Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diethyl 4-acetyl-5-(2-nitrophenyl)pyrrolidine-2,2-dicarboxylate

Long He

College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: helongcwnu@yahoo.com.cn

Received 30 October 2010; accepted 7 November 2010

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.010 Å; R factor = 0.081; wR factor = 0.166; data-to-parameter ratio = 8.5.

The title compound, $C_{18}H_{22}N_2O_7$, was synthesized by the 1,3dipolar cycloaddition reaction of but-3-en-2-one, diethyl 2aminomalonate and 2-nitrobenzaldehyde. In the molecule, the pyrrolidine ring possesses an envelope conformation. Intermolecular N-H···O and C-H···O hydrogen bonds are present in the crystal structure.

Related literature

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Grigg (1995); Kravchenko *et al.* (2005); Nair & Suja (2007); Pandey *et al.* (2006); Sardina & Rapoport (1996); Witherup *et al.* (1995). For a related structure, see: He (2009).

Experimental

Crystal data

 $\begin{array}{l} C_{18}H_{22}N_2O_7\\ M_r = 378.38\\ \text{Monoclinic, } P2_1\\ a = 10.687 \ (5) \ \text{\AA}\\ b = 7.760 \ (5) \ \text{\AA}\\ c = 12.030 \ (5) \ \text{\AA}\\ \beta = 97.455 \ (5)^\circ\end{array}$

 $V = 989.2 (9) \text{ Å}^{3}$ Z = 2 Cu K\alpha radiation $\mu = 0.83 \text{ mm}^{-1}$ T = 291 K 0.38 \times 0.36 \times 0.30 mm 19238 measured reflections

 $R_{\rm int} = 0.023$

2105 independent reflections

1915 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Gemini S Ultra diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009)

 $T_{\min} = 0.743, \ T_{\max} = 0.789$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.081$	H atoms treated by a mixture of
$wR(F^2) = 0.166$	independent and constrained
S = 1.04	refinement
2105 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
249 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
42 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N2 - H10 \cdots O2^{i} \\ C18 - H18 A \cdots O4^{ii} \end{array}$	0.92 (5)	2.51 (6)	3.244 (9)	138 (5)
	0.96	2.53	3.460 (15)	162 (6)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) -x, $y + \frac{1}{2}$, -z + 2.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The diffraction measurements were made at the Centre for Testing and Analysis, Chengdu Branch, Chinese Academy of Sciences. I acknowledge financial support from China West Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5078).

References

- Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Grigg, R. (1995). Tetrahedron Asymmetry, 6, 2475-2486.
- He, L. (2009). Acta Cryst. E65, o2388.
- Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & I vachtchenko, A. V. (2005). *Eur. J. Med. Chem.* pp. 1377–1383.
- Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Pandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484-4517.
- Sardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825-1872.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Witherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.

supporting information

Acta Cryst. (2010). E66, o3205 [https://doi.org/10.1107/S1600536810045691]

Diethyl 4-acetyl-5-(2-nitrophenyl)pyrrolidine-2,2-dicarboxylate

Long He

S1. Comment

Substituted pyrrolidine compound is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products (Coldham *et al.*, 2005; Grigg, 1995; Kravchenko *et al.*, 2005; Nair *et al.*, 2007; Pandey *et al.*, 2006; Sardina *et al.*, 1996; Witherup *et al.* 1995). Its crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The crystal packing is stabilized by N—H…0 and C—H…0 hydrogen bonding (Table 1).

S2. Experimental

2-Nitrobenzaldehyde (0.018 g, 0.12 mmol) and diethyl 2-aminomalonate (0.017 g, 0.1 mmol) were added to a solution of methyl but-3-en-2-one (0.014 g, 0.2 mmol) in dichloromethane (2 ml). To the stirred mixture, phosphenous acid (5 mg, 0.01 mmol) was added. After the mixture had been stirred at 293 K for 48 h, the reaction was quenched with a saturated solution of sodium bicarbonate (5 ml). The mixture was extracted with ethyl acetate, evaporated and separated by flash chromatograghy. A colourless powder was obtained. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution.

S3. Refinement

H atom on N atom was located in a difference Fourier map and refined isotropically. The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for the others.

