CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 6 December 2017
Accepted 14 December 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; methylene blue; chloride; bisulfite; hydrogen bonding; $\pi-\pi$ interactions; Hirshfeld surface analysis.

CCDC references: $1811677 ; 1811678$

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Hydrogen bonds and $\pi-\pi$ interactions in two new crystalline phases of methylene blue

Stefano Canossa,* Giovanni Predieri and Claudia Graiff

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/A 43124 Parma, Italy. *Correspondence e-mail: stefano.canossa@studenti.unipr.it

Two unprecedented solid phases involving the 3,7-bis(dimethylamino)pheno-thiazin-5-ium cation, i.e. methylene blue ($\mathbf{M B}^{+}$), have been obtained and structurally characterized. In the crystals of 3,7-bis(dimethylamino)phenothia-zin-5-ium chloride dihydrate, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (I) and 3,7-bis(dimethylamino)phenothiazinium bisulfite, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+} \cdot \mathrm{HSO}_{4}^{-}$(II), the cationic dye molecules are planar and disposed in an antiparallel mode, showing $\pi-\pi$ stacking interactions, with mean interplanar distances of 3.326 (4) and 3.550 (3) \AA in (I) and (II), respectively. In compound (I), whose phase was found affected by merohedral twinning [BASF $=0.185$ (3)], the presence of water molecules allows a network of hydrogen bonds involving $\mathbf{M B}^{+}$as both a donor and an acceptor, whereas in compound (II), the homo-interaction of the anions causes an effective absence of classical hydrogen-bond donors. This substantial difference has important consequences for the stacking geometry and supramolecular interactions of the $\mathbf{M B}{ }^{+}$cations, which are analysed by Hirshfeld fingerprint plots and subsequently discussed.

1. Chemical context

The 3,7-bis(dimethylamino)phenothiazin-5-ium ion, better known as methylene blue cation ($\mathbf{M B}^{+}$), is a renowned compound with important applications in medicine (Hanzlik, 1933; Wendel, 1935; Wischik et al., 1996), biology (Jung \& Metzger, 2013; Färber et al., 1998) and chemistry (Bergamonti et al., 2015; Kim et al., 2014). MB ${ }^{+}$, with formula $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+}$, consists of three condensed six-membered rings with two heteroatoms in the central one, and two terminal dimethylamine groups. The delocalization of the +1 charge, which involves the whole molecule with the exception of the four peripheral methyl groups, causes an overall planarity and the typical intense blue colour exhibited by $\mathbf{M B}^{+}$solutions in many solvents. The formal resonant structures are shown in the Scheme.

The $\mathbf{M B}^{+}$chloride salt is the first fully synthetic drug to be used in medicine, originally as an antimalarial agent (Coulibaly et al., 2009), an antidepressant (Eroğlu \& Çağlayan, 1997), an antihemoglobinemic (Cawein et al., 1964) and as a disinfectant (Lo et al., 2014). In chemistry, it has various colourimetric and photocatalytic uses (Hang \& Brindley, 1970; Kim et al., 2014; Bergamonti et al., 2015), which rely on its capability of undergoing a reduction process in the presence of weak reducing agents, turning into the colourless leukomethylene blue. The latter, in turn, can be oxidized to restore the original $\mathbf{M B}^{+}$cation, and this feature makes it a valid redox agent in biochemistry where it plays relevant roles in the study of enzyme-catalysed redox reactions. Recently, despite the cationic nature of $\mathbf{M B}^{+}$, we found that its peculiar electronic
situation enables ligand behaviour towards $M \mathrm{Cl}_{2}$ fragments ($M=\mathrm{Cu}$ and Ag) through the central aromatic nitrogen atom (Canossa et al., 2017), thus proving that some properties of this common and widespread molecule are still to be discovered.

Commercial MB is a pentahydrate chloride salt, whose structure was reported in 1973 (Marr et al., 1973). Recently, Rager et al. (2012) reinvestigated its crystalline states at variable temperatures, which led to the observation of five different hydrates with clearly distinct structures, as shown by powder X-ray diffraction analyses. However, no structural data are available and, to date, only the structure of the commercial pentahydrate form is known. Herein, we report and discuss the molecular and crystal structures of the unreported dihydrate phase of $\mathbf{M B}^{+}$chloride (I), one of those predicted by Rager et al. (2012), and the crystal structure of a new anhydrous form of MB^{+}bisulfite (II).

X^{-}

X^{-}

(I) $X^{-}=\mathrm{Cl}^{-}-2 \mathrm{H}_{2} \mathrm{O}$
(II) $X^{-}=\mathrm{HSO}_{4}^{-}$

2. Structural commentary

The molecular structures of compounds (I) and (II) are illustrated in Figs. 1 and 2, respectively. Details of the hydrogen bonding in the crystals of compounds (I) and (II) are given in Tables 1 and 2, respectively. In compound (I), the asymmetric unit is composed of one $\mathbf{M B}^{+}$cation, a chloride anion, and two water molecules. The latter are linked head-totail by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which, in turn, are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming chains propagating along [001], as shown in Fig. 1 (see also Table 1). The asymmetric unit of compound (II) consists of an $\mathbf{M B}{ }^{+}$cation and a

Figure 1
The molecular structure of compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1).
bisulfite anion. In both compounds, the $\mathbf{M B}^{+}$cations display a typical resonance structure, as evidenced by the values of the $\mathrm{C}-\mathrm{C}$ bond lengths in the rings, which range from 1.352 (3) to 1.447 (5) A. This bond-length distribution range is the same as that observed in other reported structures containing $\mathbf{M B}^{+}$ cations, for example, as for its chloride pentahydrate form (Marr et al., 1973). The two C-S bond lengths, S1-C7 and S1-C9 [respectively, 1.731 (4) and 1.734 (4) \AA in (I) and 1.732 (2) and 1.727 (2) \AA in (II)], are very similar and in agreement with analogous data reported in the literature. The $\mathbf{M B}^{+}$cations are planar considering the three condensed sixmembered rings [atoms $\mathrm{S} 1 / \mathrm{N} 1 / \mathrm{C} 3-\mathrm{C} 14$; r.m.s. deviations are $0.011 \AA$ for (I) and $0.01 \AA$ for (II)] and the external dimethylamine groups, with the only exception being the aliphatic hydrogen atoms. In compound (II), one of the four

Figure 2
The molecular structure of compound (II), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 2).

