

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 22 February 2018 Accepted 16 April 2018

Edited by V. Khrustalev, Russian Academy of Sciences, Russia

Keywords: 2-(methoxycarbonyl)benzoate; binuclear copper compound; supramolecular structure; π – π stacking interactions; crystal structure.

CCDC reference: 1837401

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of tetrakis[μ -2-(methoxycarbonyl)benzoato- $\kappa^2 O^1: O^{1'}$]bis[(N,N-dimethylformamide- κO)copper(II)](Cu—Cu) dimethylformamide disolvate

Jinglin Wang,* Feng Su and Lili Shi

Department of Chemistry, Changzhi University, Changzhi, Shanxi 046011, People's Republic of China. *Correspondence e-mail: jlwangczu@163.com

The title compound, $[Cu_2(C_9H_7O_4)_4(C_3H_7NO)_2] \cdot 2C_3H_7NO$, crystallizes in the monoclinic $P2_1/c$ space group, with the binuclear copper unit occupying a special position on an inversion center, *i.e.* the asymmetric unit of the crystal consists of one Cu^{II} ion, two 2-(methoxycarbonyl)benzoate ligands, and two DMF molecules (one coordinated and one solvate). The binuclear complex displays a paddle-wheel-shaped structure with the two copper atoms being in a Jahn-Teller-distorted octahedral coordination environment. Each 2-(methoxycarbonyl)benzoate substituent acts as a bridging ligand and links two Cu atoms with a Cu-Cu distance of 2.633 (1) Å. The carboxylate groups of the 2-(methoxycarbonyl)benzoate ligands adopt bidentate syn-syn bridging modes, with dihedral angles between the carboxylate planes and the aromatic rings of 18.427 (4) and 43.029 (6)°. In the crystal, adjacent DMF molecules coordinated to copper atoms are arranged in a mutual 'head-to-tail' manner by offset face-toface $\pi - \pi$ stacking interactions, resulting in chains along the *c*-axis direction. The planes of the coordinated DMF molecules are parallel to each other, the distance between them being 3.33(1) Å. A three-dimensional structure is assembled from the chains by weak $C-H\cdots O$ and $C-H\cdots \pi$ intermolecular interactions involving the DMF solvent molecules. One of the methyl ester groups is disordered over two sites with an occupancy ratio of 0.751 (12):0.249 (12).

1. Chemical context

Binuclear Cu^{II} compounds have been an attractive target for chemical research because of their wide range of applications in materials chemistry (Kato et al., 1964; Farraj et al., 2017), environmental (Pokharel et al., 2014) and biological chemistry (Ma & Moulton, 2007). In crystal engineering, the carboxylate ligands are widely used as linkers in the design of binuclear complexes as they exhibit versatile coordination modes for bonding of different metal ions, including monodentate - chelating and monoatomic bridging, as well as bridging modes in syn-anti, anti-anti and syn-syn conformations (Su et al., 2015). Thus, carboxylate ligands can adopt μ_2 -O, chelate or bridging modes to construct binuclear copper complexes. In addition, the Cu-Cu dimer can be tetra bridged by four carboxylate groups to form a paddle-wheel building unit. Furthermore, the paddle-wheel building unit may be axially coordinated by means of two monodentate ligands to give the formula $[Cu_2(OOCR)_4L_2]$ (Suh et al., 2012). For example, $[Cu_2(aspirinate)_4L_2]$ [L = N,N-dimethylformamide (DMF), 3-

research communications

bromopyridine, quinoline, pyridine; Ma & Moulton, 2007], $[Cu_2(Sal)_4(acetonitrile)_2]$ (Sal = salicylate; Liu *et al.*, 2017), $[Cu_2[2-(methoxycarbonyl)benzoate]_4(MeOH)(DMF)]$, (Liu *et al.*, 2008), $[Cu_2(2-(methoxycarbonyl) benzoate)_4(aceto$ $nitrile)_2] (Wang$ *et al.*, 2013). In a similar way, binuclear coppercoordination polymers (CPs) with paddle-wheel cluster unitscan be coordinated by functional ligands in the axial position,including 4,4'-bipyridine (Liu*et al.*, 2005), pyrazine (Kitao*et al.*, 2017), 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (Hou*et al.*, 2004), forming a class of multifunctional polymer materials.Moreover, it is well known that the solubility and lipophilicityare the key parameters of drugs, and the appropriate choice ofan axial ligand affords the ability to significantly alter theseproperties.

In this paper, we report the synthesis and crystal structure of a new binuclear copper complex $[Cu_2(2-(methoxycarbon-yl)benzoate)_4(DMF)_2]$, (I), containing the paddle-wheel building unit.

