

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Pyridine-2-carboximidamidate chloride monohydrate

### Qifan Chen,<sup>a</sup> Huidong Zhang,<sup>a</sup> Fang Zhang<sup>b</sup> and Fei Liu<sup>b\*</sup>

<sup>a</sup>Experiment Center, Eastern Liaoning University, No. 325 Wenhua Road, Yuanbao District, Dandong City, Liaoning Province 118003, People's Republic of China, and <sup>b</sup>College of Chemical Engineering & Materials, Eastern Liaoning University, No. 325 Wenhua Road, Yuanbao District, Dandong City, Liaoning Province 118003, People's Republic of China

Correspondence e-mail: berylliu8090@sina.com

Received 26 October 2010; accepted 9 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.117; data-to-parameter ratio = 14.2.

The title compound,  $C_6H_8N_3^+ \cdot Cl^- \cdot H_2O$ , crystallizes with three formula units in the asymmetric unit. The cations are nonplanar with the  $-C(NH_2)_2$  groups twisted out of the ring planes. Each pyridine carboximidamidate cation is linked to another cation through  $N-H \cdots N$  hydrogen bonds, to chloride ions by  $N-H \cdots Cl$  hydrogen bonds, and to water molecules by  $N-H \cdots O$  hydrogen bonds. Water molecules and chloride ions are also linked together *via*  $O-H \cdots Cl$ hydrogen bonds. In the crystal, all these intermolecular interactions result in a three-dimensional network.

#### **Related literature**

For related structures, see: Guo et al. (2005); Fan et al. (2009); Góker et al. (2005); Walther et al. (2006).



#### Experimental

| Crystal data                        |                                |
|-------------------------------------|--------------------------------|
| $C_6H_8N_3^+ \cdot Cl^- \cdot H_2O$ | c = 16.862 (3) Å               |
| $M_r = 175.62$                      | $\alpha = 79.24 (3)^{\circ}$   |
| Triclinic, P1                       | $\beta = 82.14 \ (3)^{\circ}$  |
| a = 7.2570 (15)  Å                  | $\gamma = 78.34 \ (3)^{\circ}$ |
| b = 11.146 (2) Å                    | V = 1305.3 (5) Å <sup>3</sup>  |

#### Z = 6Mo $K\alpha$ radiation $\mu = 0.39 \text{ mm}^{-1}$

#### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan

(ABSCOR; Higashi, 1995) $T_{min} = 0.909, T_{max} = 0.918$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$  $wR(F^2) = 0.117$ S = 1.115919 reflections

 $\Delta \rho_{\min} = -0.26$ 

5919 independent reflections 4550 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.024$ 

12872 measured reflections

418 parameters All H-atom parameters refined  $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$ 

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$              | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N23-H23B\cdotsO1^{i}$                   | 0.87 (2) | 1.97 (2)                | 2.829 (2)    | 173 (2)                              |
| $N22 - H22B \cdots Cl1$                  | 0.89 (3) | 2.31 (3)                | 3.187 (2)    | 169 (2)                              |
| $N12 - H12B \cdot \cdot \cdot Cl3^{ii}$  | 0.91 (2) | 2.35 (2)                | 3.2522 (19)  | 170.2 (18)                           |
| $O1 - H1B \cdot \cdot \cdot Cl3$         | 0.80 (3) | 2.37 (3)                | 3.163 (2)    | 169 (2)                              |
| $N2-H2A\cdots Cl2^{iii}$                 | 0.85 (3) | 2.49 (3)                | 3.326 (2)    | 167 (2)                              |
| $O1 - H10 \cdot \cdot \cdot Cl2^{iv}$    | 0.98 (4) | 2.22 (4)                | 3.1902 (19)  | 173 (3)                              |
| $N3-H3A\cdots O2$                        | 0.87 (2) | 1.94 (2)                | 2.808 (2)    | 174.9 (19)                           |
| $N2 - H2B \cdot \cdot \cdot Cl1$         | 0.96 (2) | 2.32 (2)                | 3.2754 (17)  | 170.9 (17)                           |
| $N12 - H12A \cdot \cdot \cdot Cl3^{v}$   | 0.89 (2) | 2.43 (2)                | 3.313 (2)    | 171 (2)                              |
| $N23 - H23A \cdot \cdot \cdot Cl3^{vi}$  | 0.87 (2) | 2.50 (2)                | 3.324 (2)    | 158 (2)                              |
| $N13 - H13B \cdot \cdot \cdot O3^{ii}$   | 0.92 (2) | 1.97 (2)                | 2.883 (2)    | 178 (2)                              |
| $N22 - H22A \cdot \cdot \cdot Cl2^{iii}$ | 0.91(2)  | 2.43 (3)                | 3.3194 (18)  | 168 (2)                              |
| $N13 - H13A \cdots Cl1$                  | 0.91(2)  | 2.48 (2)                | 3.335 (2)    | 156.9 (19)                           |
| $O3 - H03B \cdot \cdot \cdot Cl2^{iv}$   | 0.84 (4) | 2.45 (4)                | 3.286 (2)    | 174 (3)                              |
| $O2 - H0B \cdot \cdot \cdot Cl1$         | 0.85 (3) | 2.28 (3)                | 3.1171 (18)  | 172 (2)                              |
| $O2 - H0A \cdots Cl2$                    | 0.79 (3) | 2.40 (3)                | 3.1833 (18)  | 175 (3)                              |
| $O3 - H03A \cdots Cl3$                   | 0.94 (4) | 2.25 (4)                | 3.1586 (18)  | 164 (3)                              |