Table 1
Hydrogen-bond geometry $\left({ }_{\mathrm{A}} \mathrm{a}^{\circ}\right)$ for (\mathbf{I}).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 D \cdots . . \mathrm{Cl} 1$	0.87	2.30	$3.153(4)$	168
$\mathrm{O} 1-\mathrm{H} 1 E \cdots . . \mathrm{N} 1$	0.87	2.07	$2.936(4)$	177
$\mathrm{O} 2-\mathrm{H} 2 D \cdots . . \mathrm{O} 1$	0.87	1.97	$2.837(6)$	174
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 2 E \cdots . . \mathrm{Cl}^{\mathrm{i}}$	0.87	2.71	$3.559(5)$	165
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {ii }}$	0.98	2.45	$3.426(6)$	173
$\mathrm{C} 2-\mathrm{H} 2 B \cdots . \mathrm{Cl}^{\text {iii }}$	0.98	2.72	$3.611(5)$	152
$\mathrm{C} 8-\mathrm{H} 8 \cdots . . \mathrm{Cl}^{\text {iv }}$	0.95	2.71	$3.573(4)$	152
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \cdots 1^{\mathrm{v}}$	0.98	2.44	$3.387(7)$	162
$\mathrm{C} 16-\mathrm{H} 16 A \cdots . . \mathrm{O}^{\text {vi }}$	0.98	2.57	$3.454(7)$	151

Symmetry codes: (i) $x, y, z-1$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x,-y+1,-z+1$; (iv) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (v) $-x+1, y+\frac{1}{2},-z+\frac{3}{2} ;($ vi) $-x+1,-y+1,-z+1$.
$\mathrm{S}-\mathrm{O}$ bond lengths of the bisulfite anion [S2-O1 = 1.575 (3) \AA] is longer than the other three, which vary from 1.439 (2) to 1.468 (2) \AA, thus confirming the identity of the OH group in this anion. The anions are linked by a pair of $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming an inversion dimer (Fig. 2 and Table 2).

3. Supramolecular features

In the crystal packing of the two compounds, illustrated in Figs. 3 and 4, the planar $\mathbf{M B}^{+}$cations are stacked in an antiparallel mode, with the sulfur atom disposed alternatively on opposite sides. The aromatic systems exhibit offset $\pi-\pi$ interactions and form infinite layers as shown in Figs. 5 and 6. The average interplanar distances are 3.326 (4) \AA in (I) and 3.550 (3) \AA in (II). This disposition differs from the one observed in the pentahydrate form where the $\mathbf{M B}{ }^{+}$species are stacked together while adopting the same orientation, so that

Figure 3
The crystal packing of compound (I) viewed along the c axis, with the unit cell highlighted in the upper left-hand corner. Displacement ellipsoids are drawn at the 50% probability level.

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.77	$2.609(4)$	175
$\mathrm{C} 1-\mathrm{H} 1 C \cdots 4^{\mathrm{ii}}$	0.98	2.39	$3.349(5)$	167
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2^{\text {iii }}$	0.98	2.56	$3.506(5)$	163
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {iv }}$	0.95	2.54	$3.451(5)$	162
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4$	0.95	2.46	$3.372(5)$	162
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{O} 2^{\mathrm{v}}$	0.98	2.47	$3.382(5)$	155
${\mathrm{C} 15-\mathrm{H} 15 C \cdots \mathrm{O} 3^{\text {vi }}}^{\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{O} 2^{\mathrm{v}}}$	0.98	2.36	$3.309(5)$	164
$\mathrm{C}^{2} 6-\mathrm{H} 16 C \cdots \mathrm{O} 4$	0.98	2.32	$3.283(5)$	167
C 16	2.52	$3.326(5)$	139	

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y+1,-z$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $-x-\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (vi) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
the sulfur atoms of all of the molecules lie on the same side along the stacking column. Moreover, as evidenced in Fig. 5iiiii and Fig. 6ii-iii, the stacking geometry of $\mathbf{M B}^{+}$differs significantly in the two phases. In fact, in the case of (I), the antiparallel mode is accompanied by a mutual shift of the cations, resulting in the formation of a zigzag chain with an inter-centroid distance between central thiazine rings of 3.734 (3) \AA (Fig. 5iii). On the other hand, in (II) the stacked molecules are almost eclipsed and the equivalent intercentroid distances are 3.912 (4) and 3.956 (5) \AA (Fig. 6iii).

4. Hirshfeld surface analysis

An evaluation of the Hirshfeld fingerprint plots (Spackman \& Jayatilaka, 2009) of compounds (I) and (II), shown in Fig. 7, highlights some differences in the interactions of the $\mathbf{M B}^{+}$ cations in the two phases. In phase (I), the leading interactions can be grouped in two classes: hydrogen bonds and $\pi-\pi$

Figure 4
The crystal packing of compound (II) viewed along the a axis, with the unit cell highlighted in the upper left-hand corner. Displacement ellipsoids are drawn at the 50% probability level.

(ii)

Figure 5
Views of the stacking geometry of $\mathbf{M B}^{+}$in compound (I): (i) displayed orthogonally to the stacking pillar axis by showing a tetramer of stacked molecules; (ii) the same group of $\mathbf{M B}^{+}$cations is shown along the stacking direction; (iii) view along the $\mathbf{M B}^{+}$longer dimension, highlighting the mutual shifts of the cations in the zigzag columns.
stacking. The first involves $\mathbf{M B}^{+}$as a donor by means of aromatic and aliphatic $\mathrm{C}-\mathrm{H}$ bonds (Table 1), and as an acceptor by means of the central N atom, whose σ lone pair pointing out of the molecule is readily exploited by a water molecule to form a strong hydrogen bond $[\mathrm{N} \cdots \mathrm{O}$ distance $=$ 2.936 (4) \AA; see Fig. 1 and Table 1). The presence of hydrogenbond donors surrounding $\mathbf{M B}^{+}$, i.e. water molecules, is therefore able to satisfy the region of the cation with the most prominent partial negative charge (the nitrogen atom).

On the other hand, considering the fingerprint plot of compound (II), it can be seen that the strongest interactions are $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 2) between $\mathbf{M B}^{+}$and the oxygen atoms of the bisulfite inversion dimer. Since no available hydrogen-bond donor is present near $\mathbf{M B}^{+}$, no interaction is able to exploit the electron density concentrated on the central N atom. This has important consequences, since, on one side, it allows a better alignment of the $\mathbf{M B}^{+}$cations in their stacking arrangement, as clearly shown in Fig. 6. However, although there is an improved geometrical match, the stacking distance increases as a consequence of the charge repulsion between the mono-cationic molecules.