2. Structural commentary

The title compound crystallizes in the monoclinic $P2_1/c$ space group, with the binuclear copper unit occupying a special position on the inversion center. The asymmetric unit consists of one Cu^{II} ion, two 2-(methoxycarbonyl)benzoate ligands, and two DMF molecules (one coordinated and one solvate). The complex displays a paddle-wheel-shaped binuclear structure (Fig. 1). If the Cu–Cu bonding contact is neglected, each Cu^{II} ion is pentacoordinated to four carboxylate oxygen atoms [O1, O2ⁱ, O5 and O6ⁱ] of four 2-(methoxycarbonyl)benzoate ligands and one oxygen atom [O9] from the DMF molecule. Both Cu^{II} ions exhibit Jahn–Teller square-pyramidal geometries ($\tau = 0$), with four short Cu–O(carboxylate) [1.934 (4) to 1.968 (4) Å; Table 1] bond lengths in the equatorial plane and one long Cu–O(DMF) [2.132 (4) Å] bond length at the axial position. Each 2-(methoxycarbon-

	F	-	
Cu1-Cu1 ⁱ	2.6329 (14)	Cu1-O5	1.968 (4)
Cu1-O1	1.943 (4)	Cu1-O6 ⁱ	1.953 (4)
Cu1–O2 ⁱ	1.934 (4)	Cu1-O9	2.132 (4)
O2 ⁱ -Cu1-O1	168.03 (18)	O6 ⁱ -Cu1-O5	168.06 (18)
$O2^i - Cu1 - O6^i$	90.25 (19)	$O2^i$ -Cu1-O9	99.14 (18)
$O1-Cu1-O6^{i}$	89.05 (19)	O1-Cu1-O9	92.82 (18)
O2 ⁱ -Cu1-O5	88.7 (2)	$O6^{i}$ -Cu1-O9	96.36 (17)
O1-Cu1-O5	89.48 (19)	O5-Cu1-O9	95.55 (17)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

yl)benzoate substituent acts as a bridging ligand and links two Cu atoms with a Cu-Cu(-x + 1, -y + 1, -z + 1) distance of 2.633 (1) Å; this is close to the 2.64 Å reported for the similar dinuclear complex [Cu₂(OAc)₄·2H₂O] (Kato *et al.*, 1964). However, the Cu-Cuⁱ distance in (I) is slightly longer than the Cu-Cu separation of 2.56 Å in metallic copper (Jones *et al.*, 1997). The carboxylate groups of the 2-(methoxycarbonyl)benzoate ligands adopt bidentate *syn-syn* bridging modes, with the dihedral angles between the carboxylate planes and the aromatic rings of 18.427 (4) and 43.029 (6)°.

3. Supramolecular features

The crystal structure of (I) contains both coordinated and solvate DMF molecules. As illustrated in Fig. 2, adjacent DMF molecules coordinated to copper atoms are arranged in a mutual 'head-to-tail' manner by offset face-to-face π - π stacking interactions (Wang *et al.*, 2010), resulting in chains along the *c*-axis direction. The planes of the coordinated DMF molecules are parallel to each other, the distance between them being 3.33 (1) Å. The three-dimensional structure of (I) is assembled from these chains by further weak C-H···O interactions (H···A distances of 2.63–2.70 Å; Table 2) and intermolecular π ··· π interactions (Fig. 3).

Figure 1 Molecular structure of (I) drawn with 30% probability displacement ellipsoids. Symmetry code: (i) -x + 1, -y + 1, -z + 1.

research communications

Table	2			
Hydrog	gen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C12-H12\cdots O3A^{i}$	0.93	2.50	3.29 (3)	143
$C23-H23A\cdots O6^{ii}$	0.96	2.70	3.538 (11)	145
$C3-H3\cdots O10^{iii}$	0.93	2.63	3.284 (10)	128
$C6-H6\cdots O10^{iv}$	0.93	2.69	3.355 (11)	129

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) -x, -y + 1, -z + 1.

4. Database survey

There are a number of Cu paddle-wheel structures $[Cu_2(OOCR)_4L_2]$ in the crystallographic literature with benzene carboxylates derivatives (Cambridge Structural Database, Version 5.39, updated in November 2017; Groom et al., 2016). In most cases, both copper centers in these complexes feature a coordinated water molecule in the axial position, which can be replaced by small solvent molecules to generate potential binding sites; for example, $L = Cl^{-}$ (Silva et al., 2001), urea, ethanol, benzoic acid (Kato et al., 1964), N.Ndimethylformamide, 3-bromopyridine, quinoline, pyridine, isonicotinamide, nicotinamide, 3-phenylpyridine (Ma & Moulton, 2007), acetonitrile (Liu et al., 2017, Wang et al., 2013), methanol (Liu et al., 2008), 2-picoline (Del Sesto et al., 2000). Various polycarboxylic benzene derivatives have been synthesized to obtain porous coordination polymers (Guillerm et al., 2014), which exhibit different properties owing to different substituent groups in the axial sites.

5. Synthesis and crystallization

The title complex was synthesized according to a literature procedure (Wang *et al.*, 2013). 2-(Methoxycarbonyl)benzoic acid (180.0 mg, 1.0 mmol) and NaOH (40.0 mg, 1.0 mmol) were dissolved in a methanol solution (20 mL) while stirring at room temperature for 20 min. Then, 15 mL of a methanol solution containing Cu(NO₃)₂·3H₂O (121 mg, 0.5 mmol) was added to the mixture, and the mixture was further stirred at room temperature for 90 min. The blue precipitate obtained was separated by filtration, washed with methanol and dried.

