Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(6-Bromo-4-oxo-4*H*-chromen-3-yl)-3,4-dihydro-2*H*-1,2,4-benzothiadiazine-1,1-dione

Mariya al-Rashida,^a‡ Saeed Ahmad Nagra,^a Islam Ullah Khan,^b George Kostakis^c and Ghulam Abbas^a*

^aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, ^bDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^cInstitute of Inorganic Chemistry, Karlsruhe Institute of Technology, D-76133 Karlsruhe, Germany

Correspondence e-mail: abbas191@gmail.com

Received 15 October 2010; accepted 1 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.103; data-to-parameter ratio = 17.4.

The molecular structure of the title compound, $C_{16}H_{11}BrN_2O_4S$, is very similar to that of the previously reported fluoro analogue [al-Rashida *et al.* (2010). *Acta Cryst.* **E66**, o2707]. The mean planes of the bicyclic chromone system and the benzene ring of the benzothiadiazine derivative make a dihedral angle of 58.23 (8)°. An intramolecular N-H···O hydrogen bond occurs. In the crystal, molecules are linked into layers by N-H···O and C-H···O hydrogen bonds, generating an infinite two-dimensional network.

Related literature

For background to the importance of the 1,2,4-benzothiadiazine-1,1-dioxide ring system in pharmaceutical and medicinal chemistry, see: Zhu *et al.* (2005); Kamal *et al.* (2007*a*). For a survey on the antimicrobial activity of benzothiadiazine derivatives, see: Di Bella *et al.* (1983); Kamal *et al.* (2007*a*,*b*). The sulfonamide group is an active pharmacophore, see: Weisman & Brown (1964). For related structures, see: al-Rashida *et al.* (2009, 2010).

Experimental

Crystal data C₁₆H₁₁BrN₂O₄S

 $M_r = 407.24$

‡ Additional corresponding author, e-mail: maria_al_rashida@hotmail.com.

Z = 4Mo *K* α radiation

 $\mu = 2.80 \text{ mm}^-$

 $0.28 \times 0.28 \times 0.22 \text{ mm}$

T = 296 K

Monoclinic, $P2_1/n$ a = 7.0778 (4) Å b = 8.6070 (6) Å c = 25.6290 (16) Å $\beta = 94.607$ (3)° V = 1556.24 (17) Å³

Data collection

Bruker APEXII CCD area-detector	17309 measured reflections
diffractometer	3873 independent reflections
Absorption correction: multi-scan	1969 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.058$
$T_{\min} = 0.475, \ T_{\max} = 0.540$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$vR(F^2) = 0.103$	independent and constrained
S = 0.98	refinement
3873 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
223 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
2 restraints	

Table 1		-	
Hydrogen-bond	geometry	(Å, '	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4A\cdots O4$	0.79 (3)	2.59 (3)	2.987 (3)	113 (3)
$N4-H4A\cdots O3^{i}$	0.79 (3)	2.23 (3)	2.999 (3)	164 (3)
C13-H13···O3 ⁱ	0.93	2.54 (1)	3.314 (4)	141 (1)
$N2 - H2A \cdots O2$	0.84(2)	2.67 (3)	3.222 (4)	124 (2)
$C2-H2\cdots O2$	0.93	2.41 (1)	3.330 (4)	169 (1)
$N2-H2A\cdots O4$	0.84 (2)	2.12 (3)	2.903 (4)	154 (3)

Symmetry code: (i) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors acknowledge the Higher Education Commission (HEC), Islamabad, Pakistan, for financial and GCU, Lahore, for technical support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2069).

References

- al-Rashida, M., Nagra, S. A., Khan, I. U., Kostakis, G. & Abbas, G. (2010). Acta Cryst. E66, 02707.
- al-Rashida, M., Tahir, M. N., Nagra, S. A., Imran, M. & Iqbal, J. (2009). Acta Cryst. E65, 01818–01819.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Di Bella, M., Monzani, A., Andrisano, M. G., Fabio, U. & Quaglio, G. P. (1983). *Farmaco*, **38**, 466–472.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kamal, A., Ahmed, S. K., Reddy, K. S., Khan, M. N. A., Shetty, R. V. C. R. N. C., Siddhardha, B., Murty, U. S. N., China, A. & Nagaraja, V. (2007a). Lett. Drug Des. Discov. 4, 550–556.

