Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Fluorophenyl)-3-hydroxy-4Hchromen-4-one

Michał Wera,^a Ilia E. Serdiuk,^b Alexander D. Roshal^b and Jerzy Błażejowski^a*

^aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and ^bInstitute of Chemistry, V.N. Karazin National University, Svobody 4, 61077 Kharkiv, Ukraine Correspondence e-mail: bla@chem.univ.gda.pl

Received 29 October 2010; accepted 3 November 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.113; data-to-parameter ratio = 11.4.

In the crystal structure of the title compound, $C_{15}H_9FO_3$, inversely oriented molecules form inversion dimers through pairs of $O-H \cdots O$ hydrogen bonds. The benzene ring is twisted at an angle of $12.0 (1)^{\circ}$ relative to the 4*H*-chromene skeleton of the molecule. Adjacent 4H-chromene units are parallel in a given column or oriented at an angle of $50.0 (1)^{\circ}$ in neighboring, inversely oriented, columns, forming a herringbone pattern.

Related literature

For general background to fluorescence in flavanol (3-hydroxy-2-phenyl-4H-chromen-4-one) and its derivatives, see: Demchenko et al. (2002); Pivovarenko et al. (2005); Roshal et al. (2003); Sengupta & Kasha (1979). For related structures, see: Cantrell & Stalzer (1982); Etter et al. (1986); Waller et al. (2003). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005). For the synthesis, see: Smith et al. (1968).

Experimental

Crystal data

C₁₅H₉FO₃ $M_{\pi} = 256.22$ Monoclinic, $P2_1/c$ a = 15.5971 (9) Å b = 3.8790 (2) Å c = 19.1655 (12) Å $\beta = 103.906 \ (6)^{\circ}$

 $V = 1125.55 (11) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 295 K $0.6 \times 0.4 \times 0.05 \ \mathrm{mm}$

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer Absorption correction: multi-scan (CrvsAlis RED; Oxford Diffraction, 2008) $T_{\min} = 0.956, \ T_{\max} = 0.991$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.113$	independent and constrained
S = 1.12	refinement
1999 reflections	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

7973 measured reflections

 $R_{\rm int} = 0.026$

1999 independent reflections

1729 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O11 - H11 \cdots O12 \\ O11 - H11 \cdots O12^i \end{array}$	0.83 (3)	2.28 (3)	2.722 (2)	113 (3)
	0.83 (3)	2.02 (3)	2.761 (2)	149 (3)

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

This study was financed by the State Funds for Scientific Research (grant DS/8220-4-0087-0).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5076).

References

Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.

- Cantrell, J. S. & Stalzer, R. A. (1982). Acta Cryst. B38, 983-984.
- Demchenko, A. P., Klymchenko, A. S., Pivovarenko, V. G. & Ercelen, S. (2002). Fluorescence Spectroscopy, Imaging and Probes - New Tools in Chemical, Physical and Life Sciences, edited by R. Kraayenhof, A. J. W. G. Viser & H. C. Gerritsen, Vol. 2 (Springer Series on Fluorescence), pp. 101-110. Berlin, Heidelberg: Springer-Verlag.
- Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.
- Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2005). Anal. Chim. Acta, 545, 74-78.
- Roshal, A. D., Moroz, V. I., Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2003). J. Org. Chem. 68, 5860-5869.
- Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, M. A., Neumann, R. M. & Webb, R. A. (1968). J. Heterocycl. Chem. 5, 425-426.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, 0767-0768.

supporting information

Acta Cryst. (2010). E66, o3122 [https://doi.org/10.1107/S1600536810045083]

