

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua[2-(3-carboxy-5-carboxylatophenoxy)acetato- κO^1]bis(1,10-phenanthroline- $\kappa^2 N$, N')manganese(II) dihydrate

Yi-Ni Cai, Jing Chen and Yun-Long Feng*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.cn

Received 9 November 2010; accepted 18 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.117; data-to-parameter ratio = 15.7.

In the title complex, $[Mn(C_{10}H_6O_7)(C_{12}H_8N_2)_2(H_2O)] \cdot 2H_2O$, the Mn^{II} atom is coordinated by two O atoms from one 2-(3-carboxy-5-carboxy|atophenoxy) acetate (HOABDC²⁻) dianion and one water molecule and by four N atoms from two 1,10-phenanthroline (phen) ligands within a distorted octahedral geometry. $O-H \cdots O$ hydrogen bonding between – COOH and -COO⁻ groups of adjacent molecules and between carboxylate groups and coordinated and uncoordinated water molecules leads to a three-dimensional structure which is further stabilized by weak π - π interactions of adjacent phen ligands with centroid-centroid separations of 4.2932 (1) Å.

Related literature

For related structures, see: Cao et al. (2004, 2007); Cheng et al. (2004); Murugavel et al. (2002); Zhang et al. (2002).

 $\beta = 99.212 \ (2)^{\circ}$

Z = 4

V = 3129.46 (14) Å³

 $0.29 \times 0.24 \times 0.10 \text{ mm}$

69826 measured reflections

7282 independent reflections

5127 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.49 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.050$

Experimental

Crystal data

 $[Mn(C_{10}H_6O_7)(C_{12}H_8N_2)_2(H_2O)]$ -- $2H_2O$ $M_r = 707.54$ Monoclinic, $P2_1/n$ a = 8.1024 (2) Å b = 22.3106 (6) Å c = 17.5381 (5) Å

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.871, \ T_{\max} = 0.955$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.117$	independent and constrained
S = 1.00	refinement
7282 reflections	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
463 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
10 restraints	

Table 1

Selected bond lengths (Å).

Mn-O6	2.1352 (13)	Mn-N4	2.2633 (16)
Mn - O1W	2.1820 (15)	Mn-N2	2.2776 (16)
Mn-N1	2.2462 (17)	Mn-N3	2.2974 (16)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WA····O4 ⁱ	0.83 (2)	1.92 (2)	2.740 (2)	174 (2)
$O1 - H \cdot \cdot \cdot O3^{ii}$	0.87 (2)	1.56 (2)	2.4148 (19)	169 (3)
O2W−H2WB····O4 ⁱⁱⁱ	0.84(2)	2.08(2)	2.917 (2)	176 (3)
$O2W - H2WA \cdots O2^{iv}$	0.83(2)	2.08 (2)	2.908 (3)	177 (3)
O3W−H3WB···O3 ^v	0.83(2)	2.55 (2)	3.323 (3)	155 (4)
$O3W-H3WA\cdots O2W^{vi}$	0.84 (2)	2.01 (2)	2.845 (3)	173 (5)
Symmetry codes: (i)	$-x + \frac{1}{2}, y + \frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$ (i	ii) $x - \frac{1}{2}, -y + \frac{1}{2}$	$\frac{1}{2}, z - \frac{1}{2};$ (iii)
$-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2};$ (iv)	-x, -y + 1,	-z + 1; (v)	-x + 1, -y + 1	z = -z + 1; (vi)
$x - \frac{1}{2}, -v + \frac{3}{2}, z - \frac{1}{2}$				

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2428).

References

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cao, X.-Y., Zhang, J., Cheng, J.-K., Kang, Y. & Yao, Y.-G. (2004). *CrystEngComm*, 6, 315–317.
- Cao, X.-Y., Zhang, J., Li, Z.-J., Cheng, J.-K. & Yao, Y.-G. (2007). CrystEngComm, 9, 806–814.
- Cheng, D., Khan, M. A. & Houser, R. P. (2004). Cryst. Growth Des. 4, 599–604. Murugavel, R., Krishnamurthy, D. & Sathiyendiran, M. (2002). J. Chem. Soc. Dalton Trans. pp. 34–39.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, X.-M., Tong, M.-L. & Chen, X.-M. (2002). Angew. Chem. Int. Ed. 41, 1029–1031.

supporting information

Acta Cryst. (2010). E66, m1641–m1642 [https://doi.org/10.1107/S1600536810048142]

Aqua[2-(3-carboxy-5-carboxylatophenoxy)acetato- κO^1]bis(1,10-phenanthroline- $\kappa^2 N, N'$)manganese(II) dihydrate

Yi-Ni Cai, Jing Chen and Yun-Long Feng

S1. Comment

Many aromatic polycarboxylate ligands have been employed as organic skeletons in the formation of various metalorganic compounds. To the best of our knowledge, aromatic polycarboxylate ligand with both rigid and flexible carboxyl groups are less reported. In comparison with rigid aromatic multicarboxylic ligands (Cheng *et al.*, 2004; Murugavel *et al.*, 2002; Zhang *et al.*, 2002), 5-oxyacetic-1,3-benzenebiscarboxylic acid (H₃OABDC) provides two rigid carboxyl groups and one flexible oxyacetato group (Cao *et al.*, 2004, 2007). Herein, we report the synthesis and structure of a new Mn^{II} compound based on the H₃OABDC ligand, [Mn(C₁₀H₆O₇)(C₁₂H₈N₂)₂(H₂O)]²H₂O, (I).

