# metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Bis(2-acetylpyridine- $\kappa^2 N$ ,O)silver(I) tetrafluoridoborate: a complex with silver in a seesaw coordination geometry

### Michael A. O'Donnell and Peter J. Steel\*

Chemistry Department, University of Canterbury, PO Box 4800, Christchurch, New **Zealand** 

Correspondence e-mail: peter.steel@canterbury.ac.nz

Received 11 November 2010; accepted 18 November 2010

Key indicators: single-crystal X-ray study; T = 116 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.024; wR factor = 0.051; data-toparameter ratio = 14.8.

The reaction of 2-acetylpyridine with silver(I) tetrafluoridoborate leads to the discrete title complex,  $[Ag(C_7H_7NO)_2]BF_4$ , in the cation of which the Ag atom is coordinated by two 2-acetylpyridine ligands, each of which is N,O-bidentate, albeit with stronger bonding to the N atoms [Ag-N = 2.2018 (15)]and 2.2088 (14) Å; Ag-O = 2.5380 (13) and 2.5454 (13) Å]. The four-coordinate Ag atom has a seesaw coordination geometry with a  $\tau_4$  index of 0.51. The tetrafluoridoborate anion is disordered over two orientations with 0.568 (10):0.432 (10) occupancies.

### **Related literature**

For other silver complexes with the same ligand, see: Bowmaker et al. (2005); Drew et al. (2005); Di Nicola et al. (2010). For examples of our previous work on silver complexes, see: Steel (2005); Fitchett & Steel (2006); O'Keefe & Steel (2007): Steel & Fitchett (2008): Golder et al. (2010). For details of the coordination geometry of four-coordinate silver, see: Young & Hanton (2008). For a definition of the  $\tau_4$ index, see: Yang et al. (2007). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin, see: Byrn et al. (1993).



### **Experimental**

#### Crystal data

α в

| [Ag(C <sub>7</sub> H <sub>7</sub> NO) <sub>2</sub> ]BF <sub>4</sub> | $\nu = 75.054 \ (2)^{\circ}$              |
|---------------------------------------------------------------------|-------------------------------------------|
| $M_r = 436.95$                                                      | V = 790.34 (4) Å <sup>3</sup>             |
| Triclinic, $P\overline{1}$                                          | Z = 2                                     |
| a = 7.2635 (2) Å                                                    | Mo $K\alpha$ radiation                    |
| b = 9.7091 (3) Å                                                    | $\mu = 1.33 \text{ mm}^{-1}$              |
| c = 11.7390 (4) Å                                                   | $T = 116 { m K}$                          |
| $\alpha = 85.624 \ (2)^{\circ}$                                     | $0.37 \times 0.36 \times 0.14 \text{ mm}$ |
| $\beta = 81.452.(2)^{\circ}$                                        |                                           |

#### Data collection

| Bruker SMART CCD area-detector       |  |
|--------------------------------------|--|
| diffractometer                       |  |
| Absorption correction: multi-scan    |  |
| (SADABS; Bruker, 2009)               |  |
| $T_{\min} = 0.805, T_{\max} = 1.000$ |  |
|                                      |  |

## Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.024$ | 247 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.051$               | H-atom parameters constrained                              |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3661 reflections                | $\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$ |

18086 measured reflections 3661 independent reflections 3255 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.042$ 

# Table 1

Selected bond angles (°).

| N9-Ag1-N1  | 165.92 (6) | N9-Ag1-O7  | 121.62 (5) |
|------------|------------|------------|------------|
| N9-Ag1-O15 | 70.09 (5)  | N1-Ag1-O7  | 69.62 (5)  |
| N1-Ag1-O15 | 122.03 (5) | O15-Ag1-O7 | 83.23 (5)  |

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Chemistry Department, University of Canterbury, New Zealand, for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2079).

#### References

- Bowmaker, G. A., Effendy, Nitiatmodjo, M., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4327-4341.
- Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.
- Di Nicola, C., Effendy, Marchetti, F., Nervi, C., Pettinari, C., Robinson, W. T., Sobolev, A. N. & White, A. H. (2010). Dalton Trans. pp. 908-922.
- Drew, M. G. B., Naskar, J. P., Chowdhury, S. & Datta, D. (2005). Eur. J. Inorg. Chem. pp. 4834-4839.
- Fitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886-4888.
- Golder, R. K., Fitchett, C. M., Wikaira, J. L. & Steel, P. J. (2010). Acta Cryst. E66. m1324.
- O'Keefe, B. J. & Steel, P. J. (2007) CrystEngComm, 9, 222-227.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.
- Steel, P. J. & Fitchett, C. M. (2008). Coord. Chem. Rev. 205, 990-1006.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964. Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346-1386.