Figure 3

The crystal packing of (I) showing the three-dimensional supramolecular network along the *c* axis. The intermolecular $C-H\cdots O$ hydrogen bonds are shown as yellow dotted lines.

The powder was dissolved in *N*,*N*-dimethylformamide, and blue single crystals were collected after slow evaporation at room temperature for several weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms were positioned geometrically with C-H = 0.93-0.96 Å and refined using the riding model with fixed displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups and $1.2U_{eq}(C)$ for the other groups]. One of the methyl ester groups is disordered over two sets of sties with an occupancy ratio of 0.751 (12):0.249 (12). The displacement parameters of the O4/ O4A and C9/C9A atoms of the disordered fragment were restrained to be similar (Sheldrick, 2015).

Figure 2

The one-dimensional motif from the binuclear copper fragments of (I) along the *c*-axis direction formed by π - π stacking interactions (dashed lines) between the coordinated DMF molecules.

research communications

Table 3 Experimental details.

Crystal data	
Chemical formula	$[Cu_2(C_9H_7O_4)_4(C_3H_7-$
	NO_{2} ·2C ₃ H ₇ NO
M _r	1136.07
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.7775 (12), 19.746 (2),
	10.7957 (11)
β (°)	106.870 (2)
$V(Å^3)$	2606.6 (4)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.90
Crystal size (mm)	$0.45 \times 0.34 \times 0.21$
Data collection	
Diffractometer	Bruker Photon 100
Absorption correction	Multi-scan (SADABS; Bruker,
-	2015)
T_{\min}, T_{\max}	0.689, 0.834
No. of measured, independent and	12822, 4610, 2522
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.101
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.596
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.061, 0.221, 1.01
No. of reflections	4610
No. of parameters	373
No. of restraints	12
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.91, -0.54

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Funding information

The authors thank the National Natural Science Foundation of the People's Republic of China (grant No. 21602016) and the Scientific Research Foundation for PhDs of Changzhi University.

References

Brandenburg, K. (2006). <i>DIAMOND</i> . Crystal Impact GbR, Bonn, Germany.
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Del Sesto, R. E., Arif, A. M. & Miller, J. S. (2000). <i>Inorg. Chem.</i> 39, 4894–4902.
Farraj, Y., Smooha, A., Kamyshny, A. & Magdassi, S. (2017). Appl. Mater. Interfaces, 9, 8766–8773.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X. F., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). <i>Chem. Soc. Rev.</i> 43, 6141–6172.
Hou, H., Xie, L., Li, G., Ge, T., Fan, Y. & Zhu, Y. (2004). New J. Chem. 28, 191–199.
Jones, P. L., Jeffery, J. C., Maher, J. P., McCleverty, J. A., Rieger, P. H. & Ward, M. D. (1997). <i>Inorg. Chem.</i> 36, 3088–3095.
Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99– 128.
Kitao, T., Zhang, Y., Kitagawa, S., Wang, B. & Uemura, T. (2017). <i>Chem. Soc. Rev.</i> 46, 3108–3133.
Liu, TH., Huang, L., Chen, FJ., Xi, PX., Xu, ZH., Xu, M. & Zeng, ZZ. (2008). Anal. Sci. 24, x303–x304.
Liu, P., Wang, YY., Li, DS., Luan, XJ., Gao, S. & Shi, QZ. (2005). Chin. J. Chem. 23, 204–210.
Liu, Y., Wang, C., Xue, D., Xiao, M., Liu, J., Li, C. & Xiao, J. (2017). Chem. Eur. J. 23, 3062–3066.
Ma, Z. & Moulton, B. (2007). Cryst. Growth Des. 7, 196–198. Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat.
Commun. 5, 5883, 1–5. Sheldrick G M (2008) Acta Cryst A64 112–122
Sheldrick, G. M. (2005). Acta Cryst. 771, 3–8.
Silva, M. R., Paixão, J. A., Beja, A. M., da Veiga, L. A. & Martín-Gil, J. (2001). J. Chem. Crystallogr. 31 , 167–171.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Su, F., Lu, L., Feng, S., Zhu, M., Gao, Z. & Dong, Y. (2015). Dalton Trans. 44, 7213-7222.
- Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782-835.
- Wang, J., Liu, B. & Yang, B. (2010). Acta Cryst. C66, m280-m282.
- Wang, J., Wang, C., Wang, Z. & Yang, B. (2013). Acta Cryst. E69, m19.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 691-694 [https://doi.org/10.1107/S2056989018005893]

Crystal structure of tetrakis[μ -2-(methoxycarbonyl)benzoato- $\kappa^2 O^1:O^1$]bis[(N,N-dimethylformamide- κO)copper(II)](Cu—Cu) dimethylformamide disolvate

Jinglin Wang, Feng Su and Lili Shi

Computing details

Data collection: *APEX3* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Tetrakis[μ -2-(methoxycarbonyl)benzoato- $\kappa^2 O^1$: O^1]bis[(N,N-dimethylformamide- κO)copper(II)](Cu—Cu) dimethylformamide disolvate