Compound (I) consists of one Mn^{II} atom, one HOABDC²⁻ dianion, two phenanthroline (phen) ligands, one coordinated and two lattice water molecules, as shown in Fig. 1. The Mn^{II} atom is six-coordinated by four nitrogen atoms from two phen ligands (Mn—N 2.2462 (17)–2.2974 (16) Å), one oxygen atom from one flexible carboxyl group of the HOABDC²⁻ anion (Mn—O 2.1352 (13) Å) and one water molecule (Mn—O 2.1820 (15) Å) in a distorted octahedral geometry. It is notable that only the flexible carboxylato group participates in a monodentately coordinating mode to the Mn^{II} atom. The dianion is not planar as indicated by the dihedral angles (8.2 (1)–10.17 (5) °) between the benzene ring and the two carboxy groups, as well as the torsion angle (69.0 (2) °) involving the benzene ring and the OCH₂COO₂ group. The complex molecules are connected to each other through O—H…O interactions between the two rigid carboxyl groups of the HOABDC²⁻ dianion to form a "T"-shaped chain (Fig. 2). Adjacent chains are further linked with each other *via* weak π – π interactions between phen groups (centroid—centroid separation between planes is 4.2932 (1) Å) and O—H…O hydrogen bonds involving both coordinated and uncoordinated water molecules (Fig. 3).

S2. Experimental

All reagents were of analytical reagent grade and were used without further purification. A mixture of H_3OABDC (0.1205 g, 0.5 mmol), $Mn(NO_3)_2$ ·6H₂O (0.0976 g, 0.34 mmol), phen (0.1986 g, 0.01 mmol), and NaOH (0.0101 g, 0.25 mmol) was dissolved in purified water (15 ml), and reacted in a 25 ml stainless steel reactor with a telflon liner and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. Then, the reactor was cooled to room temperature at a speed of 5 K·h⁻¹. Yellow single crystals of title compound were obtained by slow evaporation of the filtrate over a few days (yield 40.1% based on H_3OABDC).

S3. Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å $U_{iso}(H) = 1.2U_{eq}(C)$]. The oxygen-bound H-atoms were located in difference Fourier maps and were refined with the O—H distances restrained to 0.82 Å [$U_{iso}(H) = 1.2U_{eq}(O)$].

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The "T"-shaped chain in the title compound.

Figure 3

The three-dimensional framework of the title compound with hydrogen bonding and $\pi - \pi$ interactions (dashed lines).

Aqua[2-(3-carboxyphenoxy)acetato- κO^1]bis(1,10-phenanthroline- $\kappa^2 N, N'$)manganese(II) dihvdrate

Crystal data

 $[Mn(C_{10}H_6O_7)(C_{12}H_8N_2)_2(H_2O)] \cdot 2H_2O$ $M_r = 707.54$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.1024 (2) Åb = 22.3106 (6) Å c = 17.5381(5) Å $\beta = 99.212 \ (2)^{\circ}$ $V = 3129.46 (14) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.871, T_{\rm max} = 0.955$

Refinement

Refinement on F^2

 $wR(F^2) = 0.117$

7282 reflections

463 parameters

direct methods

10 restraints

S = 1.00

 $R[F^2 > 2\sigma(F^2)] = 0.038$

F(000) = 1460 $D_{\rm x} = 1.502 {\rm Mg m^{-3}}$ Mo *Ka* radiation. $\lambda = 0.71073$ Å Cell parameters from 9990 reflections $\theta = 1.5 - 27.7^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.29 \times 0.24 \times 0.10 \text{ mm}$

69826 measured reflections 7282 independent reflections 5127 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.050$ $\theta_{\rm max} = 27.7^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$ $h = -10 \rightarrow 10$ $k = -28 \rightarrow 29$ $l = -22 \rightarrow 21$

Secondary atom site location: difference Fourier Least-squares matrix: full map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0638P)^2 + 0.5366P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mn	0.20775 (3)	0.527200 (13)	0.259979 (16)	0.03977 (10)