# supporting information

# Acta Cryst. (2010). E66, m1630 [https://doi.org/10.1107/S1600536810048014]

Bis(2-acetylpyridine- $\kappa^2 N$ ,*O*)silver(I) tetrafluoridoborate: a complex with silver in a seesaw coordination geometry

# Michael A. O'Donnell and Peter J. Steel

# S1. Comment

For some time we have been involved in the study of silver complexes of chelating and bridging heterocyclic ligands (Steel, 2005; Fitchett & Steel, 2006; O'Keefe & Steel, 2007; Steel & Fitchett, 2008; Golder *et al.*, 2010). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,*O*-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin (Byrn *et al.*, 1993). X-ray crystal structures have been reported for complexes of 2-acetylpyridine with silver(I) perchlorate (Bowmaker *et al.*, 2005; Drew *et al.*, 2005), trifluoroacetate (Bowmaker *et al.*, 2010) and nitrate (Bowmaker *et al.*, 2005). The latter has a single 2-acetylpyridine bound to the silver with a chelating nitrate anion, while the others have two chelating 2-acetylpyridine ligands. We now report the structure of its complex with silver(I) tetrafluoridoborate, the title compound  $[Ag(C_7H_7NO)_2]$  BF<sub>4</sub> (I).

In (I), the asymmetric unit contains a complex cation comprising a silver(I) atom bound to two bidentate N,*O*-chelated 2-acetylpyridine ligands [Ag—N, 2.2018 (15), 2.2088 (14) Å; Ag—O, 2.5380 (13), 2.5454 (13) Å], and a tetrafluoridoborate counter-anion (Fig. 1). The tetrafluoridoborate anion is disordered over two orientations with relative F occupancies of 57:43% about a common central B. Since the silver atom makes no other contacts less than 2.72 Å it should be classified as four-coordinate (Young & Hanton, 2008). Calculation of the  $\tau_4$  index (Yang *et al.*, 2007) produces a value of 0.51 which means that the geometry around the silver should be described as seesaw.

# **S2. Experimental**

The title compound was prepared by diffusion of pentane into a methanol solution of a mixture of 2-acetylpyridine and silver(I) tetrafluoridoborate.

# S3. Refinement

Hydrogen atoms were included in calculated positions as riding atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$  for the pyridine H atoms and  $U_{iso}(H) = 1.5U_{eq}(C)$  for the acetyl H atoms. The occupancies for the disordered F atoms of the BF<sub>4</sub> anion were 0.568 (10)/0.432 (10) and were fixed at 0.57/0.43 in the refinement.



## Figure 1

The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level.

Bis(2-acetylpyridine- $\kappa^2 N$ ,O)silver(I) tetrafluoridoborate

Crystal data

 $[Ag(C_7H_7NO)_2]BF_4$   $M_r = 436.95$ Triclinic, *P*I Hall symbol: -P 1 a = 7.2635 (2) Å b = 9.7091 (3) Å c = 11.7390 (4) Å a = 85.624 (2)°  $\beta = 81.452$  (2)°  $\gamma = 75.054$  (2)° V = 790.34 (4) Å<sup>3</sup>

## Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{\min} = 0.805, T_{\max} = 1.000$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.024$  $wR(F^2) = 0.051$ S = 1.013661 reflections 247 parameters 0 restraints Z = 2 F(000) = 432  $D_x = 1.836 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8378 reflections  $\theta = 2.7-27.6^{\circ}$   $\mu = 1.33 \text{ mm}^{-1}$ T = 116 K Block, colourless  $0.37 \times 0.36 \times 0.14 \text{ mm}$ 

