riding model: C-H =0.93–0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection

Funding information

MC thanks the CSIR, Government of India, for the SRF fellowship.

References

- Bruker (2008). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). *Acta Cryst.* E**73**, 996– 1000.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hocková, D., Holý, A. N., Masoj\?ídková, M., Andrei, G., Snoeck, R., De Clercq, E. & Balzarini, J. (2004). *Bioorg. Med. Chem.* **12**, 3197–3202.
- Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akberali, P. M. & Shetty, N. S. (2006). *Bioorg. Med. Chem.* 14, 2040–2047.
- Kandeel, M., El-Meligie, S., Omar, R., Roshdy, S. & Youssef, K. (1994). J. Pharm. Sci. 3, 197–205.
- Kimura, H., Katoh, T., Kajimoto, T., Node, M., Hisaki, M., Sugimoto, Y., Majima, T., Uehara, Y. & Yamori, T. (2006). *Anticancer Res.* 26, 91–97.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McKinnon, J. J., Fabbiani, F. P. & Spackman, M. A. (2007). Cryst. Growth Des. 7, 755–769.
- Nammalwar, B., Bunce, R. A., Berlin, K. D., Bourne, C. R., Bourne, P. C., Barrow, E. W. & Barrow, W. W. (2012). *Eur. J. Med. Chem.* 54, 387–396.
- Nelson, R. G. & Rosowsky, A. (2001). Antimicrob. Agents Chemother. 45, 3293–3303.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, 0850.

- Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017*a*). *Acta Cryst.* E**73**, 306–309.
- Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017b). Acta Cryst. E73, 467–471.
- Subasri, S., Timiri, A. K., Barji, N. S., Jayaprakash, V., Vijayan, V. & Velmurugan, D. (2016). *Acta Cryst.* E72, 1171–1175.
- Zhou, W., Huang, A., Zhang, Y., Lin, Q., Guo, W., You, Z., Yi, Z., Liu, M. & Chen, Y. (2015). *Eur. J. Med. Chem.* **96**, 269–280.

Acta Cryst. (2018). E74, 718-723 [https://doi.org/10.1107/S2056989018005704]

Crystal structures and Hirshfeld surface analyses of 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-*N*-(pyridin-2-yl)acetamide and 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-*N*-(pyrazin-2-yl)acetamide

Manisha Choudhury, Vijayan Viswanathan, Ajay Kumar Timiri, Barij Nayan Sinha, Venkatesan Jayaprakash and Devadasan Velmurugan

Computing details

For both structures, data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2016* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

2-[(4,6-Diaminopyrimidin-2-yl)sulfanyl]-N-(pyridin-2-yl)acetamide (I)

Crystal data

C₁₁H₁₂N₆OS $M_r = 276.33$ Triclinic, $P\overline{1}$ a = 7.2341 (2) Å b = 9.3852 (2) Å c = 9.7971 (2) Å $\alpha = 95.820$ (1)° $\beta = 91.116$ (1)° $\gamma = 105.682$ (1)° V = 636.33 (3) Å³

Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: X-ray ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.742, T_{\max} = 0.841$ 9447 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.094$ S = 1.05 Z = 2 F(000) = 288 $D_x = 1.442 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2605 reflections $\theta = 2.1-26.4^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.30 \times 0.25 \times 0.20 \text{ mm}$

2605 independent reflections 2160 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 2.1^\circ$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -10 \rightarrow 12$