O1W	0.3442 (2)	0.58989 (7)	0.19761 (9)	0.0548 (4)
H1WA	0.302 (3)	0.6150 (9)	0.1656 (12)	0.066*
H1WB	0.395 (3)	0.5651 (9)	0.1744 (13)	0.066*
01	0.1064 (2)	0.31086 (7)	0.08413 (8)	0.0585 (4)
Н	0.050 (3)	0.2960 (10)	0.0421 (11)	0.070*
O2W	0.3384 (2)	0.69978 (11)	0.94327 (11)	0.0845 (6)
H2WB	0.310 (4)	0.6916 (14)	0.9859 (11)	0.101*
H2WA	0.254(3)	0.7136 (14)	0.9152 (14)	0.101*
02	-0.0390(2)	0.25197 (9)	0.15014 (9)	0.0759 (5)
O3W	0.1249(3)	0.72517(11)	0.4755(2)	0.1336(11)
H3WB	0.209(3)	0.7467 (16)	0.486(3)	0.160*
H3WA	0.207(3)	0.7476 (16)	0.462(3)	0.160*
03	0.012(3) 0.4840(2)	0.23215(7)	0.46173(8)	0.0724(5)
04	0.4640(2) 0.2717(2)	0.23215(7) 0.17586(7)	0.40925 (8)	0.0724(3) 0.0608(4)
05	0.2717(2) 0.62133(16)	0.17500 (7)	0.46925(0)	0.0000(4)
06	0.02155(10) 0.40064(17)	0.30920(0) 0.46344(6)	0.20030(7) 0.25174(8)	0.0440(3)
00	0.40004(17) 0.4781(2)	0.40344(0) 0.40201(7)	0.23174(0) 0.14154(0)	0.0433(3)
07 N1	0.4781(2) 0.2104(2)	0.49201(7)	0.14134(9) 0.27776(10)	0.0071(3)
IN I N 2	0.3104(2) 0.1241(2)	0.30290(8) 0.46230(7)	0.37770(10) 0.34650(0)	0.0317(4)
INZ	0.1241(2)	0.40239(7)	0.34039(9)	0.0444(4)
IN 5	-0.0037(2)	0.39680 (7)	0.24904(10)	0.0474(4)
IN4	0.01074(19)	0.49978(7)	0.13720(9)	0.0424(4)
Cl	0.2283(2) 0.2202(2)	0.28589 (8)	0.21010(10)	0.0395(4)
C2	0.2303 (2)	0.25059 (8)	0.27511(10)	0.0415 (4)
H2	0.1429	0.2243	0.2786	0.050*
C3	0.3647 (2)	0.25495 (8)	0.33519 (10)	0.0387 (4)
C4	0.4927 (2)	0.29499 (8)	0.32972 (10)	0.0385 (4)
H4	0.5824	0.2978	0.3699	0.046*
C5	0.4888 (2)	0.33098 (8)	0.26510 (10)	0.0366 (4)
C6	0.3576 (2)	0.32568 (8)	0.20429 (10)	0.0387 (4)
H6	0.3560	0.3486	0.1599	0.046*
C7	0.0849 (3)	0.28103 (9)	0.14504 (11)	0.0441 (4)
C8	0.3719 (3)	0.21739 (9)	0.40661 (10)	0.0452 (5)
C9	0.6173 (2)	0.40997 (9)	0.20347 (11)	0.0436 (4)
H9B	0.5972	0.3873	0.1557	0.052*
H9A	0.7266	0.4285	0.2069	0.052*
C10	0.4870 (2)	0.45928 (8)	0.19925 (11)	0.0391 (4)
C11	0.4049 (3)	0.61143 (11)	0.39264 (16)	0.0699 (7)
H11	0.4292	0.6342	0.3514	0.084*
C12	0.4691 (4)	0.62961 (14)	0.4676 (2)	0.0944 (11)
H12	0.5327	0.6644	0.4761	0.113*
C13	0.4381 (4)	0.59635 (16)	0.5274 (2)	0.0949 (12)
H13	0.4841	0.6074	0.5775	0.114*
C14	0.3372 (3)	0.54517 (13)	0.51546 (14)	0.0710 (8)
C15	0.2971 (4)	0.50771 (19)	0.57607 (15)	0.0959 (12)
H15	0.3358	0.5179	0.6272	0.115*
C16	0.2060 (4)	0.45879 (19)	0.56048 (16)	0.0913 (11)
H16	0.1819	0.4354	0.6012	0.110*
C17	0.1430 (3)	0.44057 (14)	0.48282 (14)	0.0667 (7)