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Diethyl 4-acetyl-5-(2-nitrophenyl)pyrrolidine-2,2-dicarboxylate

Crystal data	
$C_{18}H_{22}N_2O_7$	F(000) = 400
M = 378, 38	D = 1.270 Mg m ⁻³
$M_r = 578.58$	$D_x = 1.270$ Mg m ⁻⁵
Monoclinic, $P2_1$	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: P 2yb	Cell parameters from 11509 reflections
a = 10.687 (5) Å	$\theta = 4.2-72.3^{\circ}$
b = 7.760 (5) Å	$\mu = 0.83$ mm ⁻¹
c = 12.030 (5) Å	T = 291 K
$\beta = 97.455$ (5)°	Block, colorless
V = 989.2 (9) Å ³	$0.38 \times 0.36 \times 0.30$ mm
Z = 2 <i>Data collection</i>	
Oxford Diffraction Gemini S Ultra	19238 measured reflections
diffractometer	2105 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray	1915 reflections with $I > 2\sigma(I)$
Source	$R_{int} = 0.023$
Mirror monochromator ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) $T_{\min} = 0.743, T_{\max} = 0.789$	$\theta_{\max} = 72.6^{\circ}, \ \theta_{\min} = 4.2^{\circ}$ $h = -13 \rightarrow 13$ $k = -8 \rightarrow 9$ $l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.081$	H atoms treated by a mixture of independent
$wR(F^2) = 0.166$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.025P)^2 + 1.3702P]$
2105 reflections	where $P = (F_o^2 + 2F_c^2)/3$
249 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
42 restraints	$\Delta \rho_{\rm max} = 0.33 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.42 { m e} { m \AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.017 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
03	0.0038 (5)	0.2421 (8)	0.5230 (4)	0.0881 (16)	
N2	0.2698 (5)	0.3189 (8)	0.6658 (4)	0.0681 (15)	
05	0.1828 (5)	0.4223 (10)	0.8609 (6)	0.117 (2)	
C3	0.2453 (6)	0.4941 (9)	0.4653 (6)	0.0641 (16)	
H3	0.1941	0.5184	0.5202	0.077*	
01	0.4209 (6)	0.0223 (8)	0.4138 (5)	0.0957 (18)	
C2	0.3126 (5)	0.3415 (9)	0.4718 (5)	0.0566 (14)	
06	0.4399 (5)	0.1838 (10)	0.8411 (4)	0.108 (2)	
04	0.0249 (5)	0.2457 (11)	0.8118 (5)	0.112 (2)	
O2	0.5571 (5)	0.1618 (10)	0.3371 (5)	0.120 (2)	
C8	0.1956 (6)	0.0846 (9)	0.5533 (5)	0.0631 (16)	
H8	0.2247	-0.0192	0.5180	0.076*	
N1	0.4602 (6)	0.1556 (10)	0.3797 (5)	0.0784 (17)	
C7	0.3030 (5)	0.2205 (9)	0.5697 (4)	0.0589 (15)	
H7	0.3841	0.1624	0.5905	0.071*	
C1	0.3875 (5)	0.3157 (10)	0.3870 (5)	0.0605 (15)	
C16	0.1311 (7)	0.2862 (12)	0.8096 (6)	0.079 (2)	
C4	0.2514 (6)	0.6116 (10)	0.3802 (6)	0.0776 (19)	
H4	0.2028	0.7113	0.3771	0.093*	
C12	0.0663 (7)	0.1228 (11)	0.3583 (5)	0.085 (2)	
H12A	-0.0097	0.1760	0.3228	0.128*	
H12B	0.0620	0.0007	0.3455	0.128*	
H12C	0.1375	0.1694	0.3274	0.128*	