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) -x, -y + 1, -z; (iv) -x + 1, -y + 1, -z; (v) -x + 1, -y + 1, -z + 1; (vi) -x, -y + 1, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999) and *SHELXP97* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge financial support from the Education Department of Liaoning Province (2009 A 265) and Liaoning University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2070).

#### References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
Fan, P., Wang, L. & Zhang, H. (2009). *Acta Cryst*. E65, o2408.
Góker, H., Ózden, S., Yildiz, S. & Boykin, D. W. (2005). *Eur. J. Med. Chem.* 40, 1062–1069.
Guo, J., Wong, W.-K. & Wong, W.-Y. (2005). *Polyhedron*, 24, 927–939.
Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Walther, M., Wermann, H., Lutsche, M., Gúnther, W., Górls, H. & Anders, E. (2006). J. Org. Chem. 71, 1399–1406.

 $0.25 \times 0.24 \times 0.22 \text{ mm}$ 

T = 293 K

## Acta Cryst. (2010). E66, o3169 [https://doi.org/10.1107/S1600536810046106] Pyridine-2-carboximidamidate chloride monohydrate

### Qifan Chen, Huidong Zhang, Fang Zhang and Fei Liu

### S1. Comment

The pyridinecarboximidamidate derivatives have attracted a great attention due to their very potent antibacterial activities, interesting biological properties and applications in coordination chemistry, but a few samples have been reported (Guo *et al.*, 2005; Góker *et al.*, 2005; Walther *et al.*, 2006; Fan *et al.*, 2009). Here we report the structure of title compound  $C_6H_8N_3^+$ .Cl<sup>-</sup>.H<sub>2</sub>O. The title compound is an organic salt and crystallizes with three formula units in the asymmetric unit (Fig. 1). The molecules are nonplanar with the C(NH<sub>2</sub>)<sub>2</sub> groups twisted out of the ring planes. The bond lengths and angles exhibit normal values and are comparable with those in the related structures (Guo *et al.*, 2005; Fan *et al.*, 2009).

In the crystal structure, pyridine carboximidamidate cations adopt three different connecting types (Fig. 2). Each pyridine carboximidamidate cation is linked to another cation through N—H···N hydrogen bonds, to chloride ions by N—H···Cl hydrogen bonds, and to water molecules by N—H···O hydrogen bonds. Water molecules and chloride ions are also linked together *via* O—H···Cl hydrogen bonds (Table 1). In the crystal structure, all these intermolecular interactions result in a three-dimensional network (Fig. 3).

### **S2. Experimental**

To a solution of sodium methoxide (5.15 mmol) in methanol (50 mL) was added 2-cyanopyridine (5.2 g, 4.99 mmol). The mixture was stirred at room temperature for 4 h. Then ammonium chloride (2.9 g, 5.42 mmol) was slowly added to the resulting solution and the mixture was stirred at room temperature for 68 h. The resulting suspension was filtered and the solvent was removed from the filtrate under reduced pressure. Purification by wash with ethyl ether gave 2-amidino-pyridine hydrochloride (5.62 g, 92%) as an off-white solid. Colorless crystals were formed after several days.