18086 measured reflections 3661 independent reflections 3255 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.042$  $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.7^{\circ}$  $h = -9 \rightarrow 9$  $k = -12 \rightarrow 12$  $l = -15 \rightarrow 15$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

| $w = 1/[\sigma^2(F_o^2) + (0.0251P)^2]$ | $\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$ |
|-----------------------------------------|-----------------------------------------------------------|
| where $P = (F_o^2 + 2F_c^2)/3$          | $\Delta  ho_{ m min} = -0.47 \  m e \  m \AA^{-3}$        |
| $(\Delta/\sigma)_{\rm max} = 0.001$     |                                                           |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates | and isotropic of | or equivalent isotro | pic displacement | parameters | $(Å^2)$ | ļ |
|-------------------------------|------------------|----------------------|------------------|------------|---------|---|
|-------------------------------|------------------|----------------------|------------------|------------|---------|---|

|      | x           | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|-------------|---------------|---------------|-----------------------------|-----------|
| Ag1  | 0.62372 (2) | 0.358455 (15) | 0.216889 (12) | 0.02670 (6)                 |           |
| N1   | 0.7431 (2)  | 0.40200 (16)  | 0.03743 (13)  | 0.0200 (3)                  |           |
| C2   | 0.8515 (3)  | 0.2955 (2)    | -0.02733 (17) | 0.0266 (4)                  |           |
| H2   | 0.8596      | 0.2001        | 0.0010        | 0.032*                      |           |
| C3   | 0.9529 (3)  | 0.3180 (3)    | -0.13419 (18) | 0.0338 (5)                  |           |
| H3   | 1.0279      | 0.2398        | -0.1781       | 0.041*                      |           |
| C4   | 0.9425 (3)  | 0.4558 (3)    | -0.17500 (17) | 0.0350 (5)                  |           |
| H4   | 1.0125      | 0.4742        | -0.2471       | 0.042*                      |           |
| C5   | 0.8291 (3)  | 0.5676 (2)    | -0.10994 (16) | 0.0279 (5)                  |           |
| Н5   | 0.8186      | 0.6635        | -0.1375       | 0.033*                      |           |
| C6   | 0.7311 (3)  | 0.53789 (19)  | -0.00415 (15) | 0.0200 (4)                  |           |
| O7   | 0.5413 (2)  | 0.62559 (14)  | 0.16893 (11)  | 0.0279 (3)                  |           |
| C7   | 0.6095 (3)  | 0.65429 (19)  | 0.07221 (16)  | 0.0227 (4)                  |           |
| C8   | 0.5744 (3)  | 0.8064 (2)    | 0.0268 (2)    | 0.0353 (5)                  |           |
| H8A  | 0.4863      | 0.8686        | 0.0840        | 0.053*                      |           |
| H8B  | 0.5175      | 0.8157        | -0.0449       | 0.053*                      |           |
| H8C  | 0.6966      | 0.8340        | 0.0117        | 0.053*                      |           |
| N9   | 0.4948 (2)  | 0.26845 (16)  | 0.37767 (14)  | 0.0238 (4)                  |           |
| C10  | 0.3564 (3)  | 0.1997 (2)    | 0.37892 (17)  | 0.0281 (4)                  |           |
| H10  | 0.3117      | 0.1917        | 0.3082        | 0.034*                      |           |
| C11  | 0.2753 (3)  | 0.1397 (2)    | 0.47867 (18)  | 0.0299 (5)                  |           |
| H11  | 0.1757      | 0.0933        | 0.4765        | 0.036*                      |           |
| C12  | 0.3420 (3)  | 0.1486 (2)    | 0.58052 (17)  | 0.0299 (5)                  |           |
| H12  | 0.2899      | 0.1077        | 0.6500        | 0.036*                      |           |
| C13  | 0.4870 (3)  | 0.2183 (2)    | 0.58072 (16)  | 0.0262 (4)                  |           |
| H13  | 0.5360      | 0.2250        | 0.6502        | 0.031*                      |           |
| C14  | 0.5589 (3)  | 0.27780 (19)  | 0.47815 (15)  | 0.0211 (4)                  |           |
| 015  | 0.7480 (2)  | 0.43100 (16)  | 0.38824 (12)  | 0.0414 (4)                  |           |
| C15  | 0.7082 (3)  | 0.3619 (2)    | 0.47483 (16)  | 0.0235 (4)                  |           |
| C16  | 0.7981 (3)  | 0.3629 (2)    | 0.58006 (17)  | 0.0327 (5)                  |           |
| H16A | 0.6993      | 0.4069        | 0.6420        | 0.049*                      |           |
| H16B | 0.8956      | 0.4177        | 0.5638        | 0.049*                      |           |
|      |             |               |               |                             |           |