C11	0.0803 (6)	0.1578 (9)	0.4820 (5)	0.0649 (16)
O7	0.2881 (6)	0.0324 (11)	0.9076 (6)	0.130 (2)
C10	0.2269 (6)	0.1943 (11)	0.7453 (5)	0.0721 (19)
C6	0.3975 (6)	0.4353 (11)	0.3036 (6)	0.0732 (19)
H6	0.4511	0.4149	0.2500	0.088*
C13	0.3357 (7)	0.1387 (14)	0.8371 (6)	0.092 (2)
C9	0.1723 (8)	0.0442 (10)	0.6740 (5)	0.080 (2)
H9A	0.0826	0.0330	0.6782	0.096*
H9B	0.2137	-0.0625	0.6995	0.096*
C5	0.3294 (7)	0.5809 (11)	0.3001 (6)	0.084 (2)
Н5	0.3350	0.6611	0.2435	0.101*
C17	0.1066 (10)	0.5318 (17)	0.9259 (8)	0.128 (3)
H17A	0.0174	0.5231	0.8985	0.154*
H17B	0.1325	0.6515	0.9246	0.154*
C14	0.3850 (10)	-0.0385 (18)	1.0007 (8)	0.137 (3)
H14A	0.3874	-0.1634	0.9994	0.165*
H14B	0.4687	0.0064	0.9954	0.165*
C15	0.3341 (11)	0.0277 (19)	1.1036 (8)	0.153 (3)
H15A	0.3856	-0.0141	1.1694	0.229*
H15B	0.2490	-0.0121	1.1036	0.229*
H15C	0.3352	0.1514	1.1034	0.229*
C18	0.1366 (11)	0.455 (2)	1.0415 (9)	0.158 (3)
H18A	0.0896	0.5141	1.0925	0.237*
H18B	0.2253	0.4664	1.0663	0.237*
H18C	0.1141	0.3350	1.0391	0.237*
H10	0.342 (4)	0.377 (8)	0.693 (5)	0.07 (2)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
03	0.066 (2)	0.101 (4)	0.099 (4)	-0.003 (3)	0.016 (3)	-0.005 (3)
N2	0.073 (3)	0.076 (4)	0.056 (3)	-0.017 (3)	0.011 (2)	-0.010 (3)
05	0.081 (3)	0.119 (5)	0.154 (4)	-0.015 (4)	0.020 (3)	-0.040(5)
C3	0.059 (3)	0.062 (4)	0.073 (4)	-0.001 (3)	0.015 (3)	-0.002 (3)
01	0.105 (4)	0.091 (4)	0.092 (4)	0.024 (4)	0.015 (3)	0.000 (4)
C2	0.048 (3)	0.065 (4)	0.057 (3)	-0.007 (3)	0.004 (2)	-0.003 (3)
O6	0.075 (3)	0.172 (7)	0.075 (3)	0.018 (4)	0.004 (2)	-0.009 (4)
O4	0.080 (3)	0.162 (7)	0.097 (4)	-0.018 (4)	0.025 (3)	0.000 (4)
O2	0.090 (3)	0.153 (6)	0.126 (4)	0.051 (4)	0.051 (3)	0.031 (5)
C8	0.072 (4)	0.058 (4)	0.059 (3)	-0.007(3)	0.003 (3)	0.000 (3)
N1	0.076 (4)	0.093 (5)	0.067 (3)	0.020 (4)	0.011 (3)	-0.001 (4)
C7	0.058 (3)	0.066 (4)	0.051 (3)	-0.007 (3)	0.003 (2)	0.000 (3)
C1	0.053 (3)	0.070 (4)	0.058 (3)	0.005 (3)	0.007 (2)	0.000 (3)
C16	0.068 (4)	0.106 (7)	0.067 (4)	0.001 (5)	0.018 (3)	0.010 (4)
C4	0.076 (4)	0.066 (5)	0.091 (5)	0.002 (4)	0.014 (4)	0.005 (4)
C12	0.090 (5)	0.086 (6)	0.073 (4)	-0.010 (5)	-0.018 (3)	-0.001 (4)
C11	0.062 (3)	0.062 (4)	0.070 (4)	-0.014 (3)	0.006 (3)	-0.002 (3)
07	0.124 (3)	0.135 (4)	0.131 (3)	-0.003 (3)	0.011 (2)	0.020 (3)