### **S3. Refinement**

The H atoms were initially found in a difference Fourier map and their coordinates were refined freely.





The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.







Figure 3

Crystal packing of the title compound.

Pyridine-2-carboximidamidate chloride monohydrate

#### Crystal data

C<sub>6</sub>H<sub>8</sub>N<sub>3</sub><sup>+</sup>·Cl<sup>-</sup>·H<sub>2</sub>O  $M_r = 175.62$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.2570 (15) Å b = 11.146 (2) Å c = 16.862 (3) Å a = 79.24 (3)°  $\beta = 82.14$  (3)°  $\gamma = 78.34$  (3)° V = 1305.3 (5) Å<sup>3</sup>

#### Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995)  $T_{\min} = 0.909, T_{\max} = 0.918$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.035$  $wR(F^2) = 0.117$ S = 1.115919 reflections 418 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 6 F(000) = 552  $D_x = 1.340 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9445 reflections  $\theta = 3.0-27.4^{\circ}$   $\mu = 0.39 \text{ mm}^{-1}$ T = 293 K Block, colourless  $0.25 \times 0.24 \times 0.22 \text{ mm}$ 

12872 measured reflections 5919 independent reflections 4550 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.024$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.0^{\circ}$  $h = -9 \rightarrow 9$  $k = -14 \rightarrow 14$  $l = -21 \rightarrow 21$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites All H-atom parameters refined  $w = 1/[\sigma^2(F_o^2) + (0.0684P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.23$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.26$  e Å<sup>-3</sup>