This evidence constitutes an exception to a general trend in the packing preferences of organic species. Indeed, in cases where both hydrogen bonds and π stacking can be found in the solid phase, the two interactions compete to maximize their efficiency. This competition is usually in favour of the more directional supramolecular interactions, i.e. hydrogen bonds (Gospodinova \& Tomšík, 2015). In the present case, however, the cationic nature of the aromatic molecules does not favour the stacking disposition that is usually better (in energetic terms), and in the case where there are no strong hydrogen bonds involving $\mathbf{M B}^{+}$, as in compound (II), the molecule is able to adopt a theoretically more stabilizing stacking geometry, which in this case is a less stabilizing one.

5. Database survey

In the Cambridge Structural Database (CSD, version 5.38, last updated May 2017; Groom et al., 2016) the crystal structure of the 3,7-bis(dimethylamino)phenothiazin-5-ium hydrogen sulfate dihydrate can be found as a Private Communication (XUVROW; Lynch, 2009). Here, it was not possible to locate

Figure 6
Views of the stacking geometry of $\mathbf{M B}^{+}$in compound (II): (i) displayed orthogonally to the stacking pillar axis by showing a tetramer of stacked molecules; (ii) the same group of $\mathbf{M B}^{+}$cations is shown along the stacking direction; (iii) view along the MB ${ }^{+}$longer dimension, highlighting the nearly completely eclipsed superposition of the cations in the antiparallel columns.

Compound I

Compound II

Figure 7
Hirshfeld fingerprint plots of compounds (I) and (II) (above) and some relevant components (I.a-d and II.a-d), highlighting the main interactions exhibited by $\mathbf{M B}^{+}$in the respective solid phases.
the H atom of the inorganic moiety, nor those of the water molecules, because of the poor data quality due to problematic twinning affecting the solid phase. Considering the overall crystal packing of this phase, which features $\mathbf{M B}^{+}$as both a hydrogen-bond donor and acceptor towards the water molecules and the anion, the interactions of the organic cation are much more similar to those observed for compound (I), than those observed for compound (II).

A search of the CSD found 30 compounds containing the aromatic unit 3,7-bis(dimethylamino)phenothiazin-5-ium cation. The anions present in the crystal structures include inorganic halogenide, nitrate, perchlorate, thiocyanate, triiodide, hydrogen sulfate and different metallates. The geometrical parameters of the cations (bond lengths, bond angles and torsion angles) are in the normal range for condensed ring systems.

6. Synthesis and crystallization

Preparation of compound (I)

For the crystallization of compound (I), the commercial reagent 3,7-bis(dimethylamino)phenothiazin-5-ium chloride
was used without any preparative treatment. 50 mg of $3,7-$ bis(dimethylamino)phenothiazin-5-ium chloride pentahydrate (0.156 mmol) were transferred to a 10 ml glass vial containing 5 ml of dichloromethane. The container was then closed and placed in an ultrasound bath for 5 min . to reach the saturation limit of the compound. The mixture thus obtained was filtered into another 5 ml glass vial, and the resulting solution was left partially open for slow evaporation of the solvent. After 24 h , metallic dark-green needle-shaped crystals of compound (I), suitable for X-ray diffraction analysis, were obtained.

Preparation of compound (II)

306 mg of 3,7-bis(dimethylamino)phenothiazin-5-ium chloride pentahydrate (0.957 mmol) were transferred to an agate mortar, together with 284 mg of $\mathrm{HgSO}_{4}(0.957 \mathrm{mmol})$. The two powders were subsequently mixed and ground for 30 min , resulting in a dark-green powder. X-ray powder diffraction analysis was performed on the as-obtained product. The resulting pattern showed peaks clearly belonging to the final compound (II) (see Fig. S1 in the supporting information). An excess of the powder was then placed in a glass vial, together with 3 ml of N, N-dimethylformamide. The container was closed and placed in an ultrasound bath for 5 min . to

Table 3
Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+} \cdot \mathrm{HSO}_{4}{ }^{-}$
$M_{\text {r }}$	355.87	381.46
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$	Monoclinic, $P 2_{1} / n$
Temperature (K)	200	100
$a, b, c(\AA)$	15.130 (2), 15.7219 (19), 7.1203 (12)	7.867 (10), 14.101 (10), 15.027 (10)
$\beta\left({ }^{\circ}\right.$)	90.600 (8)	90.348 (10)
$V\left(\mathrm{~A}^{3}\right)$	1693.6 (4)	1667 (3)
Z	4	4
Radiation type	Mo $K \alpha$	Synchrotron, $\lambda=0.700 \AA$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.36	0.35
Crystal size (mm)	$0.4 \times 0.2 \times 0.15$	$0.3 \times 0.15 \times 0.1$
Data collection		
Diffractometer	Bruker D8 Venture	ELETTRA XRD1
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (CrysAlis PRO; Agilent, 2014)
$T_{\text {min }}, T_{\text {max }}$	0.491, 0.746	0.711, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	12731, 3359, 2650	20743, 3367, 2795
$R_{\text {int }}$	0.070	0.062
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.625	0.625
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.088, 0.271, 1.08	0.041, 0.112, 1.06
No. of reflections	3359	3367
No. of parameters	220	232
H -atom treatment	H -atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.69, -0.62	0.36, -0.46

Computer programs: APEX3 and SAINT (Bruker, 2015), CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
reach the saturation limit of the compound. The mixture obtained was filtered into another 5 ml glass vial, and the resulting solution was left partially open for slow evaporation of the solvent. After one week, metallic dark-green needlelike crystals of compound (II), suitable for X-ray diffraction analyses, were obtained.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. For both compounds, the H atoms were positioned geometrically and refined using a riding model: $\mathrm{C}-\mathrm{H}=0.99 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the water molecules in (I) and the bisulfite anion in (II) were located in difference-Fourier maps and refined freely. Compound (I) was refined as a merohedral twin with twin matrix, $\overline{1} 00,0 \overline{1} 0,001$, with a refined BASF value of 0.185 (3).

Diffraction data for compound (I) were collected using a Bruker D8 Venture diffractometer, equipped with a CMOS PhotonII detector, a Mo High brilliance microsource (Incoatec) working at 50 KV and 1 mA . For compound (II), the data were collected at the ELETTRA Synchrotron facility (CNR Trieste) using monochromated $0.7 \AA$ wavelength radiation and a Pilatus 2M Detector (Dectris).