Kamal, A., Khan, M. N. A., Reddy, K. S., Rohini, K., Sastry, G. N., Sateesh, B. & Sridhar, B. (2007b). *Bioorg. Med. Chem. Lett.* 17, 5400–5405.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Weisman, R. A. & Brown, G. M. (1964). J. Biol. Chem. 239, 326-331.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhu, Z., Zhu, S., Liu, D., Cao, T., Wang, L. & Tepel, M. (2005). *Hypertension*, **45**, 233–239.

supporting information

Acta Cryst. (2010). E66, o3081–o3082 [https://doi.org/10.1107/S1600536810044648] 3-(6-Bromo-4-oxo-4*H*-chromen-3-yl)-3,4-dihydro-2*H*-1,2,4-benzothiadiazine-1,1-dione

Mariya al-Rashida, Saeed Ahmad Nagra, Islam Ullah Khan, George Kostakis and Ghulam Abbas

S1. Comment

The 1,2,4-benzothiadiazine-1,1-dioxide ring system is of considerable importance in medicinal and pharmaceutical chemistry (Zhu *et al.*, 2005; Kamal *et al.*, 2007*a*). Novel products from reactions of 4- and 2-aminobenzenesulfonamide with 6-(un)substituted-4-oxo-4*H*-1-benzopyran-3-carboxaldehyde have already been reported by us (Mariya-al-Rashida *et al.*, 2009, 2010). In continuation of our project, the crystal structure of the title compound is reported here (Fig. 1).

In the crystal structure, the two rings of the chromone system (Br1, O1, O4, C2—C10) are coplanar making a dihedral angle of 1.0 (2)°. The carbon atom C11 deviates from the mean plane of the chromone ring by 0.016 (4) Å. The phenyl ring (C12—C17) of the benzothiadiazine moiety and the atoms S1, N4 and C11 are almost planar as well (rms deviation = 0.007) and make a dihedral angle of 58.23 (8)° with the mean plane of the bicyclic chromone system. The crystal structure is stabilized by intra- and intermolecular N—H…O and C—H…O hydrogen bonds which link the molecules into an infinite two-dimensional network (Fig. 2).

S2. Experimental

A solution of 2-aminobenzenesulfonamide (1.0 mmol) in 10 ml e thanol was slowly added to the stirred solution of 6bromo-4-oxo-4*H*-1-benzopyran-3-carboxaldehyde (1.0 mmol) containing catalytic amount of *p*-toluene sulfonic acid (*p*-TsOH) and refluxed for 3 hrs. The resulting product was isolated by filtration, washed with ethanol, dried and recrystallized from hot ethanol and acetone (1:1) (yield 77%, m.p. 496 K).

S3. Refinement

The H atoms attached to N were located in a difference Fourier map and their coordinates were refined, with $U_{iso}(H) = 1.2U_{eq}(N)$. The remaining H atoms were positioned geometrically with C-H = 0.93 and 0.98 Å for aromatic and methine H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A packing diagram of the title compound showing hydrogen bonds as dashed lines.

3-(6-Bromo-4-oxo-4H-chromen-3-yl)-3,4-dihydro-2H-1,2,4- benzothiadiazine-1,1-dione

Crystal data

C₁₆H₁₁BrN₂O₄S $M_r = 407.24$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.0778 (4) Å b = 8.6070 (6) Å c = 25.6290 (16) Å $\beta = 94.607$ (3)° V = 1556.24 (17) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator F(000) = 816 $D_x = 1.738 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2932 reflections $\theta = 3.1-22.1^{\circ}$ $\mu = 2.80 \text{ mm}^{-1}$ T = 296 KNeedle, white $0.28 \times 0.28 \times 0.22 \text{ mm}$

phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\min} = 0.475, T_{\max} = 0.540$

17309 measured reflections	$\theta_{\rm max} = 28.4^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
3873 independent reflections	$h = -9 \rightarrow 9$
1969 reflections with $I > 2\sigma(I)$	$k = -11 \rightarrow 8$
$R_{\rm int} = 0.058$	$l = -34 \rightarrow 34$

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.046$ Hydrogen site location: inferred from $wR(F^2) = 0.103$ neighbouring sites H atoms treated by a mixture of independent 3873 reflections and constrained refinement 223 parameters $w = 1/[\sigma^2(F_0^2) + (0.0423P)^2 + 0.1442P]$ 2 restraints where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement

S = 0.98

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	1.22103 (10)	0.73566 (10)	0.31055 (3)	0.0337 (2)
O2	1.2394 (3)	0.5717 (3)	0.30708 (9)	0.0463 (6)
O3	1.3885 (3)	0.8294 (3)	0.31425 (9)	0.0465 (6)
N2	1.0884 (3)	0.7953 (3)	0.25943 (10)	0.0287 (6)
H2A	1.085 (4)	0.893 (3)	0.2592 (12)	0.034*
N4	0.8018 (3)	0.7790 (4)	0.30189 (10)	0.0371 (7)
H4A	0.690 (4)	0.780 (4)	0.3005 (13)	0.045*
Br1	-0.00741 (5)	0.67254 (5)	0.060030 (16)	0.06277 (19)
C5	0.3194 (4)	0.7029 (4)	0.13029 (13)	0.0350 (8)
Н5	0.2622	0.6278	0.1498	0.042*
C6	0.2305 (5)	0.7577 (4)	0.08503 (13)	0.0403 (9)
C7	0.3086 (5)	0.8725 (4)	0.05590 (14)	0.0455 (9)
H7	0.2429	0.9099	0.0256	0.055*
C8	0.4824 (5)	0.9304 (4)	0.07182 (13)	0.0424 (9)
H8	0.5374	1.0068	0.0523	0.051*
C9	0.5766 (4)	0.8743 (4)	0.11749 (12)	0.0324 (8)
01	0.7509 (3)	0.9378 (3)	0.13110 (8)	0.0398 (6)
C10	0.4984 (4)	0.7614 (4)	0.14695 (12)	0.0287 (7)
C4	0.6000 (4)	0.7086 (4)	0.19593 (12)	0.0286 (8)
O4	0.5369 (3)	0.6116 (3)	0.22456 (9)	0.0395 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

C3	0.7845 (4)	0.7819 (4)	0.20758 (12)	0.0272 (7)
C2	0.8469 (4)	0.8871 (4)	0.17524 (12)	0.0347 (8)
H2	0.9665	0.9291	0.1838	0.042*
C11	0.8977 (4)	0.7310 (4)	0.25680 (12)	0.0289 (7)
H11	0.9066	0.6174	0.2568	0.035*
C12	0.8888 (4)	0.7966 (4)	0.35104 (12)	0.0295 (8)
C13	0.7836 (4)	0.8366 (4)	0.39290 (13)	0.0372 (8)
H13	0.6531	0.8494	0.3871	0.045*
C14	0.8682 (5)	0.8573 (4)	0.44190 (14)	0.0431 (9)
H14	0.7942	0.8825	0.4691	0.052*
C16	1.1691 (5)	0.8056 (4)	0.41215 (13)	0.0402 (9)
H16	1.2999	0.7964	0.4183	0.048*
C15	1.0631 (5)	0.8417 (4)	0.45229 (14)	0.0445 (9)
H15	1.1196	0.8557	0.4860	0.053*
C17	1.0843 (4)	0.7823 (4)	0.36172 (12)	0.0291 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0158 (4)	0.0421 (6)	0.0427 (5)	0.0059 (4)	-0.0002 (4)	-0.0004 (4)
O2	0.0393 (14)	0.0381 (15)	0.0622 (17)	0.0148 (11)	0.0081 (12)	0.0055 (12)
O3	0.0160 (11)	0.0624 (17)	0.0608 (16)	-0.0034 (11)	0.0001 (11)	-0.0038 (13)
N2	0.0172 (13)	0.0291 (15)	0.0393 (16)	-0.0005 (12)	0.0005 (12)	0.0016 (14)
N4	0.0121 (12)	0.070 (2)	0.0293 (16)	0.0004 (14)	0.0002 (13)	-0.0041 (14)
Br1	0.0358 (2)	0.0836 (4)	0.0653 (3)	-0.0100(2)	-0.01830 (19)	-0.0107 (2)
C5	0.0287 (17)	0.035 (2)	0.040 (2)	-0.0072 (15)	-0.0010 (16)	-0.0056 (17)
C6	0.0290 (19)	0.049 (2)	0.040 (2)	0.0009 (17)	-0.0140 (16)	-0.0148 (18)
C7	0.051 (2)	0.046 (2)	0.037 (2)	-0.0006 (19)	-0.0116 (18)	0.0050 (18)
C8	0.047 (2)	0.042 (2)	0.036 (2)	-0.0048 (18)	-0.0029 (18)	0.0077 (17)
C9	0.0332 (18)	0.032 (2)	0.0313 (19)	-0.0038 (15)	-0.0044 (15)	-0.0040 (16)
O1	0.0367 (13)	0.0447 (15)	0.0367 (14)	-0.0182 (11)	-0.0056 (11)	0.0071 (11)
C10	0.0283 (17)	0.0265 (19)	0.0309 (18)	-0.0002 (14)	0.0009 (15)	-0.0027 (15)
C4	0.0250 (17)	0.0269 (19)	0.0338 (19)	-0.0007 (14)	0.0014 (15)	-0.0058 (16)
O4	0.0347 (13)	0.0426 (14)	0.0406 (14)	-0.0153 (11)	-0.0015 (11)	0.0104 (12)
C3	0.0219 (16)	0.0315 (19)	0.0286 (17)	-0.0038 (14)	0.0034 (14)	-0.0041 (15)
C2	0.0283 (18)	0.040(2)	0.035 (2)	-0.0090 (16)	-0.0022 (16)	-0.0028 (17)
C11	0.0171 (15)	0.0334 (19)	0.0361 (19)	-0.0019 (14)	0.0027 (14)	-0.0035 (15)
C12	0.0190 (15)	0.038 (2)	0.0303 (18)	0.0018 (14)	-0.0024 (14)	-0.0023 (15)
C13	0.0213 (16)	0.052 (2)	0.038 (2)	0.0039 (16)	0.0010 (15)	-0.0052 (18)
C14	0.039 (2)	0.051 (2)	0.039 (2)	0.0055 (17)	0.0017 (17)	-0.0085 (18)
C16	0.0257 (18)	0.048 (2)	0.044 (2)	0.0029 (16)	-0.0094 (17)	-0.0032 (18)
C15	0.044 (2)	0.054 (3)	0.033 (2)	0.0006 (18)	-0.0092 (17)	-0.0068 (18)
C17	0.0167 (15)	0.0338 (19)	0.0363 (19)	0.0029 (13)	-0.0010 (14)	-0.0017 (15)