supporting information

C10	0.071 (4)	0.092 (5)	0.053 (3)	-0.014 (4)	0.005 (3)	0.002 (4)
C6	0.072 (4)	0.084 (5)	0.065 (4)	0.002 (4)	0.019 (3)	0.001 (4)
C13	0.070 (4)	0.127 (7)	0.078 (4)	0.001 (4)	0.010 (3)	-0.023 (3)
C9	0.104 (5)	0.076 (5)	0.060 (4)	-0.021 (4)	0.008 (4)	0.006 (4)
C5	0.090 (5)	0.077 (5)	0.086 (5)	-0.005 (5)	0.018 (4)	0.015 (5)
C17	0.126 (4)	0.131 (4)	0.132 (3)	0.013 (3)	0.031 (3)	-0.018 (3)
C14	0.139 (4)	0.140 (4)	0.130 (3)	0.006 (3)	0.007 (2)	0.017 (3)
C15	0.165 (4)	0.155 (5)	0.134 (3)	0.009 (3)	0.004 (3)	-0.002 (3)
C18	0.168 (5)	0.165 (5)	0.142 (3)	0.009 (3)	0.026 (3)	-0.001 (3)

Geometric parameters (Å, °)

03—C11	1.202 (8)	C12—C11	1.501 (9)
N2—C7	1.467 (8)	C12—H12A	0.9600
N2-C10	1.474 (9)	C12—H12B	0.9600
N2—H10	0.92 (5)	C12—H12C	0.9600
O5—C16	1.308 (10)	O7—C13	1.330 (11)
O5—C17	1.470 (11)	O7—C14	1.525 (11)
C3—C4	1.378 (9)	C10—C9	1.518 (10)
C3—C2	1.383 (9)	C10—C13	1.557 (10)
С3—Н3	0.9300	C6—C5	1.342 (11)
01—N1	1.208 (9)	С6—Н6	0.9300
C2—C1	1.390 (8)	С9—Н9А	0.9700
C2—C7	1.521 (8)	С9—Н9В	0.9700
O6—C13	1.162 (9)	С5—Н5	0.9300
O4—C16	1.181 (8)	C17—C18	1.509 (9)
O2—N1	1.214 (7)	C17—H17A	0.9700
C8—C11	1.517 (8)	C17—H17B	0.9700
C8—C9	1.537 (8)	C14—C15	1.506 (9)
C8—C7	1.552 (8)	C14—H14A	0.9700
С8—Н8	0.9800	C14—H14B	0.9700
N1-C1	1.474 (9)	C15—H15A	0.9600
С7—Н7	0.9800	C15—H15B	0.9600
C1—C6	1.382 (9)	C15—H15C	0.9600
C16—C10	1.536 (10)	C18—H18A	0.9600
C4—C5	1.375 (9)	C18—H18B	0.9600
C4—H4	0.9300	C18—H18C	0.9600
C7—N2—C10	107.3 (6)	N2—C10—C16	107.8 (6)
C7—N2—H10	105 (4)	C9—C10—C16	114.1 (6)
C10—N2—H10	114 (4)	N2-C10-C13	112.0 (6)
C16—O5—C17	119.2 (7)	C9—C10—C13	112.7 (7)
C4—C3—C2	122.3 (6)	C16—C10—C13	104.9 (5)
С4—С3—Н3	118.9	C5—C6—C1	119.7 (6)
С2—С3—Н3	118.9	С5—С6—Н6	120.1
C3—C2—C1	115.3 (6)	C1—C6—H6	120.1
C3—C2—C7	119.1 (5)	O6—C13—O7	127.1 (9)
C1—C2—C7	125.6 (6)	O6—C13—C10	124.7 (9)