Crystal data

 $[Cu_{2}(C_{9}H_{7}O_{4})_{4}(C_{3}H_{7}NO)_{2}] \cdot 2C_{3}H_{7}NO$ $M_{r} = 1136.07$ Monoclinic, $P2_{1}/c$ a = 12.7775 (12) Å b = 19.746 (2) Å c = 10.7957 (11) Å $\beta = 106.870$ (2)° V = 2606.6 (4) Å³ Z = 2

Data collection

Bruker Photon 100 diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2015) $T_{\min} = 0.689, T_{\max} = 0.834$ 12822 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.221$ S = 1.014610 reflections 373 parameters 12 restraints F(000) = 1180 $D_x = 1.447 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2608 reflections $\theta = 2.2-21.7^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 296 KBlock, blue $0.45 \times 0.34 \times 0.21 \text{ mm}$

4610 independent reflections 2522 reflections with $I > 2\sigma(I)$ $R_{int} = 0.101$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -12 \rightarrow 15$ $k = -23 \rightarrow 17$ $l = -12 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1098P)^2 + 2.5593P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.91$ e Å⁻³ $\Delta\rho_{min} = -0.54$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.51748 (6)	0.48436 (4)	0.62288 (7)	0.0317 (3)	
N1	0.4576 (5)	0.4167 (3)	0.9654 (5)	0.0451 (14)	
N2	0.0957 (5)	0.9334 (4)	0.6092 (6)	0.0641 (19)	
01	0.4075 (4)	0.4160 (2)	0.5502 (4)	0.0439 (12)	
O2	0.3789 (3)	0.4416 (2)	0.3420 (4)	0.0447 (12)	
O5	0.4004 (3)	0.5502 (2)	0.6162 (4)	0.0413 (11)	
O6	0.3716 (3)	0.5759 (2)	0.4083 (4)	0.0431 (12)	
O7	0.1773 (7)	0.5501 (4)	0.7540 (7)	0.116 (3)	
O8	0.1653 (4)	0.5121 (3)	0.5590 (6)	0.0668 (16)	
O9	0.5355 (3)	0.4523 (2)	0.8165 (4)	0.0409 (11)	
O10	-0.0745 (6)	0.8955 (4)	0.5178 (7)	0.110 (3)	
C1	0.3623 (5)	0.4065 (3)	0.4326 (7)	0.0363 (16)	
C2	0.2811 (5)	0.3508 (3)	0.3972 (6)	0.0341 (15)	
C3	0.2052 (5)	0.3496 (4)	0.2792 (7)	0.0472 (18)	
Н3	0.206712	0.382714	0.218399	0.057*	
C4	0.1263 (6)	0.3001 (4)	0.2487 (7)	0.053 (2)	
H4	0.074745	0.300086	0.167725	0.064*	
C5	0.1230 (6)	0.2512 (4)	0.3359 (8)	0.056 (2)	
Н5	0.069538	0.217744	0.314463	0.067*	
C6	0.1986 (6)	0.2512 (4)	0.4554 (8)	0.0530 (19)	
H6	0.196603	0.217854	0.515469	0.064*	
C7	0.2772 (6)	0.3005 (4)	0.4863 (7)	0.0476 (18)	
C8	0.3466 (11)	0.3011 (6)	0.6261 (14)	0.048 (3)	0.751 (12)
O3	0.3230 (6)	0.3196 (4)	0.7184 (7)	0.064 (3)	0.751 (12)
O4	0.4429 (10)	0.2714 (6)	0.6315 (11)	0.060 (3)	0.751 (12)
C9	0.5209 (13)	0.2647 (9)	0.7578 (13)	0.097 (6)	0.751 (12)
H9A	0.535773	0.308469	0.797628	0.145*	0.751 (12)
H9B	0.587480	0.245487	0.749156	0.145*	0.751 (12)
H9C	0.491382	0.235598	0.810555	0.145*	0.751 (12)
C8A	0.391 (4)	0.283 (2)	0.580 (5)	0.052 (12)	0.249 (12)
O3A	0.4754 (18)	0.2744 (13)	0.561 (3)	0.064 (8)	0.249 (12)
O4A	0.370 (2)	0.2762 (16)	0.688 (3)	0.060 (4)	0.249 (12)
C9A	0.470 (4)	0.259 (3)	0.798 (5)	0.096 (6)	0.249 (12)
H9A1	0.480823	0.211297	0.802431	0.144*	0.249 (12)
H9A2	0.459759	0.275219	0.877950	0.144*	0.249 (12)
H9A3	0.532924	0.281117	0.784324	0.144*	0.249 (12)
C10	0.3532 (5)	0.5818 (3)	0.5149 (6)	0.0356 (15)	
C11	0.2753 (5)	0.6360 (4)	0.5253 (7)	0.0441 (17)	
C12	0.2796 (7)	0.6975 (4)	0.4697 (8)	0.064 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H12	0.328128	0.704014	0.421111	0.077*
C13	0.2133 (8)	0.7503 (5)	0.4842 (10)	0.085 (3)
H13	0.217287	0.792384	0.447102	0.102*
C14	0.1418 (9)	0.7390 (6)	0.5547 (11)	0.094 (3)
H14	0.095559	0.773774	0.564212	0.113*
C15	0.1368 (7)	0.6792 (6)	0.6101 (9)	0.079 (3)
H15	0.088721	0.673494	0.659549	0.095*
C16	0.2008 (6)	0.6260 (4)	0.5959 (7)	0.052 (2)
C17	0.1818 (6)	0.5593 (5)	0.6481 (9)	0.064 (2)
C18	0.1415 (8)	0.4457 (5)	0.5937 (11)	0.095 (3)
H18A	0.131302	0.416073	0.520669	0.143*
H18B	0.201215	0.429533	0.663889	0.143*
H18C	0.076007	0.446603	0.620192	0.143*
C19	0.4544 (6)	0.4433 (4)	0.8545 (6)	0.0433 (17)
H19	0.386642	0.456500	0.800306	0.052*
C20	0.5587 (7)	0.3926 (4)	1.0530 (8)	0.072 (3)
H20A	0.544984	0.374755	1.129558	0.107*
H20B	0.588580	0.357686	1.011590	0.107*
H20C	0.609754	0.429424	1.076264	0.107*
C21	0.3581 (7)	0.4049 (5)	1.0006 (9)	0.078 (3)
H21A	0.375788	0.385056	1.085330	0.117*
H21B	0.320836	0.447112	1.000652	0.117*
H21C	0.311570	0.374657	0.939037	0.117*
C22	0.0126 (9)	0.9123 (5)	0.5152 (10)	0.089 (3)
H22	0.024510	0.910232	0.434322	0.107*
C23	0.1986 (7)	0.9484 (6)	0.5900 (10)	0.105 (4)
H23A	0.248667	0.963075	0.670171	0.157*
H23B	0.226912	0.908478	0.560193	0.157*
H23C	0.189853	0.983615	0.526528	0.157*
C24	0.0870 (9)	0.9415 (9)	0.7348 (11)	0.149 (6)
H24A	0.155395	0.957274	0.790841	0.223*
H24B	0.030640	0.973821	0.733691	0.223*
H24C	0.068855	0.898752	0.765799	0.223*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0357 (4)	0.0410 (5)	0.0215 (4)	0.0001 (4)	0.0133 (3)	0.0025 (4)
N1	0.069 (4)	0.044 (4)	0.030 (3)	-0.013 (3)	0.027 (3)	-0.006 (3)
N2	0.051 (4)	0.086 (5)	0.050 (4)	-0.012 (4)	0.007 (3)	0.002 (4)
01	0.050 (3)	0.054 (3)	0.028 (3)	-0.010 (2)	0.012 (2)	0.000 (2)
O2	0.047 (3)	0.056 (3)	0.031 (3)	-0.012 (2)	0.013 (2)	0.005 (2)
05	0.045 (3)	0.054 (3)	0.028 (3)	0.009 (2)	0.016 (2)	0.003 (2)
O6	0.046 (3)	0.055 (3)	0.032 (3)	0.011 (2)	0.017 (2)	0.002 (2)
07	0.155 (7)	0.145 (7)	0.075 (5)	0.000 (6)	0.077 (5)	0.017 (5)
08	0.067 (4)	0.069 (4)	0.075 (4)	-0.006(3)	0.038 (3)	0.003 (3)
09	0.041 (2)	0.059 (3)	0.026 (2)	0.001 (2)	0.015 (2)	0.005 (2)
O10	0.072 (4)	0.133 (7)	0.115 (6)	-0.044 (5)	0.013 (4)	0.008 (5)