Acknowledgements

The CNR of Trieste, and in particular Dr Nicola Demitri, is gratefully acknowledged for the single crystal X-ray diffraction data collected at the ELETTRA synchrotron facility.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Bergamonti, L., Alfieri, I., Lorenzi, A., Montenero, A., Predieri, G., Di Maggio, R., Girardi, F., Lazzarini, L. \& Lottici, P. P. (2015). J. Sol-Gel Sci. Technol. 73, 91-102.
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Canossa, S., Bacchi, A., Graiff, C., Pelagatti, P., Predieri, G., Ienco, A., Manca, G. \& Mealli, C. (2017). Inorg. Chem. 56, 3512-3516.
Cawein, M., Behlen, C. H., Lappat, E. J. \& Cohn, J. E. (1964). Arch. Intern. Med. 113, 578-585.
Coulibaly, B., Zoungrana, A., Mockenhaupt, F. P., Schirmer, R. H., Klose, C., Mansmann, U., Meissner, P. E. \& Müller, O. (2009). PLoS One, 4, 1-6.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Eroğlu, L. \& Çağllayan, B. (1997). Pharmacol. Res. 36, 381-385.
Färber, P. M., Arscott, L. D., Williams, C. H., Becker, K. \& Schirmer, R. H. (1998). FEBS Lett. 422, 311-314.

Gospodinova, N. \& Tomšík, E. (2015). Prog. Polym. Sci. 43, 33-47.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hang, P. T. \& Brindley, G. W. (1970). Clays Clay Miner. 18, 203-212.
Hanzlik, P. J. (1933). JAMA: J. Am. Med. Assoc. 100, 357.
Jung, M. \& Metzger, D. (2013). Adv. Biosci. Biotechnol. 4, 24-34.

weak interactions in crystals

Kim, W.-S., Jang, G.-T., Lee, J.-E. \& Rhee, D.-S. (2014). Energy Procedia, 61, 2456-2459.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lo, J. C. Y., Darracq, M. A. \& Clark, R. F. (2014). J. Emerg. Med. 46, 670-679.
Lynch, D. E. (2009). CSD Communication (Private Communication: CCDC 719947). CCDC. Cambridge, UK.
Marr, H. E., Stewart, J. M. \& Chiu, M. F. (1973). Acta Cryst. B29, 847853.

Rager, T., Geoffroy, A., Hilfiker, R. \& Storey, J. M. D. (2012). Phys. Chem. Chem. Phys. 14, 8074-8082.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
Wendel, W. B. (1935). J. Pharmacol. Exptl. Therap. 54, 283-298.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M. \& Harrington, C. R. (1996). Proc. Natl Acad. Sci. USA, 93, 11213-11218.

supporting information

Acta Cryst. (2018). E74, 587-593 [https://doi.org/10.1107/S2056989017017881]

Hydrogen bonds and $\pi-\pi$ interactions in two new crystalline phases of methylene blue

Stefano Canossa, Giovanni Predieri and Claudia Graiff

Computing details

Data collection: APEX3 (Bruker, 2015) for (I); CrysAlis PRO (Agilent, 2014) for (II). Cell refinement: SAINT (Bruker, 2015) for (I); CrysAlis PRO (Agilent, 2014) for (II). Data reduction: SAINT (Bruker, 2015) for (I); CrysAlis PRO (Agilent, 2014) for (II). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

3,7-Bis(dimethylamino)-phenothiazin-5-ium chloride dihydrate (I)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$F(000)=752$
$M_{r}=355.87$
Monoclinic, $P 2_{1} / c$
$a=15.130(2) \AA$
$b=15.7219(19) \AA$
$c=7.1203(12) \AA$
$\beta=90.600(8)^{\circ}$
$V=1693.6$ (4) \AA^{3}
$Z=4$

Data collection

Bruker D8 Venture
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min }=0.491, T_{\max }=0.746$
12731 measured reflections

$$
D_{\mathrm{x}}=1.396 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4183 reflections
$\theta=2.9-30.5^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Needle, metallic dark green
$0.4 \times 0.2 \times 0.15 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.088$
$w R\left(F^{2}\right)=0.271$
$S=1.08$
3359 reflections
220 parameters
0 restraints
Primary atom site location: dual
3359 independent reflections
2650 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-18 \rightarrow 16$
$k=-19 \rightarrow 19$
$l=-6 \rightarrow 8$

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.2 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.69 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.62$ e \AA^{-3}

supporting information

Extinction correction: SHELXL2014
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.068 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	0.25577 (6)	0.89471 (7)	0.49946 (15)	0.0277 (4)
Cl1	0.16600 (9)	0.41765 (7)	0.8231 (2)	0.0420 (5)
O1	0.2548 (2)	0.5092 (2)	0.4792 (5)	0.0415 (10)
H1D	0.2311	0.4912	0.5825	0.062*
H1E	0.2537	0.5644	0.4890	0.062*
N1	0.25085 (17)	0.6957 (2)	0.4980 (4)	0.0250 (9)
N2	-0.0525 (2)	0.8556 (2)	0.2382 (6)	0.0307 (9)
N3	0.5627 (2)	0.8421 (3)	0.7571 (7)	0.0357 (10)
C9	0.3375 (3)	0.8241 (3)	0.5706 (6)	0.0229 (9)
C7	0.1704 (3)	0.8285 (2)	0.4280 (6)	0.0220 (9)
O 2	0.3352 (3)	0.4241 (3)	0.1739 (8)	0.0599 (12)
H2D	0.3141	0.4524	0.2684	0.090*
H2E	0.2925	0.4118	0.0957	0.090*
C10	0.3252 (3)	0.7342 (2)	0.5600 (6)	0.0229 (9)
C1	-0.0600 (3)	0.9479 (3)	0.2297 (9)	0.0384 (13)
H1A	-0.0629	0.9709	0.3574	0.058*
H1B	-0.1138	0.9635	0.1599	0.058*
H1C	-0.0084	0.9715	0.1660	0.058*
C4	0.0280 (3)	0.7263 (3)	0.3139 (7)	0.0262 (10)
H4	-0.0203	0.6916	0.2760	0.031*
C3	0.0207 (3)	0.8180 (3)	0.3033 (7)	0.0244 (9)
C12	0.4750 (3)	0.7173 (3)	0.6848 (7)	0.0277 (10)
H12	0.5215	0.6806	0.7242	0.033*
C6	0.1793 (3)	0.7374 (2)	0.4382 (6)	0.0220 (9)
C5	0.1037 (3)	0.6901 (3)	0.3777 (7)	0.0263 (10)
H5	0.1066	0.6298	0.3825	0.032*
C8	0.0943 (3)	0.8667 (2)	0.3643 (7)	0.0254 (9)
H8	0.0910	0.9270	0.3610	0.030*
C13	0.4866 (3)	0.8077 (3)	0.6945 (7)	0.0291 (10)
C11	0.3974 (3)	0.6836 (3)	0.6189 (7)	0.0274 (10)
H11	0.3917	0.6235	0.6126	0.033*
C14	0.4150 (3)	0.8592 (3)	0.6362 (7)	0.0288 (10)
H14	0.4205	0.9193	0.6425	0.035*
C15	0.5720 (4)	0.9346 (3)	0.7645 (10)	0.0494 (16)