# supporting information

| H16C | 0.8587      | 0.2647       | 0.6040       | 0.049*      |            |
|------|-------------|--------------|--------------|-------------|------------|
| B25  | 0.9904 (3)  | 0.9500 (2)   | 0.7668 (2)   | 0.0297 (5)  |            |
| F26  | 1.1442 (2)  | 0.96995 (15) | 0.81393 (12) | 0.0499 (4)  |            |
| F27  | 1.0213 (7)  | 0.8050 (5)   | 0.7373 (6)   | 0.0530 (14) | 0.568 (10) |
| F28  | 0.8389 (6)  | 0.9732 (7)   | 0.8535 (4)   | 0.0778 (17) | 0.568 (10) |
| F29  | 0.9559 (8)  | 1.0366 (5)   | 0.6754 (4)   | 0.0486 (13) | 0.568 (10) |
| F27′ | 0.8174 (6)  | 1.0520(7)    | 0.7916 (8)   | 0.080 (3)   | 0.432 (10) |
| F28′ | 1.0393 (11) | 0.9638 (11)  | 0.6459 (4)   | 0.059 (2)   | 0.432 (10) |
| F29′ | 0.9705 (11) | 0.8213 (7)   | 0.7954 (6)   | 0.0507 (17) | 0.432 (10) |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|--------------|-------------|-----------------|--------------|--------------|--------------|
| Ag1  | 0.03524 (10) | 0.02888 (9) | 0.01804 (8)     | -0.01335 (7) | -0.00432 (6) | 0.00624 (6)  |
| N1   | 0.0188 (8)   | 0.0235 (8)  | 0.0192 (8)      | -0.0063 (7)  | -0.0057 (6)  | -0.0002 (6)  |
| C2   | 0.0221 (11)  | 0.0319 (11) | 0.0285 (10)     | -0.0069 (9)  | -0.0088 (8)  | -0.0063 (8)  |
| C3   | 0.0235 (11)  | 0.0533 (15) | 0.0262 (11)     | -0.0086 (10) | -0.0028 (8)  | -0.0161 (10) |
| C4   | 0.0231 (11)  | 0.0685 (16) | 0.0166 (10)     | -0.0177 (11) | -0.0005 (8)  | -0.0047 (10) |
| C5   | 0.0226 (11)  | 0.0441 (13) | 0.0214 (10)     | -0.0163 (9)  | -0.0076 (8)  | 0.0088 (9)   |
| C6   | 0.0176 (10)  | 0.0269 (10) | 0.0183 (9)      | -0.0094 (8)  | -0.0073 (7)  | 0.0039 (7)   |
| O7   | 0.0334 (8)   | 0.0262 (7)  | 0.0217 (7)      | -0.0048 (6)  | -0.0011 (6)  | -0.0005 (6)  |
| C7   | 0.0180 (10)  | 0.0233 (10) | 0.0286 (10)     | -0.0070 (8)  | -0.0081 (8)  | 0.0038 (8)   |
| C8   | 0.0332 (13)  | 0.0251 (11) | 0.0470 (14)     | -0.0087 (9)  | -0.0058 (10) | 0.0083 (9)   |
| N9   | 0.0267 (9)   | 0.0215 (8)  | 0.0229 (8)      | -0.0064 (7)  | -0.0042 (7)  | 0.0035 (6)   |
| C10  | 0.0287 (12)  | 0.0309 (11) | 0.0270 (10)     | -0.0101 (9)  | -0.0074 (8)  | 0.0015 (8)   |
| C11  | 0.0241 (11)  | 0.0300 (11) | 0.0353 (12)     | -0.0102 (9)  | 0.0027 (9)   | -0.0001 (9)  |
| C12  | 0.0320 (12)  | 0.0300 (11) | 0.0261 (11)     | -0.0109 (9)  | 0.0063 (8)   | -0.0005 (8)  |
| C13  | 0.0306 (12)  | 0.0272 (10) | 0.0198 (10)     | -0.0072 (9)  | 0.0008 (8)   | -0.0031 (8)  |
| C14  | 0.0235 (10)  | 0.0177 (9)  | 0.0198 (9)      | -0.0026 (7)  | -0.0008 (7)  | 0.0001 (7)   |
| 015  | 0.0635 (11)  | 0.0464 (10) | 0.0277 (8)      | -0.0383 (9)  | -0.0109 (7)  | 0.0100 (7)   |
| C15  | 0.0271 (11)  | 0.0206 (9)  | 0.0219 (10)     | -0.0050 (8)  | -0.0008 (8)  | -0.0030 (7)  |
| C16  | 0.0323 (12)  | 0.0444 (13) | 0.0245 (11)     | -0.0153 (10) | -0.0037 (9)  | -0.0002 (9)  |
| B25  | 0.0255 (13)  | 0.0262 (12) | 0.0366 (13)     | -0.0086 (10) | -0.0009 (10) | 0.0049 (10)  |
| F26  | 0.0574 (10)  | 0.0577 (9)  | 0.0475 (9)      | -0.0335 (8)  | -0.0209 (7)  | 0.0115 (7)   |
| F27  | 0.040 (2)    | 0.0249 (14) | 0.099 (4)       | -0.0053 (14) | -0.028 (2)   | -0.003 (2)   |
| F28  | 0.047 (2)    | 0.097 (4)   | 0.071 (3)       | -0.009 (2)   | 0.0300 (17)  | 0.005 (2)    |
| F29  | 0.060 (3)    | 0.043 (2)   | 0.051 (2)       | -0.026 (2)   | -0.022 (2)   | 0.0213 (17)  |
| F27′ | 0.043 (3)    | 0.065 (4)   | 0.118 (7)       | 0.018 (2)    | -0.011 (3)   | -0.027 (4)   |
| F28′ | 0.065 (4)    | 0.098 (6)   | 0.031 (2)       | -0.053 (4)   | -0.006 (2)   | 0.015 (3)    |
| F29′ | 0.063 (4)    | 0.034 (3)   | 0.067 (4)       | -0.030 (3)   | -0.022 (3)   | 0.022 (3)    |