Geometric parameters (Å, °)

S1—O2	1.421 (2)	C9—C10	1.375 (4)
S1—O3	1.431 (2)	O1—C2	1.345 (4)

supporting information

S1—N2	1.632 (3)	C10—C4	1.468 (4)
S1—C17	1.738 (3)	C4—O4	1.219 (3)
N2—C11	1.456 (4)	C4—C3	1.459 (4)
N2—H2A	0.84 (2)	C3—C2	1.327 (4)
N4—C12	1.365 (4)	C3—C11	1.504 (4)
N4—C11	1 446 (4)	С2—Н2	0.9300
NA_HAA	0.79(3)	C11H11	0.9800
	1,000(3)	C_{12} C_{12}	1 208 (4)
BII = C0	1.900(3)	C12 - C17	1.398(4)
C_{5}	1.339 (4)		1.394 (4)
C5—C10	1.398 (4)		1.359 (4)
C5—H5	0.9300	C13—H13	0.9300
C6—C7	1.380 (5)	C14—C15	1.391 (5)
C7—C8	1.359 (5)	C14—H14	0.9300
С7—Н7	0.9300	C16—C15	1.357 (5)
C8—C9	1.387 (4)	C16—C17	1.395 (4)
С8—Н8	0.9300	C16—H16	0.9300
C9—O1	1.368 (4)	C15—H15	0.9300
02-51-03	119 01 (14)	Q4—C4—C10	123 3 (3)
02 - 100 = 000	108 16 (14)	C_{3} C_{4} C_{10}	1142(3)
03N2	107.20(14)	$C_2 - C_3 - C_4$	120.3(3)
03 - 51 - 102	107.20(14) 100.63(15)	$C_2 = C_3 = C_1$	120.3(3)
02 - 51 - C17	109.03(13) 100.16(14)	$C_2 = C_3 = C_{11}$	122.8(3)
03-51-017	109.10 (14)		117.0 (3)
N2—S1—C17	102.36 (14)	C3-C2-01	125.2 (3)
C11—N2—S1	112.9 (2)	C3—C2—H2	117.4
C11—N2—H2A	111 (2)	O1—C2—H2	117.4
S1—N2—H2A	109 (2)	N4—C11—N2	110.3 (2)
C12—N4—C11	124.3 (2)	N4—C11—C3	109.6 (2)
C12—N4—H4A	115 (3)	N2—C11—C3	111.0 (3)
C11—N4—H4A	120 (3)	N4—C11—H11	108.6
C6—C5—C10	118.8 (3)	N2—C11—H11	108.6
С6—С5—Н5	120.6	C3—C11—H11	108.6
С10—С5—Н5	120.6	N4—C12—C13	120.5 (3)
C5—C6—C7	122.2 (3)	N4—C12—C17	122.6 (3)
C5—C6—Br1	1194(3)	C_{13} $-C_{12}$ $-C_{17}$	1169(3)
C7-C6-Br1	118 5 (2)	C14 - C13 - C12	121.3(3)
C_{8} C_{7} C_{6}	110.5(2) 119.5(3)	C14 - C13 - H13	110.4
$C_{8}^{8} = C_{7}^{7} = C_{8}^{7}$	119.5 (5)	$C_{12} = C_{13} = H_{13}$	119.4
$C_{0} = C_{1} = H_{1}$	120.5	C12 - C13 - H13	119.4
	120.5		121.4 (5)
C7—C8—C9	119.2 (3)	C13—C14—H14	119.3
С7—С8—Н8	120.4	C15—C14—H14	119.3
С9—С8—Н8	120.4	C15—C16—C17	120.8 (3)
O1—C9—C10	122.5 (3)	C15—C16—H16	119.6
O1—C9—C8	116.0 (3)	C17—C16—H16	119.6
С10—С9—С8	121.5 (3)	C16—C15—C14	118.5 (3)
C2—O1—C9	118.0 (2)	C16—C15—H15	120.7
C9—C10—C5	118.8 (3)	C14—C15—H15	120.7
C9—C10—C4	119.8 (3)	C16—C17—C12	121.0 (3)