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|--------------|---------------|-----------------------------|--|
| Cl1  | 0.17320 (7) | 0.30230 (4)  | 0.10288 (2)   | 0.04346 (13)                |  |
| 01   | 0.7888 (3)  | 0.60439 (14) | 0.40146 (10)  | 0.0647 (4)                  |  |
| H1B  | 0.690 (4)   | 0.647 (3)    | 0.4141 (15)   | 0.073 (8)*                  |  |
| H10  | 0.821 (5)   | 0.635 (3)    | 0.344 (2)     | 0.120 (11)*                 |  |
| N1   | 0.3062 (2)  | 0.86483 (13) | -0.07194 (8)  | 0.0432 (3)                  |  |
| C1   | 0.3052 (3)  | 0.98536 (18) | -0.07462 (13) | 0.0540 (5)                  |  |
| H1   | 0.336 (4)   | 1.031 (2)    | -0.1243 (15)  | 0.078 (7)*                  |  |
| Cl2  | 0.13596 (7) | 0.30724 (4)  | -0.21061 (3)  | 0.04888 (14)                |  |
| O2   | 0.3482 (2)  | 0.37193 (13) | -0.07519 (9)  | 0.0530 (4)                  |  |
| H0B  | 0.305 (4)   | 0.345 (2)    | -0.0273 (16)  | 0.077 (8)*                  |  |
| H0A  | 0.297 (4)   | 0.351 (2)    | -0.1073 (17)  | 0.075 (8)*                  |  |
| N2   | 0.1754 (2)  | 0.60101 (14) | 0.06004 (10)  | 0.0429 (3)                  |  |
| H2A  | 0.111 (4)   | 0.629 (2)    | 0.1009 (15)   | 0.071 (7)*                  |  |
| H2B  | 0.180 (3)   | 0.513 (2)    | 0.0663 (12)   | 0.053 (6)*                  |  |
| C2   | 0.2604 (3)  | 1.04352 (17) | -0.00802 (14) | 0.0561 (5)                  |  |
| H2   | 0.261 (3)   | 1.131 (2)    | -0.0152 (12)  | 0.055 (6)*                  |  |
| C13  | 0.43514 (7) | 0.80296 (4)  | 0.45146 (3)   | 0.05099 (14)                |  |
| O3   | 0.4557 (3)  | 0.86529 (14) | 0.26022 (10)  | 0.0627 (4)                  |  |
| H03B | 0.561 (5)   | 0.826 (3)    | 0.2445 (19)   | 0.102 (11)*                 |  |
| H03A | 0.448 (5)   | 0.831 (3)    | 0.316 (2)     | 0.121 (12)*                 |  |
| N3   | 0.3540 (2)  | 0.61884 (14) | -0.06282 (9)  | 0.0426 (3)                  |  |
| H3B  | 0.410 (3)   | 0.669 (2)    | -0.1007 (13)  | 0.054 (6)*                  |  |
| H3A  | 0.350 (3)   | 0.544 (2)    | -0.0696 (12)  | 0.051 (5)*                  |  |
| C3   | 0.2174 (3)  | 0.97567 (18) | 0.06587 (13)  | 0.0564 (5)                  |  |
| H3   | 0.189 (3)   | 1.014 (2)    | 0.1127 (14)   | 0.070 (7)*                  |  |
| C4   | 0.2181 (3)  | 0.85015 (18) | 0.07107 (11)  | 0.0478 (4)                  |  |
| H4   | 0.192 (3)   | 0.800(2)     | 0.1214 (14)   | 0.067 (7)*                  |  |
| C5   | 0.2600 (2)  | 0.80020 (14) | 0.00027 (9)   | 0.0343 (3)                  |  |
| C6   | 0.2627 (2)  | 0.66679 (14) | -0.00077 (9)  | 0.0338 (3)                  |  |
| N11  | 0.4303 (2)  | 0.37190 (13) | 0.25233 (9)   | 0.0428 (3)                  |  |
| C11  | 0.4055 (3)  | 0.49449 (19) | 0.24780 (13)  | 0.0540 (5)                  |  |
| H11  | 0.446 (3)   | 0.542 (2)    | 0.2001 (13)   | 0.058 (6)*                  |  |
| N12  | 0.4363 (3)  | 0.09814 (16) | 0.39452 (10)  | 0.0502 (4)                  |  |
| H12B | 0.440 (3)   | 0.014 (2)    | 0.4040 (13)   | 0.055 (6)*                  |  |
| H12A | 0.456 (3)   | 0.128 (2)    | 0.4371 (15)   | 0.065 (7)*                  |  |
| C12  | 0.3223 (3)  | 0.55573 (19) | 0.31194 (14)  | 0.0604 (5)                  |  |
| H12  | 0.311 (4)   | 0.648 (2)    | 0.3024 (15)   | 0.081 (8)*                  |  |
| N13  | 0.3872 (2)  | 0.12940 (15) | 0.25963 (10)  | 0.0447 (3)                  |  |
| H13B | 0.413 (3)   | 0.045 (2)    | 0.2600 (13)   | 0.059 (6)*                  |  |
| H13A | 0.360 (3)   | 0.187 (2)    | 0.2153 (13)   | 0.060 (6)*                  |  |
| C13  | 0.2613 (3)  | 0.4879 (2)   | 0.38308 (14)  | 0.0599 (5)                  |  |
| H13  | 0.207 (4)   | 0.528 (2)    | 0.4224 (16)   | 0.078 (8)*                  |  |
| C14  | 0.2851 (3)  | 0.36072 (18) | 0.38966 (12)  | 0.0477 (4)                  |  |
| H14  | 0.241 (3)   | 0.3113 (19)  | 0.4350 (12)   | 0.048 (5)*                  |  |
| C15  | 0.3718 (2)  | 0.30783 (15) | 0.32274 (10)  | 0.0368 (3)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C16  | 0.4002 (2)  | 0.17137 (16)  | 0.32577 (10) | 0.0384 (4) |