Geometric parameters (Å, °)

| Ag1—N1  | 2.2088 (14) | C10—C11 | 1.388 (3) |  |
|---------|-------------|---------|-----------|--|
| Ag1—N9  | 2.2018 (15) | C10—H10 | 0.9500    |  |
| Ag1—O7  | 2.5454 (13) | C11—C12 | 1.372 (3) |  |
| Ag1-015 | 2.5380 (15) | C11—H11 | 0.9500    |  |
| N1—C2   | 1.338 (2)   | C12—C13 | 1.391 (3) |  |
|         |             |         |           |  |

| N1—C6                    | 1.357 (2)                | C12—H12                          | 0.9500      |
|--------------------------|--------------------------|----------------------------------|-------------|
| C2—C3                    | 1.389 (3)                | C13—C14                          | 1.385 (2)   |
| С2—Н2                    | 0.9500                   | С13—Н13                          | 0.9500      |
| C3—C4                    | 1.373 (3)                | C14—C15                          | 1.510 (3)   |
| С3—Н3                    | 0.9500                   | O15—C15                          | 1.215 (2)   |
| C4—C5                    | 1.385 (3)                | C15—C16                          | 1.482 (3)   |
| C4—H4                    | 0.9500                   | C16—H16A                         | 0.9800      |
| C5—C6                    | 1.386 (2)                | C16—H16B                         | 0.9800      |
| С5—Н5                    | 0.9500                   | C16—H16C                         | 0.9800      |
| C6—C7                    | 1.505 (3)                | B25—F29′                         | 1.307 (6)   |
| 07—C7                    | 1.212 (2)                | B25—F29                          | 1.324 (4)   |
| C7—C8                    | 1.502(2)                 | B25—F28                          | 1 368 (4)   |
| C8—H8A                   | 0.9800                   | B25—F26                          | 1.380(3)    |
| C8—H8B                   | 0.9800                   | B25 F20<br>B25_F27'              | 1.303 (5)   |
|                          | 0.9800                   | B25 E28'                         | 1.375(5)    |
| N0 C10                   | 1.340(2)                 | D25—128<br>D25 E27               | 1.413(3)    |
| N9-C10                   | 1.340(2)                 | B23—F27                          | 1.428 (3)   |
| N9-C14                   | 1.348 (2)                |                                  |             |
| $NQ \Delta \alpha 1 N1$  | 165 02 (6)               | N9 C10 C11                       | 123 05 (10) |
| $N_{2} = Ag_{1} = N_{1}$ | 105.92(0)                | $N_{0} = C_{10} = C_{11}$        | 123.03 (19) |
| $N_1 = Ag_1 = O_{15}$    | 10.09(3)                 | 10 - 10 - 110                    | 118.5       |
| NI - AgI = OI3           | 122.03(3)                | C12 C11 C10                      | 110.3       |
| N9—Ag1—07                | 121.02(5)                | C12— $C11$ — $C10$               | 118.00 (19) |
| NI—AgI—O/                | 69.62 (5)                | CI2—CII—HII                      | 120.7       |
| 015—Ag1—07               | 83.23 (5)                | С10—С11—Н11                      | 120.7       |