C18	0.0533 (3)	0.38851 (15)	0.46418 (18)	0.0842 (9)
H18	0.0275	0.3638	0.5033	0.101*
C19	0.0027 (3)	0.37328 (13)	0.38935 (19)	0.0801 (8)
H19	-0.0560	0.3379	0.3767	0.096*
C20	0.0403 (3)	0.41167 (11)	0.33149 (14)	0.0596 (6)
H20	0.0050	0.4011	0.2802	0.072*
C21	0.1775 (2)	0.47682 (10)	0.42138 (11)	0.0482 (5)
C22	0.2753 (3)	0.52968 (10)	0.43802 (12)	0.0521 (5)
C23	-0.0184 (3)	0.64320 (10)	0.29509 (14)	0.0587 (6)
H23	0.0592	0.6470	0.3400	0.070*
C24	-0.1426 (3)	0.68609 (11)	0.27993 (18)	0.0715 (7)
H24	-0.1510	0.7168	0.3150	0.086*
C25	-0.2517 (3)	0.68242 (11)	0.21291 (19)	0.0729 (8)
H25	-0.3346	0.7113	0.2013	0.088*
C26	-0.2408 (3)	0.63540 (10)	0.16083 (14)	0.0585 (6)
C27	-0.3498 (3)	0.62863 (13)	0.08932 (17)	0.0724 (8)
H27	-0.4302	0.6578	0.0740	0.087*
C28	-0.3393 (3)	0.58124 (14)	0.04358 (15)	0.0701 (7)
H28	-0.4115	0.5784	-0.0032	0.084*
C29	-0.2185 (3)	0.53454 (11)	0.06531 (12)	0.0531 (5)
C30	-0.2098 (3)	0.48226 (12)	0.02292 (13)	0.0603 (6)
H30	-0.2854	0.4761	-0.0222	0.072*
C31	-0.0914 (3)	0.44008 (11)	0.04712 (12)	0.0567 (6)
H31	-0.0862	0.4048	0.0194	0.068*
C32	0.0217 (3)	0.45103 (10)	0.11419 (12)	0.0487 (5)
H32	0.1048	0.4228	0.1296	0.058*
C33	-0.1037 (2)	0.54120 (9)	0.13409 (11)	0.0441 (5)
C34	-0.1145 (2)	0.59240 (9)	0.18283 (12)	0.0465 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn	0.04202 (17)	0.03954 (18)	0.03701 (17)	0.00304 (12)	0.00406 (12)	0.00051 (12)
O1W	0.0625 (10)	0.0436 (9)	0.0606 (10)	0.0093 (7)	0.0173 (8)	0.0131 (7)
01	0.0702 (10)	0.0685 (10)	0.0302 (7)	-0.0123 (8)	-0.0114 (7)	0.0053 (7)
O2W	0.0594 (11)	0.1263 (17)	0.0674 (12)	0.0024 (11)	0.0084 (9)	0.0115 (12)
O2	0.0634 (10)	0.0999 (13)	0.0555 (10)	-0.0298 (10)	-0.0173 (8)	0.0241 (9)
O3W	0.0990 (17)	0.0797 (17)	0.230 (3)	-0.0064 (13)	0.049 (2)	0.0240 (19)
03	0.1013 (13)	0.0683 (10)	0.0371 (8)	-0.0295 (10)	-0.0207 (8)	0.0144 (7)
O4	0.0910 (12)	0.0531 (9)	0.0355 (7)	-0.0239 (8)	0.0016 (7)	0.0043 (6)
05	0.0392 (7)	0.0418 (7)	0.0481 (7)	-0.0008 (6)	-0.0016 (6)	0.0087 (6)
O6	0.0492 (8)	0.0440 (8)	0.0460 (8)	0.0077 (6)	0.0158 (6)	0.0066 (6)
07	0.0841 (12)	0.0664 (10)	0.0565 (9)	0.0243 (9)	0.0289 (8)	0.0261 (8)
N1	0.0498 (10)	0.0476 (10)	0.0541 (11)	0.0055 (8)	-0.0022 (8)	-0.0106 (8)
N2	0.0386 (8)	0.0523 (10)	0.0422 (9)	0.0035 (7)	0.0058 (7)	0.0033 (7)
N3	0.0497 (10)	0.0431 (9)	0.0516 (10)	0.0056 (8)	0.0151 (8)	0.0022 (8)
N4	0.0403 (9)	0.0461 (9)	0.0399 (9)	0.0027 (7)	0.0038 (7)	0.0026 (7)
C1	0.0475 (10)	0.0401 (10)	0.0285 (9)	0.0004 (8)	-0.0016 (8)	-0.0007 (7)

supporting information

C2	0.0510 (11)	0.0397 (11)	0.0323 (9)	-0.0035 (8)	0.0018 (8)	0.0000 (7)
C3	0.0534 (11)	0.0328 (9)	0.0281 (9)	0.0006 (8)	0.0007 (8)	-0.0008 (7)
C4	0.0455 (10)	0.0357 (9)	0.0307 (9)	0.0025 (8)	-0.0044 (8)	-0.0017 (7)
C5	0.0405 (10)	0.0316 (9)	0.0364 (9)	0.0037 (8)	0.0026 (8)	-0.0007 (7)
C6	0.0480 (10)	0.0374 (10)	0.0292 (9)	0.0023 (8)	0.0018 (8)	0.0027 (7)
C7	0.0522 (12)	0.0429 (11)	0.0338 (10)	-0.0017 (9)	-0.0032 (8)	-0.0008 (8)
C8	0.0643 (13)	0.0374 (10)	0.0312 (9)	-0.0026 (9)	-0.0009 (9)	-0.0012 (8)
C9	0.0396 (10)	0.0447 (11)	0.0475 (11)	0.0025 (8)	0.0098 (8)	0.0069 (9)
C10	0.0402 (10)	0.0389 (10)	0.0374 (10)	-0.0016 (8)	0.0035 (8)	0.0038 (8)
C11	0.0628 (15)	0.0511 (14)	0.0883 (18)	0.0051 (11)	-0.0109 (13)	-0.0199 (13)
C12	0.0787 (19)	0.0655 (19)	0.123 (3)	0.0192 (15)	-0.0331 (19)	-0.0488 (19)
C13	0.086 (2)	0.099 (2)	0.085 (2)	0.0432 (19)	-0.0331 (17)	-0.0548 (19)
C14	0.0646 (15)	0.0963 (19)	0.0463 (13)	0.0378 (15)	-0.0087 (11)	-0.0240 (13)
C15	0.091 (2)	0.157 (3)	0.0361 (14)	0.062 (2)	-0.0009 (14)	-0.0113 (18)
C16	0.084 (2)	0.151 (3)	0.0415 (15)	0.046 (2)	0.0161 (14)	0.0221 (18)
C17	0.0513 (13)	0.098 (2)	0.0538 (14)	0.0242 (14)	0.0184 (11)	0.0229 (13)
C18	0.0651 (17)	0.105 (2)	0.087 (2)	0.0095 (16)	0.0241 (15)	0.0476 (18)
C19	0.0566 (15)	0.0713 (18)	0.113 (2)	-0.0077 (13)	0.0156 (15)	0.0305 (17)
C20	0.0483 (12)	0.0599 (14)	0.0690 (15)	-0.0054 (11)	0.0044 (11)	0.0071 (12)
C21	0.0389 (10)	0.0679 (14)	0.0384 (10)	0.0157 (10)	0.0076 (8)	0.0051 (9)
C22	0.0464 (11)	0.0686 (14)	0.0386 (10)	0.0215 (10)	-0.0013 (9)	-0.0099 (10)
C23	0.0652 (14)	0.0488 (13)	0.0669 (14)	0.0059 (11)	0.0254 (12)	-0.0023 (11)
C24	0.0753 (17)	0.0474 (14)	0.101 (2)	0.0112 (12)	0.0437 (17)	-0.0015 (13)
C25	0.0591 (15)	0.0503 (14)	0.117 (2)	0.0191 (11)	0.0375 (16)	0.0205 (15)
C26	0.0431 (12)	0.0552 (13)	0.0803 (16)	0.0092 (10)	0.0198 (11)	0.0257 (12)
C27	0.0446 (13)	0.0770 (18)	0.095 (2)	0.0126 (12)	0.0091 (13)	0.0396 (16)
C28	0.0424 (12)	0.098 (2)	0.0662 (16)	-0.0008 (13)	-0.0025 (11)	0.0373 (15)
C29	0.0380 (10)	0.0736 (15)	0.0468 (12)	-0.0056 (10)	0.0042 (9)	0.0199 (11)
C30	0.0480 (12)	0.0876 (18)	0.0423 (11)	-0.0211 (12)	-0.0019 (10)	0.0091 (12)
C31	0.0617 (14)	0.0635 (14)	0.0444 (12)	-0.0183 (12)	0.0066 (10)	-0.0044 (10)
C32	0.0491 (12)	0.0504 (12)	0.0458 (11)	-0.0040 (9)	0.0055 (9)	-0.0011 (9)
C33	0.0360 (10)	0.0530 (12)	0.0439 (11)	-0.0003 (9)	0.0083 (8)	0.0136 (9)
C34	0.0389 (10)	0.0467 (11)	0.0567 (12)	0.0064 (9)	0.0162 (9)	0.0145 (9)