2605 reflections192 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 0.1669P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 0.23 \ { m e} \ { m \AA}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.47564 (6)	0.24187 (5)	0.97878 (4)	0.04443 (15)
01	0.1201 (2)	-0.07191 (14)	0.81504 (14)	0.0637 (4)
N1	0.4212 (3)	0.58093 (19)	0.63223 (17)	0.0509 (4)
H1A	0.470 (3)	0.652 (2)	0.584 (2)	0.059 (6)*
H1B	0.299 (3)	0.546 (2)	0.641 (2)	0.066 (7)*
N2	1.0373 (2)	0.60541 (19)	0.83751 (19)	0.0500 (4)
H2A	1.087 (3)	0.696 (2)	0.820 (2)	0.059 (6)*
H2B	1.092 (3)	0.590 (2)	0.914 (2)	0.071 (7)*
N3	0.45530 (19)	0.42030 (14)	0.78589 (14)	0.0378 (3)
N4	0.75997 (18)	0.44133 (14)	0.89781 (13)	0.0374 (3)
N5	0.2555 (2)	0.10689 (16)	0.67916 (14)	0.0395 (3)
Н5	0.304 (3)	0.201 (2)	0.6830 (18)	0.046 (5)*
N6	0.3287 (2)	0.11118 (16)	0.45436 (15)	0.0458 (4)
C1	0.5404 (2)	0.53494 (17)	0.71413 (16)	0.0373 (4)
C2	0.7366 (2)	0.59919 (18)	0.72509 (17)	0.0398 (4)
H2	0.795008	0.672763	0.670694	0.048*
C3	0.8435 (2)	0.55043 (16)	0.81970 (16)	0.0367 (4)
C4	0.5717 (2)	0.38421 (16)	0.87394 (15)	0.0351 (4)
C5	0.2265 (2)	0.17793 (19)	0.91965 (17)	0.0452 (4)
H5A	0.149123	0.139634	0.994486	0.054*
H5B	0.185101	0.261192	0.891905	0.054*
C6	0.1943 (2)	0.05740 (18)	0.80001 (18)	0.0415 (4)
C7	0.2500 (2)	0.02603 (17)	0.55029 (17)	0.0369 (4)
C8	0.1697 (3)	-0.12615 (19)	0.5237 (2)	0.0506 (4)
H8	0.118824	-0.182978	0.593511	0.061*
C9	0.1674 (3)	-0.1909 (2)	0.3911 (2)	0.0603 (5)
H9	0.113148	-0.292746	0.369861	0.072*
C10	0.2447 (3)	-0.1056 (2)	0.2905 (2)	0.0574 (5)
H10	0.243138	-0.147400	0.200125	0.069*
C11	0.3246 (3)	0.0435 (2)	0.32694 (19)	0.0551 (5)
H11	0.379420	0.101358	0.258857	0.066*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0510 (3)	0.0393 (2)	0.0344 (2)	-0.00414 (19)	0.00358 (18)	0.00918 (17)
O1	0.0848 (10)	0.0348 (7)	0.0585 (8)	-0.0084 (6)	0.0102 (7)	0.0109 (6)
N1	0.0466 (10)	0.0522 (10)	0.0532 (10)	0.0079 (8)	-0.0012 (8)	0.0183 (8)
N2	0.0377 (8)	0.0444 (9)	0.0648 (11)	0.0003 (7)	0.0006 (7)	0.0222 (8)
N3	0.0399 (7)	0.0308 (7)	0.0382 (7)	0.0019 (6)	0.0022 (6)	0.0041 (5)
N4	0.0404 (8)	0.0310 (7)	0.0369 (7)	0.0020 (6)	0.0018 (6)	0.0064 (5)
N5	0.0438 (8)	0.0288 (7)	0.0397 (8)	-0.0008 (6)	0.0032 (6)	0.0044 (6)
N6	0.0523 (9)	0.0425 (8)	0.0418 (8)	0.0106 (7)	0.0039 (7)	0.0070 (6)
C1	0.0443 (9)	0.0331 (8)	0.0332 (8)	0.0084 (7)	0.0034 (7)	0.0030 (6)
C2	0.0427 (9)	0.0349 (8)	0.0411 (9)	0.0058 (7)	0.0085 (7)	0.0127 (7)
C3	0.0395 (9)	0.0281 (8)	0.0397 (9)	0.0042 (6)	0.0063 (7)	0.0040 (6)
C4	0.0427 (9)	0.0266 (7)	0.0311 (8)	0.0022 (6)	0.0056 (7)	-0.0004 (6)
C5	0.0451 (10)	0.0417 (9)	0.0412 (9)	-0.0018 (7)	0.0134 (8)	0.0050 (7)
C6	0.0385 (9)	0.0354 (9)	0.0458 (10)	0.0003 (7)	0.0037 (7)	0.0087 (7)
C7	0.0319 (8)	0.0358 (8)	0.0419 (9)	0.0079 (6)	-0.0010 (7)	0.0038 (7)
C8	0.0531 (11)	0.0375 (9)	0.0546 (11)	0.0026 (8)	0.0031 (9)	0.0009 (8)
C9	0.0629 (13)	0.0441 (11)	0.0672 (13)	0.0099 (9)	-0.0011 (10)	-0.0111 (9)
C10	0.0611 (12)	0.0643 (13)	0.0488 (11)	0.0266 (10)	-0.0007 (9)	-0.0100 (10)
C11	0.0636 (12)	0.0607 (12)	0.0436 (10)	0.0204 (10)	0.0081 (9)	0.0073 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C4	1.7682 (15)	N6—C7	1.332 (2)	_
S1—C5	1.8021 (18)	N6—C11	1.338 (2)	
O1—C6	1.2124 (19)	C1—C2	1.381 (2)	
N1-C1	1.348 (2)	C2—C3	1.384 (2)	
N1—H1A	0.86 (2)	С2—Н2	0.9300	
N1—H1B	0.86 (2)	C5—C6	1.512 (2)	
N2—C3	1.358 (2)	С5—Н5А	0.9700	
N2—H2A	0.86 (2)	С5—Н5В	0.9700	
N2—H2B	0.88 (2)	С7—С8	1.384 (2)	
N3—C4	1.324 (2)	C8—C9	1.376 (3)	
N3—C1	1.358 (2)	C8—H8	0.9300	
N4—C4	1.328 (2)	C9—C10	1.365 (3)	
N4—C3	1.3570 (19)	С9—Н9	0.9300	
N5—C6	1.354 (2)	C10-C11	1.368 (3)	
N5—C7	1.400 (2)	C10—H10	0.9300	
N5—H5	0.856 (19)	С11—Н11	0.9300	
C4—S1—C5	102.83 (8)	C6—C5—S1	111.72 (12)	
C1—N1—H1A	118.3 (14)	C6—C5—H5A	109.3	
C1—N1—H1B	117.3 (15)	S1—C5—H5A	109.3	
H1A—N1—H1B	124 (2)	C6—C5—H5B	109.3	
C3—N2—H2A	117.2 (13)	S1—C5—H5B	109.3	
C3—N2—H2B	117.6 (15)	H5A—C5—H5B	107.9	