С5—С10—С4	121.3 (3)	C16—C17—S1	120.5 (2)
O4—C4—C3	122.5 (3)	C12—C17—S1	118.4 (2)
O2—S1—N2—C11	61.9 (2)	C9—O1—C2—C3	-1.5 (5)
O3—S1—N2—C11	-168.6 (2)	C12—N4—C11—N2	-35.8 (4)
C17—S1—N2—C11	-53.8 (2)	C12—N4—C11—C3	-158.3 (3)
C10—C5—C6—C7	-2.0 (5)	S1—N2—C11—N4	61.6 (3)
C10-C5-C6-Br1	177.0 (2)	S1—N2—C11—C3	-176.8 (2)
C5—C6—C7—C8	1.9 (5)	C2—C3—C11—N4	114.2 (3)
Br1—C6—C7—C8	-177.2 (3)	C4—C3—C11—N4	-66.5 (3)
C6—C7—C8—C9	-0.9 (5)	C2—C3—C11—N2	-7.9 (4)
C7—C8—C9—O1	179.9 (3)	C4—C3—C11—N2	171.4 (2)
C7—C8—C9—C10	0.1 (5)	C11—N4—C12—C13	-177.1 (3)
C10—C9—O1—C2	-0.4 (4)	C11—N4—C12—C17	5.6 (5)
C8—C9—O1—C2	179.7 (3)	N4-C12-C13-C14	-178.8 (3)
O1—C9—C10—C5	179.9 (3)	C17—C12—C13—C14	-1.4 (5)
C8—C9—C10—C5	-0.2 (5)	C12-C13-C14-C15	0.9 (5)
O1—C9—C10—C4	2.1 (5)	C17—C16—C15—C14	-1.0 (5)
C8—C9—C10—C4	-178.0 (3)	C13-C14-C15-C16	0.3 (5)
C6-C5-C10-C9	1.2 (5)	C15—C16—C17—C12	0.5 (5)
C6-C5-C10-C4	179.0 (3)	C15—C16—C17—S1	-179.9 (3)
C9—C10—C4—O4	178.2 (3)	N4-C12-C17-C16	178.0 (3)
C5—C10—C4—O4	0.5 (5)	C13—C12—C17—C16	0.6 (5)
C9—C10—C4—C3	-2.0 (4)	N4-C12-C17-S1	-1.6 (4)
C5—C10—C4—C3	-179.7 (3)	C13—C12—C17—S1	-179.0 (2)
O4—C4—C3—C2	-179.9 (3)	O2—S1—C17—C16	89.7 (3)
C10—C4—C3—C2	0.3 (4)	O3—S1—C17—C16	-42.3 (3)
O4—C4—C3—C11	0.8 (4)	N2-S1-C17-C16	-155.7 (3)
C10—C4—C3—C11	-179.0 (3)	O2—S1—C17—C12	-90.7 (3)
C4—C3—C2—O1	1.4 (5)	O3—S1—C17—C12	137.3 (3)
C11—C3—C2—O1	-179.3 (3)	N2—S1—C17—C12	24.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N4—H4 <i>A</i> …O4	0.79 (3)	2.59 (3)	2.987 (3)	113 (3)
N4—H4A···O3 ⁱ	0.79 (3)	2.23 (3)	2.999 (3)	164 (3)
C13—H13…O3 ⁱ	0.93	2.54 (1)	3.314 (4)	141 (1)
N2—H2A···O2	0.84 (2)	2.67 (3)	3.222 (4)	124 (2)
С2—Н2…О2	0.93	2.41 (1)	3.330 (4)	169 (1)
N2—H2A····O4	0.84 (2)	2.12 (3)	2.903 (4)	154 (3)

Symmetry code: (i) x-1, y, z.