H15A	0.5670	0.9580	0.6373	0.074^{*}
H15B	0.6299	0.9492	0.8184	0.074^{*}
H15C	0.5253	0.9586	0.8429	0.074^{*}
C16	$0.6382(3)$	$0.7941(3)$	$0.8289(9)$	$0.0425(13)$
H16A	0.6225	0.7338	0.8378	0.064^{*}
H16B	0.6548	0.8155	0.9537	0.064^{*}
H16C	0.6881	0.8008	0.7436	0.064^{*}
C2	$-0.1328(3)$	$0.8098(3)$	$0.1796(9)$	$0.0397(13)$
H2A	-0.1784	0.8170	0.2750	0.060^{*}
H2B	-0.1193	0.7492	0.1653	0.060^{*}
H2C	-0.1542	0.8326	0.0595	0.060^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0228(6)$	$0.0139(6)$	$0.0464(8)$	$-0.0017(3)$	$-0.0042(6)$	$-0.0009(4)$
C11	$0.0391(7)$	$0.0225(6)$	$0.0646(10)$	$-0.0042(5)$	$0.0082(7)$	$-0.0071(5)$
O1	$0.044(2)$	$0.0234(18)$	$0.057(2)$	$0.0012(12)$	$-0.005(2)$	$0.0011(13)$
N1	$0.0219(18)$	$0.0151(18)$	$0.038(2)$	$-0.0011(10)$	$0.005(2)$	$-0.0001(12)$
N2	$0.0236(18)$	$0.0213(18)$	$0.047(2)$	$-0.0005(14)$	$-0.0015(17)$	$0.0009(16)$
N3	$0.0221(18)$	$0.034(2)$	$0.051(3)$	$-0.0055(15)$	$-0.0016(18)$	$0.0002(18)$
C9	$0.0204(18)$	$0.0196(18)$	$0.029(2)$	$-0.0017(15)$	$0.0044(17)$	$0.0013(16)$
C7	$0.0183(18)$	$0.0185(18)$	$0.029(2)$	$-0.0010(14)$	$0.0030(17)$	$-0.0015(16)$
O2	$0.058(2)$	$0.039(2)$	$0.082(3)$	$0.0142(19)$	$0.014(3)$	$0.006(2)$
C10	$0.0212(19)$	$0.0171(18)$	$0.030(2)$	$-0.0007(15)$	$0.0068(18)$	$0.0005(16)$
C1	$0.026(2)$	$0.025(2)$	$0.064(4)$	$0.0051(17)$	$-0.006(2)$	$0.006(2)$
C4	$0.0240(19)$	$0.0167(19)$	$0.038(3)$	$-0.0024(15)$	$0.005(2)$	$-0.0019(18)$
C3	$0.0210(19)$	$0.0211(19)$	$0.031(2)$	$0.0005(15)$	$0.0037(18)$	$-0.0020(18)$
C12	$0.022(2)$	$0.025(2)$	$0.035(3)$	$0.0034(16)$	$0.004(2)$	$0.0041(19)$
C6	$0.0207(18)$	$0.0175(18)$	$0.028(2)$	$-0.0010(15)$	$0.0041(17)$	$0.0015(16)$
C5	$0.025(2)$	$0.0163(17)$	$0.037(3)$	$-0.0016(15)$	$0.004(2)$	$-0.0019(17)$
C8	$0.028(2)$	$0.0164(18)$	$0.032(2)$	$-0.0002(16)$	$0.0033(19)$	$-0.0002(17)$
C13	$0.021(2)$	$0.028(2)$	$0.038(3)$	$-0.0015(16)$	$0.002(2)$	$0.001(2)$
C11	$0.025(2)$	$0.0196(17)$	$0.038(3)$	$0.0005(16)$	$0.004(2)$	$-0.0001(18)$
C14	$0.025(2)$	$0.024(2)$	$0.037(3)$	$-0.0034(16)$	$0.002(2)$	$0.0004(19)$
C15	$0.033(2)$	$0.031(2)$	$0.085(5)$	$-0.010(2)$	$-0.007(3)$	$-0.005(3)$
C16	$0.024(2)$	$0.044(3)$	$0.059(4)$	$-0.0019(19)$	$-0.001(2)$	$0.005(3)$
C2	$0.024(2)$	$0.033(2)$	$0.062(4)$	$0.0003(18)$	$-0.006(2)$	$-0.002(2)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 9$	$1.734(4)$	$\mathrm{C} 9-\mathrm{C} 14$	$1.373(6)$
$\mathrm{S} 1-\mathrm{C} 7$	$1.731(4)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.441(5)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.347(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.371(6)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.331(5)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.411(6)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.458(6)$	$\mathrm{C} 4-\mathrm{C} 3$	$1.447(5)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.334(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.353(6)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.468(6)$	$\mathrm{C} 3-\mathrm{C} 8$	$1.417(6)$

N3-C13	$1.344(6)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.433(6)$
N3-C15	$1.462(6)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.367(6)$
N3-C16	$1.458(6)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.427(6)$
C9-C10	$1.427(5)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.411(6)$
C7-S1-C9	$103.2(2)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$116.2(4)$
C6-N1-C10	$123.9(4)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.1(4)$
C1-N2-C2	$114.4(4)$	N2-C3-C4	$121.5(4)$
C3-N2-C1	$121.3(4)$	N2-C3-C8	$121.0(4)$
C3-N2-C2	$124.2(4)$	$\mathrm{C}-\mathrm{C} 3-\mathrm{C} 4$	$117.5(4)$
C13-N3-C15	$119.6(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.3(4)$
C13-N3-C16	$125.0(4)$	N1-C6-C7	$125.5(4)$
C16-N3-C15	$115.3(4)$	N1-C6-C5	$119.1(4)$
C10-C9-S1	$121.8(3)$	C5-C6-C7	$115.4(4)$
C14-C9-S1	$116.5(3)$	C4-C5-C6	$123.7(4)$
C14-C9-C10	$121.8(4)$	C7-C8-C3	$121.3(3)$
C6-C7-S1	$120.9(3)$	N3-C13-C12	$121.3(4)$
C8-C7-S1	$117.1(3)$	N3-C13-C14	$121.3(4)$
C8-C7-C6	$122.0(4)$	C14-C13-C12	$117.5(4)$
N1-C10-C9	$124.7(4)$	C12-C11-C10	$122.9(4)$
N1-C10-C11	$119.1(4)$	C9-C14-C13	$121.3(4)$