H2A—N2—H2B	110 (2)	O1—C6—N5	124.47 (16)
C4—N3—C1	114.94 (13)	O1—C6—C5	121.07 (15)
C4—N4—C3	115.04 (13)	N5—C6—C5	114.46 (14)
C6—N5—C7	129.23 (14)	N6—C7—C8	123.05 (16)
C6—N5—H5	114.6 (12)	N6—C7—N5	112.92 (13)
C7—N5—H5	116.2 (12)	C8—C7—N5	124.02 (15)
C7—N6—C11	116.91 (15)	C9—C8—C7	118.03 (18)
N1—C1—N3	115.65 (15)	С9—С8—Н8	121.0
N1—C1—C2	122.72 (15)	С7—С8—Н8	121.0
N3—C1—C2	121.63 (15)	C10—C9—C8	120.00 (18)
C1—C2—C3	117.79 (14)	С10—С9—Н9	120.0
С1—С2—Н2	121.1	С8—С9—Н9	120.0
С3—С2—Н2	121.1	C9—C10—C11	117.86 (18)
N4—C3—N2	116.08 (15)	С9—С10—Н10	121.1
N4—C3—C2	121.51 (14)	C11—C10—H10	121.1
N2—C3—C2	122.39 (15)	N6-C11-C10	124.13 (18)
N3—C4—N4	128.88 (14)	N6-C11-H11	117.9
N3—C4—S1	119.16 (12)	C10-C11-H11	117.9
N4—C4—S1	111.95 (12)		
	174.06 (14)		0.5.(2)
C4 - N3 - C1 - N1	-1/4.86(14)	C/N5C601	-0.5(3)
C4 - N3 - C1 - C2	5.2 (2)	C/N5C6C5	1/9.12 (15)
N1 - C1 - C2 - C3	1/5.39 (15)	SI_C5_C6_OI	105.06 (17)
N3-C1-C2-C3	-4.7 (2)	SI-C5-C6-N5	-/4.58 (17)
C4—N4—C3—N2	-1/6.8/(14)	C11—N6—C7—C8	1.2 (2)
C4—N4—C3—C2	1.5 (2)	C11—N6—C7—N5	-178.11 (15)
C1-C2-C3-N4	1.2 (2)	C6—N5—C7—N6	-178.11 (16)
C1—C2—C3—N2	179.38 (15)	C6—N5—C7—C8	2.5 (3)
C1—N3—C4—N4	-2.5 (2)	N6—C7—C8—C9	-1.7 (3)
C1—N3—C4—S1	177.30 (10)	N5—C7—C8—C9	177.57 (17)
C3—N4—C4—N3	-0.8 (2)	C7—C8—C9—C10	0.7 (3)
C3—N4—C4—S1	179.39 (10)	C8—C9—C10—C11	0.7 (3)
C5—S1—C4—N3	3.32 (14)	C7—N6—C11—C10	0.2 (3)
C5—S1—C4—N4	-176.85 (11)	C9—C10—C11—N6	-1.2 (3)
C4—S1—C5—C6	87.65 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
N5—H5…N3	0.86 (2)	2.18 (2)	2.975 (2)	154 (2)
C8—H8…O1	0.93	2.31	2.894 (2)	121
$N2$ — $H2B$ ···· $N4^{i}$	0.88 (2)	2.20 (2)	3.082 (2)	178 (2)
N1—H1A····N6 ⁱⁱ	0.86 (2)	2.38 (2)	3.174 (2)	155 (2)
N2—H2A····O1 ⁱⁱⁱ	0.86 (2)	2.13 (2)	2.956 (2)	159 (2)

Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x+1, y+1, z.

2-[(4,6-Diaminopyrimidin-2-yl)sulfanyl]-N-(pyrazin-2-yl)acetamide (II)

Crystal data

 $C_{10}H_{11}N_7OS$ $M_r = 277.32$ Monoclinic, $P2_1/n$ a = 12.1333 (5) Å b = 8.1561 (3) Å c = 12.8442 (5) Å $\beta = 94.307$ (3)° V = 1267.48 (9) Å³ Z = 4

Data collection

Bruker SMART APEXII area-detector	3124 independent reflections
diffractometer	1320 reflections with $I > 2\sigma(I)$
Radiation source: X-ray	$R_{ m int}=0.084$
ω and φ scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 12$
(SADABS; Bruker, 2008)	$k = -10 \rightarrow 9$
$T_{\min} = 0.723, \ T_{\max} = 0.863$	$l = -17 \rightarrow 17$
11968 measured reflections	
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: mixed
$wR(F^2) = 0.126$	H atoms treated by a mixture of independent
S = 0.94	and constrained refinement
3124 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0452P)^2]$
192 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 576

 $\theta = 2.2 - 28.3^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

Block, yellow

 $0.28 \times 0.25 \times 0.20$ mm

T = 293 K

 $D_{\rm x} = 1.453 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 3124 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.77107 (6)	0.20394 (11)	0.50448 (6)	0.0525 (3)
01	1.06221 (18)	0.2503 (3)	0.55054 (17)	0.0779 (8)
N1	0.6951 (3)	0.2961 (4)	0.8740 (2)	0.0651 (9)
H1A	0.651 (3)	0.297 (4)	0.923 (3)	0.084 (13)*
H1B	0.760 (3)	0.342 (4)	0.881 (3)	0.079 (13)*
N2	0.4369 (2)	0.0046 (4)	0.6423 (3)	0.0635 (9)
H2A	0.391 (2)	-0.015 (4)	0.687 (2)	0.060 (11)*
H2B	0.423 (2)	-0.044 (4)	0.571 (3)	0.080 (11)*
N3	0.72886 (19)	0.2473 (3)	0.70403 (17)	0.0452 (7)

N4	0.59901 (19)	0.1011 (3)	0.58901 (17)	0.0463 (7)	
N5	0.9712 (2)	0.1889 (3)	0.69294 (19)	0.0494 (7)	
Н5	0.912 (2)	0.197 (4)	0.719 (2)	0.057 (11)*	
N6	1.0164 (2)	0.0445 (3)	0.84291 (19)	0.0545 (7)	
N7	1.2266 (2)	-0.0273 (4)	0.7815 (2)	0.0659 (8)	
C1	0.6580 (3)	0.2321 (4)	0.7813 (2)	0.0450 (8)	
C2	0.5579 (2)	0.1540 (4)	0.7649 (2)	0.0466 (8)	
H2	0.509877	0.146453	0.817830	0.056*	
C3	0.5306 (2)	0.0872 (4)	0.6680 (2)	0.0438 (8)	
C4	0.6909 (2)	0.1845 (4)	0.6132 (2)	0.0421 (7)	
C5	0.8779 (2)	0.3427 (4)	0.5525 (2)	0.0497 (9)	
H5A	0.897729	0.412594	0.495784	0.060*	
H5B	0.849528	0.412281	0.605640	0.060*	
C6	0.9796 (3)	0.2561 (4)	0.5981 (2)	0.0499 (9)	
C7	1.0498 (2)	0.0968 (4)	0.7528 (2)	0.0440 (8)	
C8	1.1544 (3)	0.0605 (4)	0.7222 (3)	0.0613 (10)	
H8	1.174535	0.098921	0.658172	0.074*	
С9	1.1922 (3)	-0.0808(4)	0.8710 (3)	0.0610 (10)	
H9	1.239366	-0.144894	0.914481	0.073*	
C10	1.0895 (3)	-0.0446 (4)	0.9011 (2)	0.0598 (9)	
H10	1.069630	-0.083866	0.965011	0.072*	