|------|-------------|---------------|--------------|------------|
| N21  | -0.0617 (2) | 0.10605 (13)  | 0.39607 (8)  | 0.0441 (3) |
| C21  | -0.0357 (3) | -0.01675 (19) | 0.40054 (13) | 0.0563 (5) |
| H21  | -0.005 (3)  | -0.059 (2)    | 0.4527 (13)  | 0.062 (6)* |
| N22  | -0.0909 (2) | 0.38620 (15)  | 0.25737 (9)  | 0.0446 (3) |
| H22B | -0.032 (3)  | 0.359 (2)     | 0.2128 (15)  | 0.066 (7)* |
| H22A | -0.111 (3)  | 0.470 (2)     | 0.2526 (14)  | 0.069 (7)* |
| C22  | -0.0480 (3) | -0.07293 (19) | 0.33556 (13) | 0.0559 (5) |
| H22  | -0.030 (3)  | -0.160 (2)    | 0.3423 (13)  | 0.061 (6)* |
| N23  | -0.2026 (2) | 0.35240 (16)  | 0.39229 (10) | 0.0453 (4) |
| H23B | -0.215 (3)  | 0.430 (2)     | 0.3963 (13)  | 0.058 (6)* |
| H23A | -0.232 (3)  | 0.299 (2)     | 0.4342 (14)  | 0.057 (6)* |
| C23  | -0.0891 (3) | -0.00047 (19) | 0.26314 (12) | 0.0526 (5) |
| H23  | -0.103 (4)  | -0.035 (2)    | 0.2163 (15)  | 0.077 (7)* |
| C24  | -0.1160 (3) | 0.12748 (18)  | 0.25641 (10) | 0.0431 (4) |
| H24  | -0.146 (3)  | 0.1764 (18)   | 0.2077 (12)  | 0.048 (5)* |
| C25  | -0.1009 (2) | 0.17539 (15)  | 0.32452 (9)  | 0.0338 (3) |
| C26  | -0.1327 (2) | 0.31196 (15)  | 0.32427 (9)  | 0.0352 (3) |
|      |             |               |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|-------------|-------------|-------------|---------------|--------------|---------------|
| C11 | 0.0579 (3)  | 0.0378 (2)  | 0.0333 (2)  | -0.01169 (18) | 0.00298 (17) | -0.00477 (16) |
| 01  | 0.0845 (12) | 0.0469 (8)  | 0.0521 (9)  | 0.0040 (8)    | 0.0066 (8)   | -0.0091 (7)   |
| N1  | 0.0551 (9)  | 0.0372 (8)  | 0.0361 (7)  | -0.0117 (7)   | -0.0026 (6)  | -0.0009 (6)   |
| C1  | 0.0739 (14) | 0.0379 (10) | 0.0502 (11) | -0.0197 (9)   | -0.0090 (10) | 0.0050 (9)    |
| Cl2 | 0.0640 (3)  | 0.0430 (2)  | 0.0393 (2)  | -0.0127 (2)   | 0.00567 (19) | -0.01046 (18) |
| O2  | 0.0740 (10) | 0.0492 (8)  | 0.0412 (7)  | -0.0272 (7)   | 0.0026 (7)   | -0.0098 (6)   |
| N2  | 0.0535 (9)  | 0.0310 (7)  | 0.0428 (8)  | -0.0122 (7)   | 0.0073 (7)   | -0.0061 (6)   |
| C2  | 0.0651 (13) | 0.0295 (9)  | 0.0749 (14) | -0.0119 (8)   | -0.0056 (11) | -0.0094 (9)   |
| Cl3 | 0.0642 (3)  | 0.0439 (2)  | 0.0370 (2)  | -0.0035 (2)   | 0.00486 (19) | -0.00088 (18) |
| O3  | 0.0851 (12) | 0.0472 (8)  | 0.0474 (8)  | -0.0042 (8)   | 0.0026 (8)   | -0.0020 (7)   |
| N3  | 0.0529 (9)  | 0.0337 (8)  | 0.0407 (8)  | -0.0116 (7)   | 0.0084 (7)   | -0.0102 (7)   |
| C3  | 0.0654 (13) | 0.0476 (11) | 0.0625 (12) | -0.0181 (10)  | 0.0094 (10)  | -0.0280 (10)  |
| C4  | 0.0608 (12) | 0.0435 (10) | 0.0397 (9)  | -0.0164 (9)   | 0.0071 (8)   | -0.0098 (8)   |
| C5  | 0.0341 (8)  | 0.0301 (8)  | 0.0375 (8)  | -0.0047 (6)   | -0.0016 (6)  | -0.0056 (6)   |
| C6  | 0.0351 (8)  | 0.0304 (8)  | 0.0346 (8)  | -0.0056 (6)   | -0.0029 (6)  | -0.0032 (6)   |
| N11 | 0.0463 (8)  | 0.0403 (8)  | 0.0413 (8)  | -0.0133 (7)   | -0.0022 (6)  | -0.0011 (6)   |
| C11 | 0.0637 (13) | 0.0431 (10) | 0.0535 (11) | -0.0168 (9)   | -0.0050 (10) | 0.0036 (9)    |
| N12 | 0.0662 (11) | 0.0378 (9)  | 0.0454 (9)  | -0.0115 (8)   | -0.0133 (8)  | 0.0036 (7)    |
| C12 | 0.0682 (14) | 0.0369 (10) | 0.0749 (15) | -0.0044 (9)   | -0.0132 (11) | -0.0077 (10)  |
| N13 | 0.0533 (9)  | 0.0357 (8)  | 0.0439 (8)  | -0.0081 (7)   | -0.0068 (7)  | -0.0020(7)    |
| C13 | 0.0672 (14) | 0.0520 (12) | 0.0582 (12) | 0.0050 (10)   | -0.0078 (11) | -0.0191 (10)  |
| C14 | 0.0487 (10) | 0.0482 (10) | 0.0398 (9)  | -0.0024 (8)   | -0.0011 (8)  | -0.0003 (8)   |
| C15 | 0.0332 (8)  | 0.0374 (9)  | 0.0389 (8)  | -0.0072 (7)   | -0.0064 (7)  | -0.0013 (7)   |
| C16 | 0.0322 (8)  | 0.0416 (9)  | 0.0394 (8)  | -0.0090 (7)   | -0.0025 (7)  | 0.0000 (7)    |
| N21 | 0.0555 (9)  | 0.0392 (8)  | 0.0350 (7)  | -0.0006 (7)   | -0.0085 (6)  | -0.0053 (6)   |
| C21 | 0.0746 (14) | 0.0421 (10) | 0.0474 (10) | 0.0028 (9)    | -0.0149 (10) | -0.0041 (8)   |
|     |             |             |             |               |              |               |