Geometric parameters (Å, °)

Mn—O6	2.1352 (13)	С9—Н9А	0.9700
Mn—O1W	2.1820 (15)	C11—C12	1.395 (4)
Mn—N1	2.2462 (17)	C11—H11	0.9300
Mn—N4	2.2633 (16)	C12—C13	1.341 (5)
Mn—N2	2.2776 (16)	C12—H12	0.9300
Mn—N3	2.2974 (16)	C13—C14	1.400 (5)
O1W—H1WA	0.829 (15)	C13—H13	0.9300
O1W—H1WB	0.834 (15)	C14—C22	1.413 (3)
O1—C7	1.294 (2)	C14—C15	1.430 (5)
01—Н	0.867 (16)	C15—C16	1.322 (5)
O2W—H2WB	0.838 (16)	C15—H15	0.9300
O2W—H2WA	0.834 (17)	C16—C17	1.435 (4)

O2—C7	1.210(2)	C16—H16	0.9300
O3W—H3WB	0.831 (18)	C17—C18	1.381 (4)
O3W—H3WA	0.839 (18)	C17—C21	1.411 (3)
O3—C8	1.260 (2)	C18—C19	1.354 (4)
O4—C8	1.238 (2)	C18—H18	0.9300
Q5—C5	1.369 (2)	C19—C20	1,398 (3)
05-09	1.835 (2)	C19—H19	0.9300
06-C10	1.26 (2)	C20—H20	0.9300
07—C10	1.210(2) 1.241(2)	C_{21} C_{22}	1425(3)
N1_C11	1.211(2) 1.326(3)	C^{23} C^{24}	1.123(3) 1.383(3)
N1 C22	1.320(3)	C_{23} H_{23}	0.9300
N1	1.339(3) 1.324(3)	$C_{23} = 1123$	1 355 (4)
N2 C21	1.324(3) 1.352(2)	$C_2 - C_2 J$	0.0200
N2	1.555(5) 1.220(2)	C_{24} H_{24}	0.9300
N3-C23	1.550 (5)	C25—C20	1.405 (4)
N3-C34	1.353 (3)	C25—H25	0.9300
N4	1.328 (3)	$C_{26} - C_{34}$	1.410 (3)
N4—C33	1.358 (2)	C26—C27	1.421 (4)
C1—C2	1.384 (2)	C27—C28	1.338 (4)
C1—C6	1.389 (3)	С27—Н27	0.9300
C1—C7	1.496 (2)	C28—C29	1.438 (3)
C2—C3	1.392 (2)	C28—H28	0.9300
С2—Н2	0.9300	C29—C30	1.391 (3)
C3—C4	1.383 (3)	C29—C33	1.408 (3)
C3—C8	1.500 (2)	C30—C31	1.362 (3)
C4—C5	1.385 (2)	С30—Н30	0.9300
C4—H4	0.9300	C31—C32	1.392 (3)
С5—С6	1.385 (2)	C31—H31	0.9300
С6—Н6	0.9300	С32—Н32	0.9300
C9—C10	1.519 (3)	C33—C34	1.438 (3)
С9—Н9В	0.9700		
O6—Mn—O1W	87.60 (5)	C12—C11—H11	118.7
O6—Mn—N1	97.56 (6)	C13—C12—C11	119.2 (3)
O1W—Mn—N1	95.19 (7)	C13—C12—H12	120.4
06—Mn—N4	100.41 (6)	C11—C12—H12	120.4
O1W—Mn—N4	96.37 (6)	C12—C13—C14	120.8 (3)
N1—Mn—N4	158.98 (6)	C12—C13—H13	119.6
06-Mn-N2	85 50 (5)	C14—C13—H13	119.6
01W - Mn - N2	165 93 (6)	C13-C14-C22	116.9 (3)
N1 - Mn - N2	73 63 (7)	C13 - C14 - C15	124.2(3)
N4N2	96.92 (6)	$C_{13} = C_{14} = C_{15}$	124.2(3) 1189(3)
06 Mn N3	171 40 (6)	C_{16} C_{15} C_{14}	110.9(3)
O1W Mp N3	87.47 (6)	$C_{16} = C_{15} = C_{14}$	121.0 (3)
$M_1 M_2 M_3$	80.00 (6)	C10 - C15 - H15 C14 - C15 - H15	117.5
$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{3} \frac{1}$	(0).70(0)	C_{17} C_{15} C_{16} C_{17}	117.3
$\frac{1}{1} \frac{1}{1} \frac{1}$	100 78 (6)	C15 - C10 - C17	122.2(3)
	100.78(0) 125.0(17)	$C13 - C10 - \Pi10$	110.7
WIII—OTW—HTWA	123.9(17)	C1/-C10-H10	118.9
MIN-OIW-HIWB	98.0(1/)	C18 - C1 / - C21	11/.6(2)