Atomic displacement parameters $(Å^2)$

	x x 1	T 7))	T 722	T T D	T T 12	T 702
	Un	U ²²	U ³⁵	U^{12}	U^{13}	U^{23}
S1	0.0478 (5)	0.0731 (6)	0.0376 (4)	-0.0116 (5)	0.0092 (3)	-0.0006 (4)
01	0.0459 (15)	0.134 (3)	0.0572 (14)	0.0005 (14)	0.0236 (12)	0.0208 (14)
N1	0.062 (2)	0.091 (2)	0.0445 (17)	-0.021 (2)	0.0163 (16)	-0.0161 (17)
N2	0.0446 (19)	0.090 (3)	0.0569 (19)	-0.0240 (17)	0.0124 (16)	-0.0020 (18)
N3	0.0437 (16)	0.0552 (19)	0.0379 (13)	-0.0049 (12)	0.0104 (12)	-0.0024 (12)
N4	0.0372 (15)	0.0617 (18)	0.0408 (14)	-0.0088 (14)	0.0095 (12)	-0.0002 (13)
N5	0.0379 (18)	0.069 (2)	0.0428 (15)	-0.0018 (16)	0.0162 (13)	0.0043 (14)
N6	0.0478 (17)	0.072 (2)	0.0447 (15)	0.0030 (15)	0.0119 (13)	0.0055 (14)
N7	0.0512 (19)	0.079 (2)	0.0690 (19)	0.0126 (17)	0.0169 (15)	0.0064 (17)
C1	0.049 (2)	0.046 (2)	0.0402 (16)	0.0041 (16)	0.0087 (15)	-0.0021 (15)
C2	0.042 (2)	0.058 (2)	0.0416 (17)	-0.0005 (17)	0.0110 (14)	0.0027 (15)
C3	0.0338 (19)	0.049 (2)	0.0493 (18)	0.0015 (16)	0.0076 (15)	0.0061 (16)
C4	0.0395 (19)	0.047 (2)	0.0410 (16)	0.0036 (16)	0.0083 (14)	0.0024 (15)
C5	0.047 (2)	0.055 (2)	0.0479 (18)	-0.0136 (16)	0.0103 (15)	0.0067 (15)
C6	0.044 (2)	0.061 (2)	0.0449 (18)	-0.0142 (17)	0.0067 (16)	0.0004 (16)
C7	0.0338 (19)	0.053 (2)	0.0463 (18)	-0.0016 (16)	0.0105 (15)	-0.0048 (16)
C8	0.053 (2)	0.076 (3)	0.057 (2)	0.007 (2)	0.0187 (18)	0.0088 (19)
C9	0.054 (2)	0.073 (3)	0.057 (2)	0.012 (2)	0.0051 (17)	0.0020 (19)
C10	0.061 (3)	0.069 (3)	0.0508 (19)	0.002 (2)	0.0107 (18)	0.0063 (19)

Geometric parameters (Å, °)