2-(4-Fluorophenyl)-3-hydroxy-4H-chromen-4-one

Michał Wera, Ilia E. Serdiuk, Alexander D. Roshal and Jerzy Błażejowski

S1. Comment

3-Hydroxy-2-phenyl-4*H*-chromen-4-one (flavonol) and its derivatives exhibit dual fluorescence in liquid phases originating from the Excited State Intramolecular Proton Transfer (ESIPT) phenomenon (Sengupta & Kasha, 1979). Since the fluorescence of flavonols depends strongly on the properties of the medium, the compounds can be applied as analytical probes in chemistry, biochemistry, biology and medicine (Demchenko *et al.*, 2002). Continuing our investigations into this group of compounds (Roshal *et al.*, 2003; Pivovarenko *et al.*, 2005) we now present the crystal structure of a flavonol derivative – 2-(4-fluorophenyl)-3-hydroxy-4*H*-chromen-4-one.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenyl-4*H*-chromen-4one (flavone) moiety are typical of this group of compounds (Cantrell & Stalzer, 1982; Etter *et al.*, 1986; Waller *et al.*, 2003). With respective average deviations from planarity of 0.0147 (2)° and 0.0020 (2)°, the 4*H*-chromene and benzene ring systems are oriented at a dihedral angle of 12.0 (1)° (in the case of flavonol this angle is equal to 5.5 (1)° (Etter *et al.*, 1986)).

In the crystal structure, the inversely oriented molecules form dimers through a pair of intermolecular O—H···O (Aakeröy *et al.*, 1992) bonds (Table 1, Fig. 2). Dimers oriented in parallel – linked by C—F··· π (Dorn *et al.*, 2005) contacts (Table 2, Fig. 2) – are arranged in columns along the *b* axis which are dispersively stabilized in the crystal lattice. The adjacent 4*H*-chromene moieties are parallel in a given column or oriented at an angle of 50.0 (1) in the two neighboring, inversely oriented, columns, which forms a herringbone pattern. The O11—H11···O12 intramolecular hydrogen bond (Table 1, Figs. 1 and 2) is the one involved in the ESIPT phenomenon, characteristic of flavonols (Sengupta & Kasha, 1979).

S2. Experimental

The title compound was synthesized following the procedure described by Smith *et al.*, 1968. Briefly, 3-(4-fluorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was synthesized first by the condensation of 1-(2-hydroxyphenyl)ethanone with 4-fluorobenzaldehyde in methanol/50% aqueous NaOH ($1/1 \nu/\nu$), precipitated by neutralizing the reaction mixture with aqueous HCl and separated by filtration. The product thus obtained was subjected to oxidative cyclization in alkaline methanol/H₂O₂ to yield 2-(4-fluorophenyl)-3-hydroxy-4*H*-chromen-4-one. The filtered product was purified chromatographically (Silica Gel, chloroform/methanol, $20/1 \nu/\nu$) and yellow crystals suitable for X-ray investigations were grown from absolute ethanol (m.p. = 442–443 K).

S3. Refinement

The H atoms of the C—H bonds were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms involved in O—H···O hydrogen bonds were located on a difference map and refined freely with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O—H…O hydrogen bond is indicated by a dashed line.

Figure 2

The arrangement of the molecules in the crystal structure. The O—H···O hydrogen bonds are represented by dashed lines, the C—F··· π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –*x* + 1, –*y* + 2, –*z* + 1; (ii) *x*, *y* – 1, *z*.]

Figure 3

Columns in the crystal structure, viewed along the *b* axis. The O—H…O interactions are represented by dashed lines, the C—F… π contacts by dotted lines. H atoms not involved in interactions have been omitted.