supporting information

C1	0.031 (3)	0.039 (4)	0.040 (4)	-0.001 (3)	0.012 (3)	-0.002 (3)
C2	0.036 (3)	0.037 (4)	0.034 (4)	-0.007 (3)	0.016 (3)	0.000 (3)
C3	0.045 (4)	0.056 (5)	0.041 (5)	-0.007 (4)	0.014 (3)	0.005 (4)
C4	0.049 (4)	0.064 (5)	0.044 (5)	-0.012 (4)	0.008 (4)	-0.005 (4)
C5	0.045 (4)	0.064 (6)	0.064 (6)	-0.016 (4)	0.024 (4)	-0.013 (4)
C6	0.055 (5)	0.054 (5)	0.053 (5)	-0.007 (4)	0.020 (4)	0.004 (4)
C7	0.046 (4)	0.049 (5)	0.047 (5)	-0.009 (4)	0.011 (3)	-0.002 (4)
C8	0.058 (8)	0.038 (7)	0.050 (9)	-0.008 (5)	0.019 (7)	0.006 (6)
O3	0.088 (6)	0.070 (6)	0.048 (5)	-0.007 (4)	0.040 (4)	-0.008(4)
O4	0.072 (7)	0.065 (6)	0.036 (6)	0.017 (5)	0.001 (5)	-0.004 (5)
C9	0.101 (13)	0.122 (11)	0.049 (9)	0.060 (11)	-0.008 (7)	-0.016 (8)
C8A	0.08 (4)	0.03 (2)	0.05 (3)	0.02 (2)	0.03 (3)	0.00(2)
O3A	0.043 (15)	0.10(2)	0.045 (17)	0.011 (12)	0.013 (12)	-0.008 (14)
O4A	0.070 (9)	0.064 (7)	0.035 (7)	0.010(7)	0.000 (6)	-0.001 (6)
C9A	0.101 (13)	0.122 (11)	0.048 (9)	0.060 (11)	-0.007 (7)	-0.016 (8)
C10	0.028 (3)	0.048 (4)	0.031 (4)	-0.001 (3)	0.008 (3)	-0.003 (3)
C11	0.044 (4)	0.054 (5)	0.034 (4)	0.009 (3)	0.012 (3)	-0.004 (3)
C12	0.064 (5)	0.071 (6)	0.064 (6)	0.008 (5)	0.030 (4)	0.008 (5)
C13	0.097 (7)	0.059 (6)	0.103 (8)	0.028 (6)	0.034 (7)	0.008 (6)
C14	0.101 (8)	0.098 (9)	0.092 (8)	0.050 (7)	0.040 (7)	0.001 (7)
C15	0.073 (6)	0.104 (8)	0.073 (7)	0.032 (6)	0.043 (5)	0.008 (6)
C16	0.046 (4)	0.073 (6)	0.040 (4)	0.019 (4)	0.018 (4)	-0.001 (4)
C17	0.044 (4)	0.105 (8)	0.052 (5)	0.012 (5)	0.028 (4)	0.007 (5)
C18	0.080 (7)	0.088 (8)	0.139 (10)	0.001 (6)	0.067 (7)	0.012 (7)
C19	0.047 (4)	0.053 (5)	0.033 (4)	0.000 (3)	0.016 (3)	-0.004 (3)
C20	0.096 (6)	0.086 (7)	0.040 (5)	0.016 (5)	0.030 (5)	0.025 (5)
C21	0.103 (7)	0.079 (6)	0.077 (6)	-0.021 (5)	0.065 (6)	-0.008(5)
C22	0.091 (8)	0.075 (7)	0.085 (8)	-0.003 (6)	0.000(7)	-0.004 (6)
C23	0.066 (6)	0.158 (11)	0.100 (8)	-0.007 (7)	0.039 (6)	-0.022 (8)
C24	0.097 (8)	0.29 (2)	0.067 (8)	-0.016 (10)	0.040 (7)	-0.015 (10)

Geometric parameters (Å, °)

Cu1—Cu1 ⁱ	2.6329 (14)	С9—Н9В	0.9600
Cu1—O1	1.943 (4)	С9—Н9С	0.9600
Cu1—O2 ⁱ	1.934 (4)	C8A—O3A	1.17 (5)
Cu1—O5	1.968 (4)	C8A—O4A	1.28 (6)
Cu1—O6 ⁱ	1.953 (4)	O4A—C9A	1.50 (5)
Cu1—O9	2.132 (4)	C9A—H9A1	0.9600
N1—C19	1.297 (8)	С9А—Н9А2	0.9600
N1-C20	1.442 (10)	С9А—Н9АЗ	0.9600
N1—C21	1.448 (9)	C10-C11	1.488 (9)
N2-C22	1.306 (10)	C11—C12	1.363 (10)
N2-C24	1.401 (11)	C11—C16	1.395 (9)
N2—C23	1.421 (10)	C12—C13	1.381 (11)
01—C1	1.247 (7)	C12—H12	0.9300
O2—C1	1.266 (7)	C13—C14	1.367 (13)
O5—C10	1.251 (7)	С13—Н13	0.9300

