Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(2,2'-bipyridine)nickel(II)]μ-2,4'-oxydibenzoato]

Jia-Kun Xu,^a Xiao-Chun Sun^b and Feng Guo^{c*}

^aCollege of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China, ^bNational Oceanographic Center, Qingdao 266071, People's Republic of China, and ^cDepartment of Chemistry, Dezhou University, Shandong 253023, People's Republic of China Correspondence e-mail: guofeng1510@yeah.net

Received 13 October 2010; accepted 9 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.094; data-to-parameter ratio = 17.1.

In the title compound, $[Ni(C_{14}H_8O_5)(C_{10}H_8N_2)]_n$, the Ni^{II} atom is six-coordinated in a slightly distorted octahedral geometry by four O atoms from two chelating carboxylate groups of symmetry-related 2,4'-oxydibenzoate anions and by two N atoms from a 2,2'-bipyridine ligand. The Ni^{II} atoms are bridged by the 2,4'-oxydibenzoate anions, resulting in the formation of helical chains parallel to [010] with a repeating unit of 15.039 (2) Å.

Related literature

For background to multicarboxylate ligands, see: Liu et al. (2008); Yang et al. (2009).

Experimental

Crystal data

 $\begin{bmatrix} \text{Ni}(\text{C}_{14}\text{H}_{8}\text{O}_{5})(\text{C}_{10}\text{H}_{8}\text{N}_{2}) \end{bmatrix}$ $M_{r} = 471.10$ Monoclinic, $P2_{1}/c$ a = 8.061 (1) Å b = 15.039 (2) Å c = 17.847 (5) Å $\beta = 99.464$ (3)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\rm min} = 0.764, T_{\rm max} = 0.833$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	289 parameters
$wR(F^2) = 0.094$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
4938 reflections	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

V = 2134.1 (6) Å³

Mo $K\alpha$ radiation $\mu = 0.95 \text{ mm}^{-1}$

 $0.30 \times 0.25 \times 0.20$ mm

13096 measured reflections

4938 independent reflections

3475 reflections with $I > 2\sigma(I)$

Z = 4

T = 293 K

 $R_{\rm int} = 0.027$

 Table 1

 Selected bond lengths (Å).

Ni1-N1	2.0260 (17)	Ni1-O1	2.0694 (16)
Ni1-N2	2.0412 (18)	Ni1-O2	2.1331 (18)
Ni1-O5 ⁱ	2.0459 (19)	Ni1-O4 ⁱ	2.1673 (15)
	. 1 . 1		```

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

We are grateful to Dr Li Bin and Tian Lei for their help during the experiments.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2416).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2001). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin,

USA.

Liu, J. Q., Wang, Y. Y., Ma, L. F., Wen, G. L., Shi, Q. Z., Batten, S. R. & Proserpio, D. M. (2008). *CrystEngComm*, **10**, 1123–1125.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, J., Ma, J. F., Liu, Y. Y. & Batten, S. R. (2009). CrystEngComm, 11, 151– 159.

m1574 Xu et al.

supporting information

Acta Cryst. (2010). E66, m1574 [https://doi.org/10.1107/S1600536810046210] *catena*-Poly[[(2,2'-bipyridine)nickel(II)]-μ-2,4'-oxydibenzoato]

Jia-Kun Xu, Xiao-Chun Sun and Feng Guo

S1. Comment

Semi-rigid V-shaped multicarboxylate moieties with two benzene rings containing a central nonmetallic fragment (C, O, or S atom) are excellent ligands since they can freely twist around the nonmetallic atom to meet the requirements of the coordination geometries of metal atoms in the assembly process (Liu *et al.*, 2008; Yang *et al.*, 2009). In view of the above point, we chose 2,4'-oxydibenzoate along with nitrogen-containing auxiliary ligands to construct new metal coordination polymers. The title compound, (I), was synthesized by the hydrothermal reaction of 2,4'-oxybis(benzoic acid) with 2,2-bi-pyridine and nickel chloride hexahydrate.

The asymmetric unit of (I) consists of one Ni^{II} ion, one 2,2'-bipyridine ligand and one 2,4'-oxydibenzoate anion. The central Ni^{II} ion exhibits an octahedral NiN₂O₄ environment defined by two chelating carboxylate groups of symmetry-related 2,4'-oxydibenzoate ligands and by one 2,2-bipyridine molecule (Fig. 1). The Ni—O distances range from 2.0459 (19) to 2.1673 (15) Å and the Ni—N distances from 2.0260 (17) and 2.0412 (18) Å. The 2,4'-oxydibenzoate anions acts as a μ_2 -ligand with its two carboxylate groups bridging two Ni^{II} ions to form an infinite one-dimensional helical chain running parallel to [010] (Fig. 2). The repeating unit of 15.039 (2) Å of the chains corresponds to the lattice parameter *b*.