H1WA—O1W—H1WB	107.6 (19)	C18—C17—C16	123.8 (3)
С7—О1—Н	112.5 (17)	C21—C17—C16	118.6 (3)
H2WB—O2W—H2WA	107 (2)	C19—C18—C17	120.4 (2)
H3WB—O3W—H3WA	108 (3)	C19—C18—H18	119.8
C5—O5—C9	117.66 (14)	C17—C18—H18	119.8
C10—O6—Mn	127.12 (12)	C18—C19—C20	118.8 (3)
C11—N1—C22	118.6 (2)	С18—С19—Н19	120.6
C11—N1—Mn	126.00 (18)	С20—С19—Н19	120.6
C22—N1—Mn	115.37 (14)	N2—C20—C19	122.9 (2)
C20—N2—C21	118.14 (19)	N2—C20—H20	118.6
C20—N2—Mn	127.37 (15)	C19—C20—H20	118.6
$C_2 I - N_2 - M_n$	114.35 (14)	N_{2} C21 - C17	122.2 (2)
$C_{23} N_{3} C_{34}$	117 76 (18)	N2-C21-C22	118 48 (19)
C_{23} N3 M_n	127.85 (15)	C_{17} C_{21} C_{22}	119 3 (2)
C_{34} N3 M_n	113 98 (13)	$N1 - C^{22} - C^{14}$	121.9(2)
C_{32} N4 C_{33}	118 21 (17)	$N1 - C^{22} - C^{21}$	121.9(2)
C_{32} N4 M_n	126 51 (13)	C_{14} C_{22} C_{21} C_{21}	1200(2)
C_{33} N4 Mn	114.90(13)	N3-C23-C24	120.0(2) 123.7(2)
C_{2} C_{1} C_{6}	120.96 (17)	N3-C23-H23	118.1
$C_2 = C_1 = C_7$	120.90(17) 119 50(17)	C_{24} C_{23} H_{23}	118.1
$C_{2} = C_{1} = C_{7}$	119.50 (17)	$C_{24} = C_{23} = H_{23}$	118.1
$C_1 - C_2 - C_3$	119.34 (10)	$C_{25} = C_{24} = C_{25}$	120.7
C1 - C2 - H2	120.4	C_{23} C_{24} H_{24}	120.7
C_{3} C_{2} H_{2}	120.4	$C_{23} = C_{24} = C_{26}$	120.7 120.6(2)
$C_{4} - C_{3} - C_{2}$	110 79 (16)	$C_{24} = C_{25} = C_{20}$	110 7
$C_{4} - C_{3} - C_{2}$	119.79 (10)	$C_{24} = C_{25} = H_{25}$	119.7
$C_{1}^{2} - C_{3}^{2} - C_{8}^{2}$	120.91 (17)	$C_{20} = C_{20} = C_{20} = C_{20}$	119.7 116.7(2)
$C_2 = C_3 = C_8$	120.91(17) 120.79(16)	$C_{25} = C_{26} = C_{27}$	110.7(2) 124.0(2)
$C_3 = C_4 = C_3$	110.6	$C_{23} = C_{20} = C_{27}$	124.0(2) 1103(2)
C_{5} C_{4} H_{4}	119.0	$C_{24} = C_{20} = C_{27}$	119.5(2) 121.5(2)
C_{5} C_{5} C_{4}	115.65 (15)	$C_{28} = C_{27} = C_{20}$	121.3 (2)
05 - 05 - 04	124.69 (16)	$C_{26} = C_{27} = H_{27}$	119.2
C_{4} C_{5} C_{6}	124.09(10) 110.64(17)	$C_{20} = C_{27} = C$	119.2 1213(2)
$C_{1}^{2} = C_{2}^{2} = C_{0}^{2}$	119.53 (16)	$C_{27} = C_{28} = C_{27}$	121.5 (2)
C5-C6-H6	120.2	C_{29} C_{28} H_{28}	119.4
C1_C6_H6	120.2	$C_{20} = C_{20} = C_{33}$	117.4
$0^{2}-0^{7}-0^{1}$	124.02 (18)	C_{30} C_{29} C_{35} C_{30} C_{29} C_{28}	117.0(2) 123.8(2)
02 - 07 - 01	124.02(10) 122.31(17)	C_{33} C_{29} C_{28}	123.6(2)
02 - C7 - C1	122.51(17) 113.67(17)	$C_{31} - C_{30} - C_{20}$	1204(2)
04 - C8 - 03	124 31 (18)	$C_{31} - C_{30} - H_{30}$	119.8
04 - 08 - 03	124.51(10) 120.76(17)	C_{29} C_{30} H_{30}	119.8
03 - C8 - C3	120.70(17) 114.92(17)	C_{2}^{30} C_{30}^{31} C_{32}^{32}	119.0 118.5(2)
05 - C9 - C10	114.92(17) 115.42(15)	C_{30} C_{31} H_{31}	120.7
05-C9-H9B	108.42 (15)	C_{32} C_{31} H_{31}	120.7
C10-C9-H9B	108.4	N4-C32-C31	123.7
05-09-494	108.4	N4—C32—H32	118.4
C10—C9—H9A	108.4	C31—C32—H32	118.4
H9B-C9-H9A	107 5	N4-C33-C29	121 9 (2)
	107.0	111 033 047	141.7 (4)