O6—C10	1.245 (7)	C14—C15	1.335 (13)
O7—C17	1.176 (9)	C14—H14	0.9300
O8—C17	1.313 (10)	C15—C16	1.366 (11)
O8—C18	1.420 (10)	C15—H15	0.9300
O9—C19	1.234 (7)	C16—C17	1.480 (12)
O10—C22	1.169 (11)	C18—H18A	0.9600
C1—C2	1.485 (9)	C18—H18B	0.9600
C2—C3	1.359 (9)	C18—H18C	0.9600
C2—C7	1.393 (9)	C19—H19	0.9300
C3—C4	1.374 (9)	C20—H20A	0.9600
С3—Н3	0.9300	C20—H20B	0.9600
C4—C5	1.357 (10)	C20—H20C	0.9600
C4—H4	0.9300	C21—H21A	0.9600
C5—C6	1.370 (10)	C21—H21B	0.9600
С5—Н5	0.9300	C21—H21C	0.9600
C6—C7	1.367 (9)	C22—H22	0.9300
С6—Н6	0.9300	C23—H23A	0.9600
C7 - C8	1 513 (16)	C23—H23B	0.9600
C7-C8A	1.515 (10)	C23—H23C	0.9600
C8-O3	1.33(3)	C24—H24A	0.9600
C8-04	1 349 (19)	C24—H24B	0.9600
04-C9	1 442 (16)	C24 - H24C	0.9600
C9—H9A	0.9600	021 11210	0.9000
	0.9000		
02^{i} —Cu1—O1	168 03 (18)	O4A—C9A—H9A2	109 5
Ω^{2i} Ω^{i} Ω^{i}	90 25 (19)	H9A1—C9A—H9A2	109.5
$01-Cu1-O6^{i}$	89.05 (19)	O4A - C9A - H9A3	109.5
02^{i} Cul 00^{i}	88 7 (2)	H9A1—C9A—H9A3	109.5
01-Cu1-05	89.48 (19)	H9A2—C9A—H9A3	109.5
$O6^{i}$ —Cu1—O5	168.06 (18)	06-C10-O5	126.1 (6)
02^{i} Cu1 -09	99 14 (18)	06-C10-C11	116.6 (6)
01-Cu1-09	92.82 (18)	05-C10-C11	117.1 (6)
06^{i} Cu1 09	96 36 (17)	C12-C11-C16	1192(7)
05-Cu1-09	95 55 (17)	C12 - C11 - C10	119.6 (6)
Ω^{2i} —Cu1—Cu1 ⁱ	85.81 (13)	C16-C11-C10	121.2(7)
$O1-Cu1-Cu1^{i}$	82.24 (13)	C11-C12-C13	121.2(7) 121.2(8)
$O6^{i}$ —Cu1—Cu1 ⁱ	83 61 (13)	C11-C12-H12	119.4
$05-Cu1-Cu1^{i}$	84 46 (13)	C13 - C12 - H12	119.4
09—Cu1—Cu1 ⁱ	175.05 (13)	C14-C13-C12	118 1 (9)
C19—N1— $C20$	1214(6)	C14—C13—H13	120.9
C19 - N1 - C21	120.8(7)	C12—C13—H13	120.9
C_{20} N1 C_{21}	117.6 (6)	C15-C14-C13	121.4 (9)
$C_{22} = N_{2} = C_{24}$	120.9 (9)	C15 - C14 - H14	119.3
C22 - N2 - C23	122.1 (9)	C13-C14-H14	119.3
$C_{24} N_{2} C_{23}$	117.1 (8)	C14-C15-C16	121 5 (8)
C1	125.6 (4)	C14—C15—H15	119.3
$C1-O2-Cu1^{i}$	121.4 (4)	C16—C15—H15	119.3
C10-05-Cu1	122.0 (4)	C15—C16—C11	118.6 (8)
			(-)

C10—O6—Cu1 ⁱ	123.9 (4)	C15—C16—C17	118.1 (7)
C17—O8—C18	117.6 (7)	C11—C16—C17	123.1 (7)
C19—O9—Cu1	120.4 (4)	O7—C17—O8	124.0 (10)
O1—C1—O2	125.0 (6)	O7—C17—C16	124.6 (10)
01-C1-C2	117.1 (6)	O8—C17—C16	111.3 (7)
02-C1-C2	118.0 (6)	08—C18—H18A	109.5
C3—C2—C7	118.5 (6)	08—C18—H18B	109.5