S2. Experimental

A mixture of NiCl₂6H₂O (0.238 g, 1 mmol), 2,4'-oxybis(benzoic acid) (0.258 g, 1 mmol), NaOH (0.08 g, 2 mmol), 2,2'bipyridine (0.156 g,1 mmol) and distilled water (15 ml) was heated to 433 K for 96 h in a 25 ml stainless steel reactor with a Teflon liner. Green block-like crystals were obtained with 42% yield based on Ni.

S3. Refinement

Hydrogen atoms were included in calculated positions and refined on their parent atoms with C—H distances of 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The coordination environment of the Ni^{II} atom with displacement parameters drawn at the 40% probability level. All hydrogen atoms have been omitted for clarity. [Symmetry code A: (i) -x+1, y+1/2, -z+3/2].

Figure 2

The helical chain (space-filling representation) in (I) extending parallel to [010].

```
catena-Poly[[(2,2'-bipyridine)nickel(II)]-µ-2,4'-oxydibenzoato]
```

Crystal data [Ni(C₁₄H₈O₅)(C₁₀H₈N₂)] $M_r = 471.10$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.061 (1) Å b = 15.039 (2) Å c = 17.847 (5) Å $\beta = 99.464$ (3)° V = 2134.1 (6) Å³ Z = 4

F(000) = 968 $D_x = 1.466 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 3464 reflections $\theta = 2.3-24.4^{\circ}$ $\mu = 0.95 \text{ mm}^{-1}$ T = 293 KBlock, green $0.30 \times 0.25 \times 0.20 \text{ mm}$ Data collection

Bruker APEXII CCD	13096 measured reflections
diffractometer	4938 independent reflections
Radiation source: fine-focus sealed tube	3475 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.027$
φ and ω scans	$\theta_{max} = 27.6^{\circ}, \theta_{min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 5$
(<i>SADABS</i> ; Bruker, 2001)	$k = -18 \rightarrow 19$
$T_{\min} = 0.764, T_{\max} = 0.833$	$l = -22 \rightarrow 23$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
S = 1.04	H-atom parameters constrained
4938 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 0.1348P]$
289 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.002$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.68282 (3)	0.376038 (17)	0.855723 (14)	0.04554 (11)	
O3	0.26452 (19)	-0.09960 (9)	0.91468 (8)	0.0506 (4)	
04	0.31673 (18)	-0.13651 (9)	0.76522 (8)	0.0506 (4)	
O2	0.45649 (19)	0.30889 (9)	0.86917 (8)	0.0537 (4)	
C1	0.5405 (3)	0.23738 (14)	0.87422 (11)	0.0477 (5)	
05	0.09217 (19)	-0.11077 (10)	0.68204 (8)	0.0556 (4)	
C13	0.1600 (3)	-0.12592 (12)	0.74953 (12)	0.0428 (5)	
01	0.69556 (18)	0.23953 (9)	0.87013 (9)	0.0552 (4)	
C5	0.3211 (3)	-0.01512 (13)	0.90085 (10)	0.0441 (5)	
C12	0.0473 (3)	-0.13366 (12)	0.80753 (11)	0.0419 (5)	
C7	0.4606 (3)	0.14996 (13)	0.88414 (11)	0.0459 (5)	
N2	0.6059 (2)	0.50501 (11)	0.85985 (10)	0.0496 (4)	
C6	0.2878 (3)	0.13983 (14)	0.87544 (13)	0.0525 (5)	
H6	0.2185	0.1891	0.8641	0.063*	
C19	0.6367 (3)	0.54269 (13)	0.92942 (12)	0.0475 (5)	
C11	-0.1211 (3)	-0.15605 (15)	0.78357 (13)	0.0538 (5)	