| N22<br>C22 | 0.0531 (9)<br>0.0681 (14) | 0.0370 (8)<br>0.0391 (10) | 0.0395 (8)<br>0.0615 (12) | -0.0089(7)<br>-0.0083(9) | 0.0081 (7)<br>-0.0054 (10) | -0.0044 (7)<br>-0.0137 (9) |
|------------|---------------------------|---------------------------|---------------------------|--------------------------|----------------------------|----------------------------|
| N23        | 0.0547 (10)               | 0.0402 (9)                | 0.0387 (8)                | -0.0099 (7)              | 0.0087 (7)                 | -0.0088 (7)                |
| C23        | 0.0634 (13)               | 0.0548 (11)               | 0.0470 (10)               | -0.0201 (10)             | -0.0012 (9)                | -0.0202 (9)                |
| C24        | 0.0499 (10)               | 0.0495 (10)               | 0.0328 (8)                | -0.0184 (8)              | -0.0036 (7)                | -0.0046 (7)                |
| C25        | 0.0287 (7)                | 0.0381 (8)                | 0.0337 (7)                | -0.0066 (6)              | 0.0006 (6)                 | -0.0060 (6)                |
| C26        | 0.0309 (8)                | 0.0383 (9)                | 0.0355 (8)                | -0.0074 (7)              | 0.0001 (6)                 | -0.0053 (7)                |