O7—C10—O6	126.36 (18)	N4—C33—C34	118.19 (17)
07—C10—C9	114.52 (17)	C29—C33—C34	119.88 (19)
O6—C10—C9	119.11 (16)	N3—C34—C26	122.6 (2)
N1—C11—C12	122.6 (3)	N3—C34—C33	118.18 (17)
N1—C11—H11	118.7	C26—C34—C33	119.2 (2)
O1W—Mn—O6—C10	-30.45 (16)	Mn—N1—C11—C12	-177.58 (19)
N1—Mn—O6—C10	-125.37 (16)	N1-C11-C12-C13	1.6 (4)
N4—Mn—O6—C10	65.59 (16)	C11—C12—C13—C14	-2.4 (4)
N2—Mn—O6—C10	161.82 (16)	C12—C13—C14—C22	2.0 (4)
N3—Mn—O6—C10	24.6 (5)	C12—C13—C14—C15	-179.5 (3)
O6—Mn—N1—C11	95.28 (18)	C13—C14—C15—C16	-177.5 (3)
O1W—Mn—N1—C11	7.02 (18)	C22—C14—C15—C16	1.0 (4)
N4—Mn—N1—C11	-116.2 (2)	C14—C15—C16—C17	0.1 (5)
N2—Mn—N1—C11	178.30 (19)	C15—C16—C17—C18	177.2 (3)
N3—Mn—N1—C11	-80.42(18)	C15—C16—C17—C21	-1.1 (4)
O6—Mn—N1—C22	-82.22(14)	C21—C17—C18—C19	0.6 (4)
O1W—Mn—N1—C22	-170.48(14)	C16—C17—C18—C19	-177.7 (3)
N4—Mn—N1—C22	66.4 (2)	C17—C18—C19—C20	-1.1 (4)
N2-Mn-N1-C22	0.80 (13)	C21—N2—C20—C19	1.1 (3)
N3—Mn—N1—C22	102.08 (14)	Mn—N2—C20—C19	176.39 (17)
O6—Mn—N2—C20	-77.02(17)	C18—C19—C20—N2	0.3 (4)
O1W— Mn — $N2$ — $C20$	-137.9(2)	C20—N2—C21—C17	-1.7(3)
N1-Mn-N2-C20	-176.26(18)	Mn - N2 - C21 - C17	-177.57(15)
N4—Mn—N2—C20	22.95 (18)	C_{20} N_{2} C_{21} C_{22}	176.70 (18)
N3—Mn—N2—C20	97.06 (17)	Mn—N2—C21—C22	0.8 (2)
06-Mn-N2-C21	98.38 (14)	C18 - C17 - C21 - N2	0.9(3)
01W—Mn—N2—C21	37.5 (3)	$C_{16} - C_{17} - C_{21} - N_{2}$	179.3 (2)
N1 - Mn - N2 - C21	-0.86(13)	C18 - C17 - C21 - C22	-1775(2)
N4-Mn-N2-C21	-161.65(13)	$C_{16} - C_{17} - C_{21} - C_{22}$	0.9(3)
$N_3 M_n N_2 C_21$	-87 54 (14)	$C_{11} = N_1 = C_{22} = C_{14}$	-0.3(3)
06-Mn-N3-C23	-140.2(3)	Mn - N1 - C22 - C14	177 38 (16)
01W—Mn—N3—C23	-8523(17)	$C_{11} N_{1} C_{22} C_{11}$	-178 37 (19)
N1 - Mn - N3 - C23	9 97 (18)	Mn - N1 - C22 - C21	-0.7(2)
N4—Mn—N3—C23	177.33 (18)	C13 - C14 - C22 - N1	-0.6(3)
N_2 — M_n — N_3 — C_{23}	83.28 (18)	C15 - C14 - C22 - N1	-179.2(2)
06-Mn-N3-C34	32.1 (5)	C_{13} C_{14} C_{22} C_{21}	177.5 (2)
01W—Mn—N3—C34	87.11 (14)	C_{15} C_{14} C_{22} C_{21}	-1.2(3)
N1-Mn-N3-C34	-177.68(14)	N2-C21-C22-N1	-0.1(3)
N4—Mn—N3—C34	-10.33(13)	C17 - C21 - C22 - N1	178.33 (18)
N_2 — M_n — N_3 — C_34	-10437(13)	N_{2} C_{21} C_{22} C_{14}	-17822(19)
06-Mn-N4-C32	9.20 (17)	C17 - C21 - C22 - C14	0.2 (3)
O1W— Mn — $N4$ — $C32$	97.91 (16)	C_{34} N3 C_{23} C_{24}	1.6 (3)
N1—Mn—N4—C32	-139.10 (19)	Mn—N3—C23—C24	173.73 (17)
N2—Mn—N4—C32	-77.47 (17)	N3-C23-C24-C25	-2.9(4)
N3—Mn—N4—C32	-176.69 (17)	C23—C24—C25—C26	1.3 (4)
O6—Mn—N4—C33	-163.56(12)	C24—C25—C26—C34	1.4 (3)
O1W—Mn—N4—C33	-74.85 (13)	C24—C25—C26—C27	-179.6 (2)