2-(4-Fluorophenyl)-3-hydroxy-4H-chromen-4-one

Crystal data

$C_{15}H_9FO_3$	F(000) = 528
$M_r = 256.22$	$D_{\rm x} = 1.512 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1729 reflections
a = 15.5971 (9) Å	$\theta = 3.9 - 25.1^{\circ}$
b = 3.8790 (2) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 19.1655 (12) Å	T = 295 K
$\beta = 103.906 \ (6)^{\circ}$	Plate, yellow
V = 1125.55 (11) Å ³	$0.6 \times 0.4 \times 0.05 \text{ mm}$
Z = 4	
Data collection	
Oxford Diffraction Gemini R Ultra Ruby CCD	7973 measured reflections
diffractometer	1999 independent reflections
Radiation source: Enhance (Mo) X-ray Source	1729 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
Detector resolution: 10.4002 pixels mm ⁻¹	$\theta_{\rm max} = 25.1^{\circ}, \theta_{\rm min} = 3.9^{\circ}$
ω scans	$h = -18 \rightarrow 14$
Absorption correction: multi-scan	$k = -4 \rightarrow 4$
(CrysAlis RED; Oxford Diffraction, 2008)	$l = -20 \rightarrow 22$
$T_{\min} = 0.956, \ T_{\max} = 0.991$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of independent
$wR(F^2) = 0.113$	and constrained refinement
S = 1.12	$w = 1/[\sigma^2(F_o^2) + (0.0392P)^2 + 0.833P]$
1999 reflections	where $P = (F_o^2 + 2F_c^2)/3$
176 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.21 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eg}$
01	0.78326 (8)	0.9690 (4)	0.42669 (7)	0.0375 (4)
C2	0.75381 (12)	0.8861 (5)	0.48666 (10)	0.0305 (5)
C3	0.66843 (13)	0.9437 (6)	0.48778 (10)	0.0340 (5)
C4	0.60607 (13)	1.0994 (6)	0.42768 (11)	0.0350 (5)
C5	0.58939 (13)	1.3469 (6)	0.30419 (11)	0.0376 (5)
Н5	0.5310	1.4047	0.3022	0.045*
C6	0.62406 (14)	1.4144 (6)	0.24658 (12)	0.0421 (6)
H6	0.5891	1.5134	0.2052	0.051*
C7	0.71196 (15)	1.3346 (7)	0.25000 (12)	0.0442 (6)
H7	0.7354	1.3816	0.2108	0.053*
C8	0.76441 (14)	1.1878 (7)	0.31031 (11)	0.0423 (6)
H8	0.8232	1.1364	0.3124	0.051*
С9	0.64095 (12)	1.1912 (5)	0.36633 (10)	0.0306 (5)
C10	0.72829 (12)	1.1169 (6)	0.36824 (10)	0.0320 (5)
O11	0.63946 (10)	0.8624 (5)	0.54678 (8)	0.0542 (5)
H11	0.585 (2)	0.891 (9)	0.5380 (16)	0.081*
O12	0.52826 (9)	1.1478 (5)	0.42954 (9)	0.0554 (5)
C13	0.82586 (12)	0.7435 (5)	0.54311 (10)	0.0306 (5)
C14	0.91251 (13)	0.7678 (6)	0.53545 (11)	0.0389 (5)
H14	0.9230	0.8692	0.4943	0.047*
C15	0.98280 (14)	0.6447 (6)	0.58754 (11)	0.0420 (6)
H15	1.0402	0.6623	0.5818	0.050*
C16	0.96660 (13)	0.4969 (6)	0.64746 (11)	0.0369 (5)