H11	-0.1607	-0.1626	0.7319	0.065*
C20	0.5772 (3)	0.62678 (14)	0.94207 (14)	0.0585 (6)
H20	0.5992	0.6520	0.9903	0.070*
C3	0.4924 (3)	-0.00607 (14)	0.90999 (12)	0.0511 (5)
Н3	0.5614	-0.0553	0.9222	0.061*
C8	0.0992 (3)	-0.12165 (12)	0.88548 (11)	0.0428 (5)
C4	0.2171 (3)	0.05733 (14)	0.88340 (13)	0.0528 (5)
H4	0.1009	0.0508	0.8771	0.063*
C2	0.5622 (3)	0.07580 (14)	0.90102 (11)	0.0491 (5)
H2	0.6784	0.0815	0.9063	0.059*
С9	-0.0083 (3)	-0.13424 (14)	0.93671 (13)	0.0546 (6)
Н9	0.0290	-0.1256	0.9883	0.066*
C18	0.7357 (3)	0.48691 (13)	0.98899 (11)	0.0469 (5)
C17	0.7938 (3)	0.51503 (15)	1.06268 (13)	0.0629 (7)
H17	0.7699	0.5720	1.0781	0.075*
N1	0.7676 (2)	0.40440 (11)	0.96637 (9)	0.0468 (4)
C23	0.5176 (3)	0.55082 (16)	0.80230 (13)	0.0628 (6)
H23	0.4968	0.5250	0.7543	0.075*
C22	0.4567 (4)	0.63476 (16)	0.81178 (16)	0.0698 (7)
H22	0.3970	0.6655	0.7708	0.084*
C21	0.4857 (3)	0.67254 (16)	0.88283 (16)	0.0669 (7)
H21	0.4434	0.7287	0.8907	0.080*
C28	-0.2301 (3)	-0.16874 (17)	0.83440 (15)	0.0661 (7)
H28	-0.3419	-0.1833	0.8171	0.079*
C10	-0.1728 (3)	-0.15981 (17)	0.91097 (15)	0.0665 (7)
H10	-0.2448	-0.1710	0.9456	0.080*
C14	0.8592 (3)	0.34967 (16)	1.01506 (13)	0.0585 (6)
H14	0.8819	0.2929	0.9987	0.070*
C15	0.9221 (3)	0.37365 (17)	1.08905 (14)	0.0673 (7)
H15	0.9862	0.3341	1.1219	0.081*
C16	0.8876 (3)	0.45709 (18)	1.11271 (14)	0.0707 (7)
H16	0.9271	0.4748	1.1624	0.085*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ni1	0.05637 (19)	0.04095 (16)	0.04131 (16)	-0.00815 (12)	0.01396 (12)	-0.00735 (11)
03	0.0553 (9)	0.0445 (8)	0.0490 (8)	-0.0074 (7)	0.0002 (7)	0.0088 (6)
O4	0.0466 (9)	0.0593 (9)	0.0471 (8)	0.0024 (7)	0.0111 (7)	0.0057 (7)
O2	0.0630 (10)	0.0426 (8)	0.0575 (9)	-0.0063 (7)	0.0160 (8)	-0.0051 (7)
C1	0.0598 (14)	0.0461 (12)	0.0383 (11)	-0.0088 (11)	0.0116 (10)	-0.0080 (9)
05	0.0581 (9)	0.0679 (10)	0.0424 (8)	0.0184 (8)	0.0125 (7)	0.0156 (7)
C13	0.0500 (13)	0.0337 (10)	0.0452 (11)	0.0051 (9)	0.0095 (9)	0.0031 (9)
01	0.0592 (10)	0.0444 (8)	0.0648 (10)	-0.0096 (7)	0.0185 (8)	-0.0105 (7)
C5	0.0549 (13)	0.0409 (11)	0.0359 (10)	-0.0065 (9)	0.0057 (9)	0.0005 (8)
C12	0.0463 (12)	0.0368 (10)	0.0434 (11)	0.0003 (9)	0.0092 (9)	0.0044 (8)
C7	0.0558 (13)	0.0436 (11)	0.0394 (11)	-0.0088 (10)	0.0109 (10)	-0.0056 (9)
N2	0.0651 (12)	0.0432 (10)	0.0446 (10)	-0.0053 (9)	0.0206 (9)	0.0007 (8)