Geometric parameters (Å, °)

| O1—H1B     | 0.80 (3)    | N12—H12A      | 0.89 (2)    |
|------------|-------------|---------------|-------------|
| O1—H10     | 0.98 (4)    | C12—C13       | 1.363 (3)   |
| N1—C5      | 1.331 (2)   | C12—H12       | 1.00 (3)    |
| N1—C1      | 1.334 (2)   | N13—C16       | 1.309 (2)   |
| C1—C2      | 1.369 (3)   | N13—H13B      | 0.92 (2)    |
| C1—H1      | 0.92 (2)    | N13—H13A      | 0.91 (2)    |
| O2—H0B     | 0.85 (3)    | C13—C14       | 1.378 (3)   |
| O2—H0A     | 0.79 (3)    | С13—Н13       | 0.87 (3)    |
| N2—C6      | 1.311 (2)   | C14—C15       | 1.386 (3)   |
| N2—H2A     | 0.85 (3)    | C14—H14       | 0.91 (2)    |
| N2—H2B     | 0.96 (2)    | C15—C16       | 1.485 (2)   |
| C2—C3      | 1.364 (3)   | N21—C21       | 1.333 (2)   |
| C2—H2      | 0.96 (2)    | N21—C25       | 1.338 (2)   |
| O3—H03B    | 0.84 (4)    | C21—C22       | 1.381 (3)   |
| O3—H03A    | 0.94 (4)    | C21—H21       | 0.95 (2)    |
| N3—C6      | 1.302 (2)   | N22—C26       | 1.307 (2)   |
| N3—H3B     | 0.88 (2)    | N22—H22B      | 0.89 (3)    |
| N3—H3A     | 0.87 (2)    | N22—H22A      | 0.91 (2)    |
| C3—C4      | 1.384 (3)   | C22—C23       | 1.366 (3)   |
| С3—Н3      | 0.95 (2)    | С22—Н22       | 0.94 (2)    |
| C4—C5      | 1.381 (2)   | N23—C26       | 1.311 (2)   |
| C4—H4      | 0.94 (2)    | N23—H23B      | 0.87 (2)    |
| C5—C6      | 1.486 (2)   | N23—H23A      | 0.87 (2)    |
| N11—C15    | 1.330 (2)   | C23—C24       | 1.385 (3)   |
| N11—C11    | 1.331 (2)   | С23—Н23       | 0.97 (2)    |
| C11—C12    | 1.390 (3)   | C24—C25       | 1.380 (2)   |
| C11—H11    | 0.92 (2)    | C24—H24       | 0.924 (19)  |
| N12—C16    | 1.312 (2)   | C25—C26       | 1.492 (2)   |
| N12—H12B   | 0.91 (2)    |               |             |
|            |             |               |             |
| H1B—O1—H10 | 106 (3)     | C16—N13—H13A  | 116.6 (13)  |
| C5—N1—C1   | 116.70 (15) | H13B—N13—H13A | 124.4 (19)  |
| N1—C1—C2   | 123.59 (18) | C12—C13—C14   | 119.3 (2)   |
| N1—C1—H1   | 117.3 (16)  | C12—C13—H13   | 117.7 (17)  |
| C2—C1—H1   | 119.1 (16)  | C14—C13—H13   | 123.0 (17)  |
| H0B—O2—H0A | 111 (2)     | C13—C14—C15   | 117.69 (19) |
| C6—N2—H2A  | 125.2 (16)  | C13—C14—H14   | 122.7 (13)  |
| C6—N2—H2B  | 124.9 (13)  | C15—C14—H14   | 119.5 (12)  |