| C2—N1—C6                 | 118.14 (16)              | C11—C12—C13                      | 119.11 (17) |
| C2—N1—Ag1                | 120.49 (12)              | C11—C12—H12                      | 120.4       |
| C6—N1—Ag1                | 120.74 (13)              | C13—C12—H12                      | 120.4       |
| N1—C2—C3                 | 122.97 (19)              | C14—C13—C12                      | 119.07 (19) |
| N1—C2—H2                 | 118.5                    | C14—C13—H13                      | 120.5       |
| С3—С2—Н2                 | 118.5                    | С12—С13—Н13                      | 120.5       |
| C4—C3—C2                 | 118.6 (2)                | N9—C14—C13                       | 122.03 (17) |
| С4—С3—Н3                 | 120.7                    | N9—C14—C15                       | 116.76 (15) |
| С2—С3—Н3                 | 120.7                    | C13—C14—C15                      | 121.16 (18) |
| C3—C4—C5                 | 119.31 (18)              | C15—O15—Ag1                      | 110.96 (13) |
| C3—C4—H4                 | 120.3                    | 015—C15—C16                      | 121.06 (18) |
| C5—C4—H4                 | 120.3                    | 015—C15—C14                      | 120.05 (18) |
| C4-C5-C6                 | 119 22 (19)              | C16-C15-C14                      | 118 84 (15) |
| C4-C5-H5                 | 120.4                    | $C_{15}$ $C_{16}$ $H_{16A}$      | 109.5       |
| C6-C5-H5                 | 120.4                    | $C_{15}$ $C_{16}$ $H_{16B}$      | 109.5       |
| N1 C6 C5                 | 120.4<br>121.73(18)      |                                  | 109.5       |
| N1C6C7                   | 121.73(16)<br>116.22(15) | $C_{15} = C_{16} = H_{16}C_{16}$ | 109.5       |
| N1 = C0 = C7             | 110.32(13)<br>121.02(17) |                                  | 109.5       |
| $C_{3}$                  | 121.93 (17)              | H10A - C10 - H10C                | 109.5       |
| C/                       | 112.42 (12)              | H10B - C10 - H10C                | 109.5       |
| 0/                       | 120.55 (19)              | F29—B25—F28                      | 112.6 (3)   |
| 0/                       | 120.42 (16)              | F29'—B25—F26                     | 109.0 (3)   |
| C8—C7—C6                 | 119.04 (17)              | F29—B25—F26                      | 111.2 (2)   |
| С7—С8—Н8А                | 109.5                    | F28—B25—F26                      | 105.6 (3)   |
| С7—С8—Н8В                | 109.5                    | F29'—B25—F27'                    | 111.3 (4)   |

# supporting information

| H8A—C8—H8B | 109.5       | F26—B25—F27'  | 115.8 (3) |
|------------|-------------|---------------|-----------|
| C7—C8—H8C  | 109.5       | F29'—B25—F28' | 109.9 (4) |
| H8A—C8—H8C | 109.5       | F26—B25—F28'  | 105.7 (3) |
| H8B—C8—H8C | 109.5       | F27'—B25—F28' | 104.8 (3) |
| C10—N9—C14 | 118.07 (16) | F29—B25—F27   | 110.4 (3) |
| C10—N9—Ag1 | 121.89 (13) | F28—B25—F27   | 105.7 (3) |
| C10—N9—Ag1 | 121.89 (13) | F28—B25—F27   | 105.7 (3) |
| C14—N9—Ag1 | 120.00 (12) | F26—B25—F27   | 111.2 (3) |