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H \cdots A	$D^{\cdots} A$	D- $\mathrm{H} \cdots \mathrm{A}$
O1-H1D \cdots..Cl1	0.87	2.30	3.153 (4)	168
$\mathrm{O} 1-\mathrm{H} 1 E^{\cdots} . . \mathrm{N} 1$	0.87	2.07	2.936 (4)	177
$\mathrm{O} 2-\mathrm{H} 2 D^{\cdots}$.. O 1	0.87	1.97	2.837 (6)	174
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{E} \cdots . . \mathrm{Cl1}{ }^{\text {i }}$	0.87	2.71	3.559 (5)	165
$\mathrm{C} 1-\mathrm{H} 1 B^{\cdots} . . \mathrm{O} 1^{\text {ii }}$	0.98	2.45	3.426 (6)	173
$\mathrm{C} 2-\mathrm{H} 2 B^{\cdots} . . \mathrm{Cl1} 1{ }^{\text {iii }}$	0.98	2.72	3.611 (5)	152
C8-H8…Cl1 ${ }^{\text {iv }}$	0.95	2.71	3.573 (4)	152
C15-H15B…O1v	0.98	2.44	3.387 (7)	162
C16-H16A \cdots..O2 $2^{\text {vi }}$	0.98	2.57	3.454 (7)	151

Symmetry codes: (i) $x, y, z-1$; (ii) $-x, y+1 / 2,-z+1 / 2$; (iii) $-x,-y+1,-z+1$; (iv) $x,-y+3 / 2, z-1 / 2$; (v) $-x+1, y+1 / 2,-z+3 / 2$; (vi) $-x+1,-y+1,-z+1$.

3,7-Bis(dimethylamino) phenothiazinium bisulfite (II)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+} \cdot \mathrm{HSO}_{4}^{-}$
$M_{r}=381.46$
Monoclinic, $P 2_{1} / n$
$a=7.867$ (10) \AA
$b=14.101$ (10) \AA
$c=15.027(10) \AA$
$\beta=90.348(10)^{\circ}$
$V=1667(3) \AA^{3}$
$Z=4$
$F(000)=800$
$D_{\mathrm{x}}=1.520 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.700 \AA$
Cell parameters from 1235 reflections
$\theta=3.1-30.2^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, metallic green
$0.3 \times 0.15 \times 0.1 \mathrm{~mm}$

Data collection

ELETTRA XRD1
diffractometer
Radiation source: Elettra Synchrotron - XRD1 BL
Rotation around the Phi axis scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
$T_{\min }=0.711, T_{\text {max }}=1.000$

> 20743 measured reflections
> 3367 independent reflections
> 2795 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.062$
> $\theta_{\max }=25.9^{\circ}, \theta_{\min }=2.0^{\circ}$
> $h=-9 \rightarrow 9$
> $k=-17 \rightarrow 17$
> $l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.112$
$S=1.06$
3367 reflections
232 parameters
0 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0656 P)^{2}+0.4958 P\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.46$ e \AA^{-3}
> Extinction correction: SHELXL2014
> $\quad($ Sheldrick, 2015b),
> $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0109 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S2	$0.11198(6)$	$0.58607(3)$	$0.40576(3)$	$0.02746(16)$
S1	$-0.23619(7)$	$0.56658(4)$	$-0.09373(3)$	$0.02953(16)$
O1	$-0.08785(19)$	$0.57885(11)$	$0.40548(11)$	$0.0357(4)$
H1	-0.1178	0.5308	0.4345	0.054^{*}
O3	$0.16539(19)$	$0.56866(11)$	$0.49810(10)$	$0.0336(4)$
O2	$0.1747(2)$	$0.51512(10)$	$0.34552(10)$	$0.0359(4)$
O4	$0.1447(2)$	$0.68213(10)$	$0.37808(10)$	$0.0349(4)$
N3	$0.0335(2)$	$0.80042(12)$	$0.12112(12)$	$0.0283(4)$
N1	$-0.2590(2)$	$0.44637(12)$	$0.08106(11)$	$0.0274(4)$
N2	$-0.5250(2)$	$0.27281(12)$	$-0.21818(12)$	$0.0307(4)$
C1	$-0.5450(3)$	$0.32180(18)$	$-0.30356(15)$	$0.0377(5)$
H1A	-0.5970	0.3841	-0.2937	0.056^{*}
H1B	-0.6182	0.2841	-0.3430	0.056^{*}
H1C	-0.4334	0.3300	-0.3311	0.056^{*}
C3	$-0.4545(2)$	$0.31656(14)$	$-0.14777(14)$	$0.0283(4)$
C12	$-0.0597(3)$	$0.65139(15)$	$0.18233(14)$	$0.0292(4)$
H12	-0.0224	0.6698	0.2400	0.035^{*}
C13	$-0.0398(2)$	$0.71517(14)$	$0.10920(14)$	$0.0264(4)$