| H2A—N2—H2B    | 110 (2)     | N11—C15—C14   | 124.30 (16) |
|---------------|-------------|---------------|-------------|
| C3—C2—C1      | 119.11 (17) | N11—C15—C16   | 115.39 (15) |
| С3—С2—Н2      | 122.4 (12)  | C14—C15—C16   | 120.29 (16) |
| C1—C2—H2      | 118.5 (12)  | N13—C16—N12   | 122.82 (17) |
| H03B—O3—H03A  | 100 (3)     | N13—C16—C15   | 118.41 (15) |
| C6—N3—H3B     | 116.3 (14)  | N12-C16-C15   | 118.77 (16) |
| C6—N3—H3A     | 122.4 (14)  | C21—N21—C25   | 116.99 (15) |
| H3B—N3—H3A    | 120.9 (19)  | N21—C21—C22   | 122.95 (18) |
| C2—C3—C4      | 118.91 (18) | N21—C21—H21   | 111.6 (13)  |
| С2—С3—Н3      | 120.1 (14)  | C22—C21—H21   | 125.4 (13)  |
| С4—С3—Н3      | 121.0 (14)  | C26—N22—H22B  | 123.0 (15)  |
| C5—C4—C3      | 117.91 (18) | C26—N22—H22A  | 124.0 (15)  |
| C5—C4—H4      | 121.0 (13)  | H22B—N22—H22A | 113 (2)     |
| C3—C4—H4      | 121.1 (13)  | C23—C22—C21   | 119.16 (18) |
| N1-C5-C4      | 123.74 (15) | C23—C22—H22   | 121.3 (13)  |
| N1-C5-C6      | 114.14 (13) | C21—C22—H22   | 119.5 (13)  |
| C4—C5—C6      | 122.09 (15) | C26—N23—H23B  | 121.2 (15)  |
| N3—C6—N2      | 122.05 (15) | C26—N23—H23A  | 118.2 (14)  |
| N3—C6—C5      | 118.14 (15) | H23B—N23—H23A | 121 (2)     |
| N2—C6—C5      | 119.81 (15) | C22—C23—C24   | 119.30 (17) |
| C15—N11—C11   | 116.63 (16) | С22—С23—Н23   | 122.4 (15)  |
| N11—C11—C12   | 123.22 (19) | С24—С23—Н23   | 118.3 (15)  |
| N11—C11—H11   | 119.1 (14)  | C25—C24—C23   | 117.51 (17) |
| C12—C11—H11   | 117.7 (14)  | C25—C24—H24   | 123.3 (12)  |
| C16—N12—H12B  | 124.8 (13)  | C23—C24—H24   | 119.2 (12)  |
| C16—N12—H12A  | 121.0 (15)  | N21—C25—C24   | 124.10 (15) |
| H12B—N12—H12A | 114.1 (19)  | N21—C25—C26   | 114.20 (14) |
| C13—C12—C11   | 118.88 (19) | C24—C25—C26   | 121.68 (15) |
| C13—C12—H12   | 124.1 (15)  | N22—C26—N23   | 122.63 (16) |
| C11—C12—H12   | 117.0 (15)  | N22—C26—C25   | 119.59 (15) |
| C16—N13—H13B  | 119.0 (13)  | N23—C26—C25   | 117.78 (15) |
|               |             |               |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H      | H···A    | D····A      | <i>D</i> —H··· <i>A</i> |
|--------------------------------------|----------|----------|-------------|-------------------------|
| N23—H23 <i>B</i> …O1 <sup>i</sup>    | 0.87 (2) | 1.97 (2) | 2.829 (2)   | 173 (2)                 |
| N22—H22B···Cl1                       | 0.89 (3) | 2.31 (3) | 3.187 (2)   | 169 (2)                 |
| N12—H12B····Cl3 <sup>ii</sup>        | 0.91 (2) | 2.35 (2) | 3.2522 (19) | 170.2 (18)              |
| O1—H1 <i>B</i> ···Cl3                | 0.80 (3) | 2.37 (3) | 3.163 (2)   | 169 (2)                 |
| N2—H2A····Cl2 <sup>iii</sup>         | 0.85 (3) | 2.49 (3) | 3.326 (2)   | 167 (2)                 |
| O1—H10····Cl2 <sup>iv</sup>          | 0.98 (4) | 2.22 (4) | 3.1902 (19) | 173 (3)                 |
| N3—H3 <i>A</i> ···O2                 | 0.87 (2) | 1.94 (2) | 2.808 (2)   | 174.9 (19)              |
| N2—H2 <i>B</i> ···Cl1                | 0.96 (2) | 2.32 (2) | 3.2754 (17) | 170.9 (17)              |
| N12—H12A····Cl3 <sup>v</sup>         | 0.89 (2) | 2.43 (2) | 3.313 (2)   | 171 (2)                 |
| N23—H23A····Cl3 <sup>vi</sup>        | 0.87 (2) | 2.50 (2) | 3.324 (2)   | 158 (2)                 |
| N13—H13 <i>B</i> ···O3 <sup>ii</sup> | 0.92 (2) | 1.97 (2) | 2.883 (2)   | 178 (2)                 |
| N22—H22A····Cl2 <sup>iii</sup>       | 0.91 (2) | 2.43 (3) | 3.3194 (18) | 168 (2)                 |
| N13—H13A…C11                         | 0.91 (2) | 2.48 (2) | 3.335 (2)   | 156.9 (19)              |

| O3—H03 <i>B</i> ····Cl2 <sup>iv</sup> | 0.84 (4) | 2.45 (4) | 3.286 (2)   | 174 (3) |
|---------------------------------------|----------|----------|-------------|---------|
| O2—H0 <i>B</i> ···Cl1                 | 0.85 (3) | 2.28 (3) | 3.1171 (18) | 172 (2) |
| O2—H0A…Cl2                            | 0.79 (3) | 2.40 (3) | 3.1833 (18) | 175 (3) |
| O3—H03A····Cl3                        | 0.94 (4) | 2.25 (4) | 3.1586 (18) | 164 (3) |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*, -*y*+1, -*z*; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*, -*y*+1, -*z*+1.