$C_{3}-C_{2}-C_{1}$	120.5 (6)	H18A—C18—H18B	109.5
C7-C2-C1	120.9 (6)	08-C18-H18C	109.5
$C_2 - C_3 - C_4$	120.6 (7)	H18A—C18—H18C	109.5
C2—C3—H3	119.7	H18B— $C18$ — $H18C$	109.5
C4—C3—H3	119.7	09-C19-N1	124 1 (7)
$C_{5}-C_{4}-C_{3}$	120.6 (7)	09-C19-H19	118.0
$C_5 - C_4 - H_4$	119.7	N1-C19-H19	118.0
$C_3 - C_4 - H_4$	119.7	N1 - C20 - H20A	109.5
C4-C5-C6	119.8 (7)	N1-C20-H20B	109.5
C4—C5—H5	120.1	$H_{20}A = C_{20} = H_{20}B$	109.5
C6-C5-H5	120.1	N1 - C20 - H20C	109.5
$C_{0} - C_{0} - C_{0}$	110 8 (7)	$H_{20} = C_{20} = H_{20} C_{20}$	109.5
C7 C6 H6	120.1	$H_{20}^{-11} = C_{20}^{-11} = H_{20}^{-11} = H_{2$	109.5
$C_{7} = C_{6} = H_{6}$	120.1	N1 C21 H21A	109.5
C_{5}	120.1	N1 = C21 = H21R	109.5
$C_{0} - C_{7} - C_{2}$	120.0(7) 115.1(7)	$H_{21A} = C_{21} = H_{21B}$	109.5
$C_{0} = C_{7} = C_{8}$	113.1(7) 123.7(7)	$\frac{1121A}{C21} + \frac{1121B}{H21C}$	109.5
$C_2 = C_7 = C_8$	123.7(7) 110.2(17)	$H_{21} = C_{21} = H_{21}C$	109.5
$C_0 - C_7 - C_0 A$	119.2(17) 112.0(18)	$H_{21}^{-1} H_{21}^{-1} H_{2$	109.5
$C_2 = C_1 = C_0 A$	113.0(10) 122.5(12)	$\begin{array}{ccc} n_2 & n_2 \\ n_1 & n_2 \\ n_1 & n_2 \\ n_2 & n_2 \\ n_2 & n_2 \\ n_1 & n_2 \\ n_2 & n_2 \\ n_1 & n_2 \\ n_2 & n_2$	109.3
03 - 03 - 04	123.3(13) 128.7(12)	010 - C22 - N2	129.0 (11)
03 - 03 - 07	128.7(13)	010-C22-H22	115.2
04-08-07	107.7(12)	N2-C22-H22	115.2
$C_8 = C_4 = C_9$	110.9 (13)	N2-C23-H23A	109.5
04 - C9 - H9A	109.5	$N_2 = C_{23} = H_{23}B$	109.5
$U_4 = C_9 = H_9B$	109.5	H23A—C23—H23B	109.5
H9A - C9 - H9B	109.5	$N_2 = C_{23} = H_{23}C$	109.5
U4 - C9 - H9C	109.5	$H_{23}A - C_{23} - H_{23}C$	109.5
H9A—C9—H9C	109.5	H23B—C23—H23C	109.5
H9B - C9 - H9C	109.5	N2-C24-H24A	109.5
03A - C8A - 04A	126 (5)	$N_2 - C_2 - H_2 + B$	109.5
03A - C8A - C7	131 (5)	$H_24A - C_24 - H_24B$	109.5
04A - 04A - 04A	102 (4)	$N_2 = C_2 4 = H_2 4 C$	109.5
C8A - O4A - C9A	113 (4)	$H_24A - C_24 - H_24C$	109.5
04A—C9A—H9A1	109.5	H24B—C24—H24C	109.5
Cu1—O1—C1—O2	-2.2 (9)	O3A—C8A—O4A—C9A	5 (6)
Cu1—O1—C1—C2	179.2 (4)	C7—C8A—O4A—C9A	-180 (3)
Cu1 ⁱ —O2—C1—O1	1.3 (9)	Cu1 ⁱ —O6—C10—O5	-1.1 (9)
Cu1 ⁱ —O2—C1—C2	179.8 (4)	Cu1 ⁱ —O6—C10—C11	172.8 (4)
O1—C1—C2—C3	159.7 (6)	Cu1—O5—C10—O6	0.9 (9)
02—C1—C2—C3	-18.9 (9)	Cu1—O5—C10—C11	-173.0 (4)
	× /		