supporting information

C17	0.88298 (14)	0.4651 (6)	0.65736 (11)	0.0406 (6)
H17	0.8736	0.3620	0.6987	0.049*
C18	0.81276 (13)	0.5880 (6)	0.60519 (11)	0.0366 (5)
H18	0.7557	0.5667	0.6116	0.044*
F19	1.03595 (8)	0.3745 (4)	0.69849 (7)	0.0561 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0255 (7)	0.0598 (10)	0.0287 (7)	0.0049 (7)	0.0097 (6)	0.0056 (7)
C2	0.0284 (10)	0.0368 (12)	0.0278 (10)	-0.0038 (9)	0.0098 (8)	-0.0027 (9)
C3	0.0294 (10)	0.0435 (12)	0.0310 (10)	-0.0026 (10)	0.0109 (8)	-0.0009 (10)
C4	0.0262 (10)	0.0423 (12)	0.0375 (11)	-0.0016 (9)	0.0095 (9)	-0.0022 (10)
C5	0.0281 (10)	0.0424 (13)	0.0409 (12)	0.0012 (9)	0.0053 (9)	0.0008 (10)
C6	0.0402 (12)	0.0492 (14)	0.0346 (11)	0.0048 (11)	0.0043 (9)	0.0049 (11)
C7	0.0427 (12)	0.0580 (15)	0.0343 (11)	0.0027 (11)	0.0140 (10)	0.0054 (11)
C8	0.0314 (11)	0.0615 (16)	0.0363 (11)	0.0035 (11)	0.0129 (9)	0.0020 (11)
C9	0.0265 (10)	0.0340 (11)	0.0314 (10)	-0.0030 (9)	0.0068 (8)	-0.0043 (9)
C10	0.0263 (10)	0.0402 (12)	0.0284 (10)	-0.0014 (9)	0.0045 (8)	-0.0028 (9)
011	0.0303 (8)	0.0941 (15)	0.0432 (9)	0.0096 (9)	0.0185 (7)	0.0201 (9)
012	0.0274 (8)	0.0902 (14)	0.0523 (10)	0.0100 (9)	0.0169 (7)	0.0174 (10)
C13	0.0280 (10)	0.0351 (11)	0.0292 (10)	-0.0022 (9)	0.0081 (8)	-0.0043 (9)
C14	0.0331 (11)	0.0515 (14)	0.0342 (11)	-0.0001 (10)	0.0122 (9)	0.0077 (10)
C15	0.0267 (10)	0.0566 (15)	0.0429 (12)	-0.0002 (10)	0.0090 (9)	0.0054 (11)
C16	0.0327 (11)	0.0424 (13)	0.0320 (11)	0.0020 (10)	0.0010 (9)	0.0002 (10)
C17	0.0392 (12)	0.0537 (15)	0.0302 (11)	-0.0035 (11)	0.0109 (9)	0.0040 (10)
C18	0.0287 (10)	0.0497 (13)	0.0328 (11)	-0.0027 (10)	0.0100 (8)	0.0006 (10)
F19	0.0386 (7)	0.0798 (11)	0.0443 (8)	0.0069 (7)	-0.0013 (6)	0.0139 (7)

Geometric parameters (Å, °)

01—C10	1.363 (2)	C8—C10	1.388 (3)	
O1—C2	1.374 (2)	C8—H8	0.9300	
C2—C3	1.355 (3)	C9—C10	1.384 (3)	
C2—C13	1.468 (3)	O11—H11	0.83 (3)	
C3—011	1.352 (2)	C13—C18	1.392 (3)	
С3—С4	1.449 (3)	C13—C14	1.397 (3)	
C4—O12	1.237 (2)	C14—C15	1.379 (3)	
C4—C9	1.454 (3)	C14—H14	0.9300	
С5—С6	1.367 (3)	C15—C16	1.360 (3)	
С5—С9	1.403 (3)	C15—H15	0.9300	
С5—Н5	0.9300	C16—F19	1.358 (2)	
С6—С7	1.392 (3)	C16—C17	1.368 (3)	
С6—Н6	0.9300	C17—C18	1.378 (3)	
С7—С8	1.369 (3)	C17—H17	0.9300	
С7—Н7	0.9300	C18—H18	0.9300	
C10—O1—C2	121.01 (15)	С5—С9—С4	122.85 (18)	