N1—Mn—N4—C33	48.1 (2)	C25—C26—C27—C28	-176.5 (2)
N2—Mn—N4—C33	109.77 (13)	C34—C26—C27—C28	2.4 (3)
N3—Mn—N4—C33	10.55 (12)	C26—C27—C28—C29	0.9 (4)
C6—C1—C2—C3	-0.4 (3)	C27—C28—C29—C30	175.1 (2)
C7—C1—C2—C3	179.47 (17)	C27—C28—C29—C33	-3.7 (3)
C1—C2—C3—C4	1.0 (3)	C33—C29—C30—C31	-1.4 (3)
C1—C2—C3—C8	-179.91 (17)	C28—C29—C30—C31	179.8 (2)
C2—C3—C4—C5	0.1 (3)	C29—C30—C31—C32	-1.0 (3)
C8—C3—C4—C5	-179.02 (17)	C33—N4—C32—C31	-0.7 (3)
C9—O5—C5—C4	-175.88 (15)	Mn—N4—C32—C31	-173.26 (15)
C9—O5—C5—C6	5.5 (3)	C30—C31—C32—N4	2.2 (3)
C3—C4—C5—O5	179.48 (16)	C32—N4—C33—C29	-1.9 (3)
C3—C4—C5—C6	-1.8 (3)	Mn—N4—C33—C29	171.52 (14)
O5—C5—C6—C1	-178.99 (17)	C32—N4—C33—C34	176.75 (17)
C4—C5—C6—C1	2.4 (3)	Mn—N4—C33—C34	-9.8 (2)
C2-C1-C6-C5	-1.3 (3)	C30—C29—C33—N4	2.9 (3)
C7—C1—C6—C5	178.81 (17)	C28—C29—C33—N4	-178.20 (18)
C2-C1-C7-O2	8.0 (3)	C30—C29—C33—C34	-175.71 (18)
C6—C1—C7—O2	-172.1 (2)	C28—C29—C33—C34	3.2 (3)
C2-C1-C7-O1	-172.33 (18)	C23—N3—C34—C26	1.3 (3)
C6-C1-C7-O1	7.5 (3)	Mn—N3—C34—C26	-171.89 (15)
C4—C3—C8—O4	-170.49 (19)	C23—N3—C34—C33	-177.67 (18)
C2—C3—C8—O4	10.4 (3)	Mn—N3—C34—C33	9.2 (2)
C4—C3—C8—O3	10.3 (3)	C25—C26—C34—N3	-2.7 (3)
C2—C3—C8—O3	-168.75 (19)	C27—C26—C34—N3	178.23 (19)
C5—O5—C9—C10	69.0 (2)	C25—C26—C34—C33	176.20 (18)
Mn	0.6 (3)	C27—C26—C34—C33	-2.8 (3)
Mn—O6—C10—C9	-179.20 (12)	N4—C33—C34—N3	0.3 (3)
O5—C9—C10—O7	-175.65 (18)	C29—C33—C34—N3	178.99 (17)
O5—C9—C10—O6	4.2 (3)	N4—C33—C34—C26	-178.66 (17)
C22—N1—C11—C12	-0.2 (3)	C29—C33—C34—C26	0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
01 <i>W</i> —H1 <i>WA</i> ···O4 ⁱ	0.83 (2)	1.92 (2)	2.740 (2)	174 (2)
O1—H···O3 ⁱⁱ	0.87 (2)	1.56 (2)	2.4148 (19)	169 (3)
$O2W - H2WB - O4^{iii}$	0.84 (2)	2.08 (2)	2.917 (2)	176 (3)
$O2W$ — $H2WA$ ··· $O2^{iv}$	0.83 (2)	2.08 (2)	2.908 (3)	177 (3)
O3 <i>W</i> —H3 <i>WB</i> ···O3 ^v	0.83 (2)	2.55 (2)	3.323 (3)	155 (4)
O3W— $H3WA$ ··· $O2W$ ^{vi}	0.84 (2)	2.01 (2)	2.845 (3)	173 (5)

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+1/2; (ii) *x*-1/2, -*y*+1/2, *z*-1/2; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*-1/2, -*y*+3/2, *z*-1/2.