O1—C1—C2—C7	-16.9 (9)	O6-C10-C11-C12	-41.0 (9)
O2—C1—C2—C7	164.5 (6)	O5-C10-C11-C12	133.5 (7)
C7—C2—C3—C4	0.2 (10)	O6—C10—C11—C16	141.9 (7)
C1—C2—C3—C4	-176.5 (6)	O5-C10-C11-C16	-43.6 (9)
C2—C3—C4—C5	-0.3 (11)	C16—C11—C12—C13	1.3 (12)
C3—C4—C5—C6	0.2 (11)	C10-C11-C12-C13	-175.9 (8)
C4—C5—C6—C7	-0.1 (11)	C11—C12—C13—C14	-0.9 (14)
С5—С6—С7—С2	0.0 (11)	C12—C13—C14—C15	1.1 (17)
C5—C6—C7—C8	172.2 (9)	C13—C14—C15—C16	-1.9 (17)
C5—C6—C7—C8A	-148 (2)	C14—C15—C16—C11	2.2 (14)
C3—C2—C7—C6	-0.1 (10)	C14—C15—C16—C17	-173.3 (9)
C1—C2—C7—C6	176.6 (6)	C12-C11-C16-C15	-1.9 (11)
C3—C2—C7—C8	-171.6 (9)	C10-C11-C16-C15	175.2 (7)
C1—C2—C7—C8	5.1 (12)	C12-C11-C16-C17	173.4 (8)
C3—C2—C7—C8A	150.1 (19)	C10-C11-C16-C17	-9.5 (11)
C1—C2—C7—C8A	-33 (2)	C18—O8—C17—O7	-0.5 (12)
C6—C7—C8—O3	-74.5 (14)	C18—O8—C17—C16	-177.6 (6)
C2—C7—C8—O3	97.4 (13)	C15—C16—C17—O7	-51.0 (12)
C6—C7—C8—O4	101.3 (10)	C11—C16—C17—O7	133.7 (9)
C2—C7—C8—O4	-86.8 (12)	C15—C16—C17—O8	126.0 (8)
O3—C8—O4—C9	-2 (2)	C11—C16—C17—O8	-49.3 (10)
C7—C8—O4—C9	-178.1 (12)	Cu1—O9—C19—N1	171.9 (5)
C6—C7—C8A—O3A	106 (4)	C20—N1—C19—O9	-2.4 (11)
C2—C7—C8A—O3A	-45 (5)	C21—N1—C19—O9	-177.0 (7)
C6—C7—C8A—O4A	-70 (3)	C24—N2—C22—O10	-2.6 (18)
C2—C7—C8A—O4A	139 (2)	C23—N2—C22—O10	176.5 (12)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
С12—Н12…ОЗА ^і	0.93	2.50	3.29 (3)	143
C23—H23A···O6 ⁱⁱ	0.96	2.70	3.538 (11)	145
С3—Н3…О10 ^{ііі}	0.93	2.63	3.284 (10)	128
C6—H6…O10 ^{iv}	0.93	2.69	3.355 (11)	129

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+3/2, z+1/2; (iii) -x, y-1/2, -z+1/2; (iv) -x, -y+1, -z+1.