- , ,			
S1—C4	1.768 (3)	N6—C7	1.325 (3)
S1—C5	1.795 (3)	N6—C10	1.331 (4)
O1—C6	1.213 (3)	N7—C8	1.326 (4)
N1-C1	1.346 (4)	N7—C9	1.326 (4)
N1—H1A	0.86 (3)	C1—C2	1.374 (4)
N1—H1B	0.88 (3)	C2—C3	1.375 (4)
N2—C3	1.341 (4)	С2—Н2	0.9300
N2—H2A	0.85 (3)	C5—C6	1.502 (4)
N2—H2B	1.00 (3)	С5—Н5А	0.9700
N3—C4	1.325 (3)	С5—Н5В	0.9700
N3—C1	1.367 (3)	C7—C8	1.389 (4)
N4—C4	1.323 (3)	C8—H8	0.9300
N4—C3	1.364 (3)	C9—C10	1.364 (4)
N5—C6	1.347 (4)	С9—Н9	0.9300
N5—C7	1.398 (4)	C10—H10	0.9300
N5—H5	0.82 (3)		
C4—S1—C5	102.17 (14)	N4—C4—S1	111.4 (2)
C1—N1—H1A	118 (2)	N3—C4—S1	119.0 (2)
C1—N1—H1B	120 (2)	C6—C5—S1	112.8 (2)
H1A—N1—H1B	122 (3)	C6—C5—H5A	109.0
C3—N2—H2A	121 (2)	S1—C5—H5A	109.0
C3—N2—H2B	120.4 (17)	C6—C5—H5B	109.0
H2A—N2—H2B	118 (3)	S1—C5—H5B	109.0
C4—N3—C1	114.1 (2)	H5A—C5—H5B	107.8
C4—N4—C3	114.7 (3)	O1—C6—N5	124.1 (3)
C6—N5—C7	128.4 (3)	O1—C6—C5	120.5 (3)
C6—N5—H5	118 (2)	N5—C6—C5	115.4 (3)
C7—N5—H5	114 (2)	N6—C7—C8	121.7 (3)
C7—N6—C10	115.5 (3)	N6—C7—N5	114.4 (3)
C8—N7—C9	116.0 (3)	C8—C7—N5	124.0 (3)
N1-C1-N3	114.9 (3)	N7—C8—C7	122.1 (3)
N1-C1-C2	123.3 (3)	N7—C8—H8	119.0
N3—C1—C2	121.9 (3)	C7—C8—H8	119.0
C1—C2—C3	118.2 (3)	N7—C9—C10	121.9 (3)
C1—C2—H2	120.9	N7—C9—H9	119.1
C3—C2—H2	120.9	С10—С9—Н9	119.1
N2—C3—N4	114.2 (3)	N6—C10—C9	122.9 (3)
N2—C3—C2	124.3 (3)	N6—C10—H10	118.5
N4—C3—C2	121.4 (3)	C9—C10—H10	118.5
N4—C4—N3	129.6 (3)		
C4—N3—C1—N1	-179.7 (3)	C7—N5—C6—O1	-2.8 (5)
C4—N3—C1—C2	1.7 (4)	C7—N5—C6—C5	177.6 (3)
N1-C1-C2-C3	-177.3 (3)	S1—C5—C6—O1	105.2 (3)
N3—C1—C2—C3	1.3 (5)	S1—C5—C6—N5	-75.2 (3)

C4—N4—C3—N2	179.0 (3)	C10—N6—C7—C8	-0.1 (5)
C4—N4—C3—C2	-0.9 (4)	C10—N6—C7—N5	179.5 (3)
C1—C2—C3—N2	178.4 (3)	C6—N5—C7—N6	-178.8 (3)
C1-C2-C3-N4	-1.7 (5)	C6—N5—C7—C8	0.8 (5)
C3—N4—C4—N3	4.6 (5)	C9—N7—C8—C7	1.1 (5)
C3—N4—C4—S1	-177.3 (2)	N6—C7—C8—N7	-0.4 (5)
C1—N3—C4—N4	-5.0 (5)	N5—C7—C8—N7	180.0 (3)
C1—N3—C4—S1	177.1 (2)	C8—N7—C9—C10	-1.3 (5)
C5—S1—C4—N4	172.4 (2)	C7—N6—C10—C9	-0.1 (5)
C5—S1—C4—N3	-9.3 (3)	N7—C9—C10—N6	0.9 (5)
C4—S1—C5—C6	93.4 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N5—H5…N3	0.82 (3)	2.25 (3)	2.993 (4)	151 (3)
C8—H8…O1	0.93	2.24	2.854 (4)	123
N2—H2 B ····N4 ⁱ	1.00 (3)	2.11 (3)	3.092 (4)	169 (3)
N1—H1A···O1 ⁱⁱ	0.86 (3)	2.06 (4)	2.904 (4)	167 (3)
N2—H2A····N7 ⁱⁱⁱ	0.85 (3)	2.41 (3)	3.235 (4)	164 (3)
C9—H9…O1 ^{iv}	0.93	2.56	3.368 (4)	145

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1/2, -y+1/2, z+1/2; (iii) x-1, y, z; (iv) -x+5/2, y-1/2, -z+3/2.