C3—C2—O1	120.12 (18)	O1—C10—C9	122.00 (17)
C3—C2—C13	129.15 (18)	O1—C10—C8	116.41 (17)
O1—C2—C13	110.73 (16)	C9—C10—C8	121.58 (19)
O11—C3—C2	120.13 (19)	C3—O11—H11	109 (2)
O11—C3—C4	117.82 (17)	C18—C13—C14	117.60 (18)
C2—C3—C4	122.04 (18)	C18—C13—C2	123.34 (17)
Q12—C4—C3	121.08 (19)	C14—C13—C2	119.05 (18)
012	123.13 (19)	C15-C14-C13	121.43 (19)
C3-C4-C9	115.79 (17)	C15—C14—H14	119.3
C6-C5-C9	120 73 (19)	C13—C14—H14	119.3
C6-C5-H5	119.6	C_{16} C_{15} C_{14}	118 73 (19)
C9-C5-H5	119.6	C16-C15-H15	120.6
C_{5} C_{6} C_{7}	119.0 119.7(2)	C_{14} C_{15} H_{15}	120.6
C5-C6-H6	120.1	F19 - C16 - C15	118 55 (19)
C7_C6_H6	120.1	F19 - C16 - C17	110.33(19) 119.32(19)
$C_{8}^{-} C_{7}^{-} C_{6}^{-}$	120.1 120.9(2)	$C_{15} - C_{16} - C_{17}$	119.32(19) 1221(2)
C8-C7-H7	110 5	C_{16} C_{17} C_{18}	122.1(2) 119.08(19)
C6 C7 H7	110.5	$C_{16} = C_{17} = C_{18}$	120.5
$C_{7} = C_{8} = C_{10}$	119.5	$C_{10} = C_{17} = H_{17}$	120.5
C7 C8 H8	120.6	$C_{10} = C_{17} = M_{17}$	120.3 121.04(18)
$C_1 = C_2 = H_2$	120.0	C17 - C18 - C13	121.04 (18)
$C_{10} = C_{0} = C_{10}$	120.0 118 14 (18)	$C_{17} = C_{18} = H_{18}$	119.5
$C_{10} = C_{9} = C_{3}$	110.14(18) 110.01(18)	015-018-1118	119.5
010-09-04	119.01 (18)		
$C_{10} - 0_{1} - C_{2} - C_{3}$	15(3)	C_{5} C_{9} C_{10} O_{1}	179 34 (19)
C10-01-C2-C13	-177.75(18)	$C_{4} - C_{9} - C_{10} - O_{1}$	-19(3)
01 C2 C3 011	-170.05(10)	C_{5} C_{9} C_{10} C_{8}	-1.0(3)
$C_{13} = C_{2} = C_{3} = O_{11}$	-0.8(4)	$C_{3} - C_{9} - C_{10} - C_{8}$	1.0(3) 177 8 (2)
$C_{13} = C_2 = C_3 = C_4$	-1.4(3)	C7 C8 C10 C1	177.6(2)
$C_1^{-1} = C_2^{-1} = C_3^{-1} = C_4^{-1}$	1.7(3)	C7 C8 C10 C9	1/9.0(2)
$C_{13} = C_{2} = C_{3} = C_{4}$	-10(2)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	0.0(4)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	1.9(3)	C_{3} C_{2} C_{13} C_{18}	-160.68(10)
$C_2 = C_3 = C_4 = O_{12}$	179.3(2) 178.3(2)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	-167.8(2)
$C_{1}^{2} = C_{1}^{2} = C_{1$	-0.2(2)	C_{3} C_{2} C_{13} C_{14}	107.8(2)
$C_2 - C_3 - C_4 - C_9$	-0.3(3)	01 - 02 - 013 - 014	11.4(3)
$C_{9} = C_{3} = C_{0} = C_{7}$	-1.3(4)	$C_{10} = C_{13} = C_{14} = C_{15}$	-0.4(3)
$C_{5} = C_{0} = C_{1} = C_{8}$	0.2(4)	$C_2 = C_{13} = C_{14} = C_{15}$	1/8.0(2)
$C_{0} - C_{0} - C_{0} - C_{10}$	0.4(4)	C13 - C14 - C15 - C16	0.0(4)
$C_{6} - C_{5} - C_{9} - C_{10}$	1.7(3)	C14 - C15 - C16 - F19	1/9.7(2)
$C_{6} - C_{5} - C_{9} - C_{4}$	-1/7.0(2)		0.4 (4)
012 - 04 - 09 - 010	-1/1.9(2)	$r_{19} - C_{10} - C_{17} - C_{18}$	-1/9.6(2)
C_{3} C_{4} C_{9} C_{10}	1.9 (3)	C15 - C16 - C17 - C18	-0.3(4)
012 - 04 - 09 - 05	0.8 (4)	C10-C1/-C18-C13	-0.1(4)
C_{3} C_{4} C_{9} C_{5}	-17/9.4(2)	C14—C13—C18—C17	0.5 (3)
C2—O1—C10—C9	0.2 (3)	C2—C13—C18—C17	-178.5 (2)
C2—O1—C10—C8	-179.50 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
011—H11…O12	0.83 (3)	2.28 (3)	2.722 (2)	113 (3)	
O11—H11…O12 ⁱ	0.83 (3)	2.02 (3)	2.761 (2)	149 (3)	

Symmetry code: (i) -x+1, -y+2, -z+1.