C14	$-0.0987(3)$	$0.68593(14)$	$0.02425(14)$	$0.0277(4)$
H14	-0.0889	0.7278	-0.0250	0.033^{*}
C9	$-0.1702(2)$	$0.59759(14)$	$0.01219(14)$	$0.0258(4)$
C6	$-0.3185(2)$	$0.40896(13)$	$0.00539(14)$	$0.0257(4)$
C10	$-0.1897(2)$	$0.53309(14)$	$0.08529(13)$	$0.0252(4)$
C7	$-0.3180(2)$	$0.45347(14)$	$-0.08064(14)$	$0.0258(4)$
C4	$-0.4539(3)$	$0.27152(15)$	$-0.06247(14)$	$0.0297(4)$
H4	-0.4992	0.2094	-0.0565	0.036^{*}
C8	$-0.3812(3)$	$0.40837(14)$	$-0.15486(14)$	$0.0292(4)$
H8	-0.3760	0.4387	-0.2112	0.035^{*}
C16	$0.0901(3)$	$0.83218(16)$	$0.20952(15)$	$0.0334(5)$
H16A	-0.0092	0.8481	0.2457	0.050^{*}
H16B	0.1625	0.8883	0.2033	0.050^{*}
H16C	0.1546	0.7813	0.2386	0.050^{*}
C11	$-0.1314(3)$	$0.56496(15)$	$0.17006(14)$	$0.0302(4)$
H11	-0.1433	0.5241	0.2199	0.036^{*}
C15	$0.0592(3)$	$0.86560(15)$	$0.04613(15)$	$0.0338(5)$
H15A	0.1302	0.8348	0.0012	0.051^{*}
H15B	0.1157	0.9233	0.0674	0.051^{*}
H15C	-0.0511	0.8821	0.0197	0.051^{*}
C5	$-0.3894(3)$	$0.31642(15)$	$0.00972(15)$	$0.0305(5)$
H5	-0.3916	0.2848	0.0655	0.037^{*}
C2	$-0.5894(3)$	$0.17565(15)$	$-0.21258(16)$	$0.0358(5)$
H2A	-0.6818	0.1729	-0.1692	0.054^{*}
H2B	-0.4974	0.1332	-0.1937	0.054^{*}
H2C	-0.6320	0.1557	-0.2711	0.054^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S2	$0.0290(3)$	$0.0236(3)$	$0.0298(3)$	$0.00176(19)$	$0.00111(19)$	$0.00149(19)$
S1	$0.0359(3)$	$0.0239(3)$	$0.0287(3)$	$-0.0047(2)$	$-0.0019(2)$	$0.00329(19)$
O1	$0.0306(8)$	$0.0360(9)$	$0.0406(9)$	$0.0030(6)$	$-0.0003(6)$	$0.0104(7)$
O3	$0.0353(8)$	$0.0347(8)$	$0.0308(8)$	$-0.0022(6)$	$-0.0045(6)$	$0.0052(6)$
O2	$0.0410(8)$	$0.0280(8)$	$0.0386(9)$	$0.0057(6)$	$0.0051(7)$	$-0.0011(6)$
O4	$0.0428(9)$	$0.0264(8)$	$0.0355(8)$	$-0.0013(6)$	$0.0023(7)$	$0.0018(6)$
N3	$0.0303(9)$	$0.0246(8)$	$0.0301(9)$	$-0.0035(7)$	$-0.0012(7)$	$0.0011(7)$
N1	$0.0296(9)$	$0.0224(8)$	$0.0301(9)$	$0.0007(7)$	$0.0009(7)$	$0.0010(7)$
N2	$0.0331(9)$	$0.0261(9)$	$0.0328(9)$	$0.0002(7)$	$-0.0021(7)$	$-0.0030(7)$
C1	$0.0370(12)$	$0.0421(13)$	$0.0339(12)$	$-0.0052(10)$	$-0.0004(9)$	$-0.0014(10)$
C3	$0.0243(9)$	$0.0258(10)$	$0.0347(11)$	$0.0049(8)$	$0.0002(8)$	$-0.0036(8)$
C12	$0.0308(10)$	$0.0264(10)$	$0.0306(10)$	$-0.0002(8)$	$-0.0006(8)$	$-0.0008(8)$
C13	$0.0233(9)$	$0.0219(9)$	$0.0340(11)$	$0.0015(7)$	$0.0019(8)$	$-0.0003(8)$
C14	$0.0279(10)$	$0.0242(10)$	$0.0308(11)$	$-0.0012(8)$	$0.0006(8)$	$0.0020(8)$
C9	$0.0228(9)$	$0.0251(10)$	$0.0296(10)$	$0.0027(7)$	$0.0016(8)$	$0.0006(8)$
C6	$0.0242(9)$	$0.0217(10)$	$0.0311(10)$	$0.0028(7)$	$0.0018(8)$	$-0.0005(8)$
C10	$0.0236(9)$	$0.0205(9)$	$0.0313(10)$	$0.0012(7)$	$-0.0001(8)$	$0.0002(8)$
C7	$0.0227(9)$	$0.0221(9)$	$0.0328(10)$	$0.0014(7)$	$0.0024(8)$	$-0.0003(8)$

C4	$0.0282(10)$	$0.0228(10)$	$0.0380(11)$	$-0.0008(8)$	$0.0006(8)$	$-0.0001(8)$
C8	$0.0304(10)$	$0.0249(10)$	$0.0321(11)$	$0.0016(8)$	$-0.0009(8)$	$0.0015(8)$
C16	$0.0389(12)$	$0.0275(10)$	$0.0339(11)$	$-0.0070(9)$	$-0.0026(9)$	$-0.0009(9)$
C11	$0.0357(11)$	$0.0250(10)$	$0.0299(11)$	$-0.0002(8)$	$-0.0008(8)$	$0.0035(8)$
C15	$0.0373(11)$	$0.0268(11)$	$0.0372(12)$	$-0.0083(9)$	$-0.0037(9)$	$0.0061(9)$
C5	$0.0333(11)$	$0.0249(10)$	$0.0331(11)$	$0.0003(8)$	$0.0020(9)$	$0.0038(8)$
C2	$0.0385(12)$	$0.0258(10)$	$0.0431(13)$	$-0.0009(9)$	$-0.0048(10)$	$-0.0066(9)$

Geometric parameters ($A,{ }^{\circ}$)