C11—C8—C9	113.0 (5)	O7—C13—C10	108.2 (7)
C11—C8—C7	110.5 (5)	С10—С9—С8	106.3 (6)
C9—C8—C7	103.1 (5)	С10—С9—Н9А	110.5
С11—С8—Н8	110.0	С8—С9—Н9А	110.5
С9—С8—Н8	110.0	С10—С9—Н9В	110.5
С7—С8—Н8	110.0	С8—С9—Н9В	110.5
O1—N1—O2	122.1 (8)	H9A—C9—H9B	108.7
O1—N1—C1	119.4 (6)	C6—C5—C4	120.0 (7)
O2—N1—C1	118.5 (8)	С6—С5—Н5	120.0
N2—C7—C2	109.7 (6)	С4—С5—Н5	120.0
N2—C7—C8	101.8 (5)	O5—C17—C18	101.2 (9)
C2—C7—C8	116.4 (4)	O5—C17—H17A	111.5
N2—C7—H7	109.6	C18—C17—H17A	111.5
С2—С7—Н7	109.6	O5—C17—H17B	111.5
С8—С7—Н7	109.6	C18—C17—H17B	111.5
C6—C1—C2	122.8 (7)	H17A—C17—H17B	109.3
C6-C1-N1	115.6 (6)	C15—C14—O7	101.4 (8)
C2-C1-N1	121.6 (6)	C15—C14—H14A	111.5
O4—C16—O5	123.5 (8)	O7—C14—H14A	111.5
O4—C16—C10	126.3 (8)	C15—C14—H14B	111.5
O5-C16-C10	110.1 (6)	O7—C14—H14B	111.5
C5—C4—C3	119.8 (7)	H14A—C14—H14B	109.3
C5—C4—H4	120.1	C14—C15—H15A	109.5
C3—C4—H4	120.1	C14—C15—H15B	109.5
C11—C12—H12A	109.5	H15A—C15—H15B	109.5
C11—C12—H12B	109.5	C14—C15—H15C	109.5
H12A—C12—H12B	109.5	H15A—C15—H15C	109.5
C11—C12—H12C	109.5	H15B—C15—H15C	109.5
H12A—C12—H12C	109.5	C17—C18—H18A	109.5
H12B—C12—H12C	109.5	C17—C18—H18B	109.5
O3—C11—C12	121.3 (7)	H18A—C18—H18B	109.5
O3—C11—C8	121.1 (6)	C17—C18—H18C	109.5
C12—C11—C8	117.6 (6)	H18A—C18—H18C	109.5
C13—O7—C14	114.4 (7)	H18B—C18—H18C	109.5
N2—C10—C9	105.4 (5)		
C4—C3—C2—C1	0.5 (9)	C7—N2—C10—C16	-150.7 (5)
C4—C3—C2—C7	178.7 (6)	C7—N2—C10—C13	94.5 (7)
C10—N2—C7—C2	164.3 (5)	O4—C16—C10—N2	120.5 (8)
C10—N2—C7—C8	40.5 (6)	O5—C16—C10—N2	-57.8 (8)
C3—C2—C7—N2	-25.6 (7)	O4—C16—C10—C9	3.7 (11)
C1-C2-C7-N2	152.3 (6)	O5—C16—C10—C9	-174.5 (7)
C3—C2—C7—C8	89.2 (7)	O4—C16—C10—C13	-120.0 (9)
C1—C2—C7—C8	-92.9 (7)	O5-C16-C10-C13	61.8 (9)
C11-C8-C7-N2	84.9 (6)	C2-C1-C6-C5	-2.4 (10)
C9—C8—C7—N2	-36.2 (6)	N1-C1-C6-C5	176.5 (7)
C11—C8—C7—C2	-34.3 (8)	C14—O7—C13—O6	-1.7 (14)
C9—C8—C7—C2	-155.3 (6)	C14—O7—C13—C10	178.0 (8)

C7 N2 C10 C0 $-284(7)$	01-N1-C1-C2 $30.0 (10)$ $02-N1-C1-C2$ $-151.4 (2)$ $C17-O5-C16-O4$ $0.4 (13)$ $C17-O5-C16-C10$ $178.7 (7)$ $C2-C3-C4-C5$ $-2.0 (11)$ $C9-C8-C11-O3$ $30.1 (9)$ $C7-C8-C11-C12$ $-150.7 (2)$ $C7-C8-C11-C12$ $-150.7 (2)$ $C7-C8-C11-C12$ $-28.4 (7)$ $C7-C8-C10-C12$ $-28.4 (7)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122.2 (6) -118.4 (6) -99.6 (7) 19.7 (7) 0.8 (11) 1.3 (11) 93.1 (11) 119.5 (10)
------------------------	--	--	---

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H10…O2 ⁱ	0.92 (5)	2.51 (6)	3.244 (9)	138 (5)
C18—H18A····O4 ⁱⁱ	0.96	2.53	3.460 (15)	162 (6)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) -*x*, *y*+1/2, -*z*+2.