S2-O1	1.575 (3)	C13-C14	1.417 (3)
S2-03	1.4680 (18)	C14-H14	0.9500
S2-O2	1.4385 (17)	C14-C9	1.378 (3)
S2-O4	1.4407 (18)	C9-C10	1.435 (3)
S1-C9	1.727 (2)	C6-C7	1.437 (3)
S1-C7	1.732 (2)	C6-C5	1.421 (3)
O1-H1	0.8400	C10-C11	1.424 (3)
N3-C13	1.345 (3)	C7-C8	1.374 (3)
N3-C16	1.468 (3)	C4-H4	0.9500
N3-C15	1.469 (3)	C4-C5	1.352 (3)
N1-C6	1.336 (3)	C8-H8	0.9500
N1-C10	1.340 (3)	C16-H16A	0.9800
N2-C1	1.465 (3)	C16-H16B	0.9800
N2-C3	1.342 (3)	C16-H16C	0.9800
N2-C2	1.463 (3)	C11-H11	0.9500
C1-H1A	0.9800	C15-H15A	0.9800
C1-H1B	0.9800	C15-H15B	0.9800
C1-H1C	0.9800	C15-H15C	0.9800
C3-C4	1.430 (3)	C5-H5	0.9500
C3-C8	1.421 (3)	C2-H2A	0.9800
C12-H12	0.9500	C2-H2B	0.9800
C12-C13	1.429 (3)	C2-H2C	0.9800
C12-C11	1.355 (3)		
O3-S2-O1	105.77 (9)	C5-C6-C7	116.46 (18)
O2-S2-O1	107.42 (10)	N1-C10-C9	125.96 (19)
$\mathrm{O} 2-\mathrm{S} 2-\mathrm{O} 3$	112.41 (10)	N1-C10-C11	117.33 (18)
O2-S2-04	114.18 (10)	C11-C10-C9	116.71 (18)
O4-S2-O1	103.89 (9)	C6-C7-S1	120.50 (15)
O4-S2-O3	112.31 (9)	C8-C7-S1	117.84 (16)
C9-S1-C7	103.79 (10)	C8-C7-C6	121.66 (19)
S2-O1-H1	109.5	C3-C4-H4	119.7
C13-N3-C16	121.37 (17)	C5-C4-C3	120.7 (2)
C13-N3-C15	121.20 (17)	C5-C4-H4	119.7
C16-N3-C15	117.43 (17)	C3-C8-H8	119.8
C6-N1-C10	122.76 (18)	C7-C8-C3	120.37 (19)
C3-N2-C1	121.04 (19)	C7-C8-H8	119.8
C3-N2-C2	121.77 (19)	N3-C16-H16A	109.5

$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1$	117.17 (18)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
N2-C1-H1B	109.5
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
N2-C3-C4	120.1 (2)
N2-C3-C8	121.7 (2)
C8-C3-C4	118.19 (19)
C13-C12-H12	119.7
C11-C12-H12	119.7
C11-C12-C13	120.6 (2)
N3-C13-C12	120.60 (19)
N3-C13-C14	121.19 (18)
C14-C13-C12	118.21 (19)
C13-C14-H14	119.6
C9-C14-C13	120.83 (19)
C9-C14-H14	119.6
C14-C9-S1	118.04 (16)
C14-C9-C10	121.17 (19)
C10-C9-S1	120.79 (16)
N1-C6-C7	126.19 (18)
N1-C6-C5	117.35 (19)
S1-C9-C10-N1	-0.8 (3)
S1-C9-C10-C11	179.98 (15)
S1-C7-C8-C3	-178.17 (15)
N3-C13-C14-C9	178.51 (19)
N1-C6-C7-S1	-0.4 (3)
N1-C6-C7-C8	179.4 (2)
N1-C6-C5-C4	179.82 (19)
N1-C10-C11-C12	-179.78 (19)
N2-C3-C4-C5	-177.30 (19)
N2-C3-C8-C7	176.55 (19)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	172.77 (18)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 8$	-6.3 (3)
C3-C4-C5-C6	-0.5 (3)
C12-C13-C14-C9	-1.3 (3)
C13-C12-C11-C10	0.1 (3)
C13-C14-C9-S1	-179.09 (15)
C13-C14-C9-C10	1.0 (3)
C14-C9-C10-N1	179.14 (19)
C14-C9-C10-C11	-0.1 (3)
C9-S1-C7-C6	0.18 (18)
C9-S1-C7-C8	-179.67 (16)

N3-C16-H16B	109.5
N3-C16-H16C	109.5
H16A-C16-H16B	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
C12-C11-C10	122.5 (2)
C12-C11-H11	118.8
C10-C11-H11	118.8
N3-C15-H15A	109.5
N3-C15-H15B	109.5
N3-C15-H15C	109.5
H15A-C15-H15B	109.5
H15A-C15-H15C	109.5
H15B-C15-H15C	109.5
C6-C5-H5	118.7
C4-C5-C6	122.6 (2)
C4-C5-H5	118.7
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C9-C10-C11-C12	-0.5 (3)
C6-N1-C10-C9	0.6 (3)
C6-N1-C10-C11	179.83 (18)
C6-C7-C8-C3	2.0 (3)
C10-N1-C6-C7	0.1 (3)
C10-N1-C6-C5	-179.86 (18)
C7-S1-C9-C14	-179.56 (16)
C7-S1-C9-C10	0.33 (18)
C7-C6-C5-C4	-0.1 (3)
C4-C3-C8-C7	-2.5 (3)
C8-C3-C4-C5	1.8 (3)
C16-N3-C13-C12	-2.1 (3)
C16-N3-C13-C14	178.11 (18)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 3$	-179.08 (19)
C11-C12-C13-C14	0.7 (3)
C15-N3-C13-C12	178.25 (18)
C15-N3-C13-C14	-1.6 (3)
C5-C6-C7-S1	179.52 (15)
C5-C6-C7-C8	-0.6 (3)
C2-N2-C3-C4	-5.5 (3)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 8$	175.48 (19)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 3^{\mathrm{i}}$	0.84	1.77	$2.609(4)$	175
$\mathrm{C} 1 — \mathrm{H} 1 C \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.98	2.39	$3.349(5)$	167
$\mathrm{C} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.98	2.56	$3.506(5)$	163
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O} 3^{\mathrm{iv}}$	0.95	2.54	$3.451(5)$	162
$\mathrm{C} 12 — \mathrm{H} 12 \cdots \mathrm{O} 4$	0.95	2.46	$3.372(5)$	162
$\mathrm{C} 15 — \mathrm{H} 15 B \cdots \mathrm{O} 2^{\mathrm{v}}$	0.98	2.47	$3.382(5)$	155
$\mathrm{C} 15 — \mathrm{H} 15 C \cdots \mathrm{O} 3^{\text {vi }}$	0.98	2.36	$3.309(5)$	164
$\mathrm{C} 16 — \mathrm{H} 16 B \cdots \mathrm{O} 2^{\mathrm{v}}$	0.98	2.32	$3.283(5)$	167
$\mathrm{C} 16 — \mathrm{H} 16 C \cdots \mathrm{O} 4$	0.98	2.52	$3.326(5)$	139

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y+1,-z$; (iii) $x-1 / 2,-y+1 / 2, z-1 / 2$; (iv) $-x-1 / 2, y-1 / 2,-z+1 / 2$; (v) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (vi) $x-1 / 2$, $-y+3 / 2, z-1 / 2$.