supporting information

C6	0.0554 (14)	0.0424 (12)	0.0609 (14)	0.0011 (10)	0.0129 (11)	-0.0002 (10)
C19	0.0591 (13)	0.0380 (11)	0.0510 (12)	-0.0134 (10)	0.0255 (10)	-0.0060 (9)
C11	0.0521 (13)	0.0535 (13)	0.0550 (13)	-0.0055 (11)	0.0060 (11)	0.0034 (11)
C20	0.0708 (16)	0.0427 (12)	0.0689 (15)	-0.0146 (11)	0.0322 (13)	-0.0088 (11)
C3	0.0533 (13)	0.0472 (12)	0.0513 (12)	0.0007 (10)	0.0042 (11)	0.0039 (10)
C8	0.0481 (12)	0.0340 (10)	0.0464 (11)	-0.0018 (9)	0.0082 (9)	0.0056 (8)
C4	0.0484 (13)	0.0482 (12)	0.0622 (13)	-0.0048 (10)	0.0106 (11)	0.0001 (10)
C2	0.0462 (12)	0.0532 (13)	0.0468 (12)	-0.0051 (10)	0.0048 (10)	-0.0022 (10)
C9	0.0691 (16)	0.0515 (13)	0.0458 (12)	0.0029 (11)	0.0174 (11)	0.0056 (10)
C18	0.0570 (13)	0.0422 (11)	0.0452 (11)	-0.0183 (10)	0.0194 (10)	-0.0066 (9)
C17	0.0842 (18)	0.0508 (13)	0.0553 (14)	-0.0278 (13)	0.0166 (13)	-0.0153 (11)
N1	0.0578 (11)	0.0419 (9)	0.0431 (9)	-0.0083 (8)	0.0152 (8)	-0.0044 (8)
C23	0.0838 (18)	0.0583 (14)	0.0496 (13)	0.0027 (13)	0.0204 (12)	0.0066 (11)
C22	0.0818 (18)	0.0579 (15)	0.0749 (18)	0.0059 (13)	0.0287 (15)	0.0217 (13)
C21	0.0783 (18)	0.0431 (13)	0.0880 (19)	-0.0015 (12)	0.0398 (15)	0.0053 (13)
C28	0.0503 (14)	0.0683 (16)	0.0805 (18)	-0.0098 (12)	0.0136 (13)	0.0153 (14)
C10	0.0590 (16)	0.0743 (16)	0.0727 (17)	0.0038 (13)	0.0303 (13)	0.0192 (14)
C14	0.0684 (16)	0.0548 (13)	0.0527 (13)	-0.0021 (12)	0.0109 (12)	-0.0020 (11)
C15	0.0689 (17)	0.0711 (17)	0.0571 (14)	-0.0144 (14)	-0.0036 (13)	0.0055 (12)
C16	0.0867 (19)	0.0711 (17)	0.0506 (14)	-0.0345 (15)	0.0008 (13)	-0.0056 (13)

Geometric parameters (Å, °)

Ni1—N1	2.0260 (17)	C11—C28	1.376 (3)
Ni1—N2	2.0412 (18)	C11—H11	0.9300
Ni1—O5 ⁱ	2.0459 (19)	C20—C21	1.371 (3)
Ni1-01	2.0694 (16)	C20—H20	0.9300
Ni102	2.1331 (18)	C3—C2	1.374 (3)
Ni1—O4 ⁱ	2.1673 (15)	С3—Н3	0.9300
O3—C5	1.386 (2)	C8—C9	1.373 (3)
O3—C8	1.389 (3)	C4—H4	0.9300
O4—C13	1.258 (3)	C2—H2	0.9300
O4—Ni1 ⁱⁱ	2.1673 (15)	C9—C10	1.384 (3)
O2—C1	1.266 (2)	С9—Н9	0.9300
C101	1.264 (3)	C18—N1	1.343 (3)
C1—C7	1.487 (3)	C18—C17	1.388 (3)
O5—C13	1.259 (2)	C17—C16	1.381 (3)
O5—Ni1 ⁱⁱ	2.0459 (19)	C17—H17	0.9300
C13—C12	1.490 (3)	N1—C14	1.329 (3)
C13—Ni1 ⁱⁱ	2.433 (2)	C23—C22	1.375 (3)
C5—C3	1.370 (3)	С23—Н23	0.9300
C5—C4	1.379 (3)	C22—C21	1.374 (4)
C12—C11	1.396 (3)	C22—H22	0.9300
С12—С8	1.397 (3)	C21—H21	0.9300
С7—С6	1.384 (3)	C28—C10	1.375 (3)
C7—C2	1.387 (3)	C28—H28	0.9300
N2-C23	1.340 (3)	C10—H10	0.9300
N2-C19	1.350 (2)	C14—C15	1.382 (3)

supporting information

C6—C4	1.383 (3)	C14—H14	0.9300
С6—Н6	0.9300	C15—C16	1.367 (3)
C19—C20	1.384 (3)	С15—Н15	0.9300
C19—C18	1.480 (3)	C16—H16	0.9300
N1—Ni1—N2	79.66 (7)	С7—С6—Н6	119.6
N1—Ni1—O5 ⁱ	97.20 (7)	N2—C19—C20	121.2 (2)
N2—Ni1— $O5^i$	102.16 (7)	N2—C19—C18	114.72 (17)
N1—Ni1—O1	94.92 (6)	C20-C19-C18	124.1 (2)
N2—Ni1—O1	161.32 (7)	C_{28} — C_{11} — C_{12}	121.7(2)
05^{i} Ni1-01	96 24 (6)	C28—C11—H11	1191
N1—Ni1—O2	98 50 (6)	C12—C11—H11	119.1
N2—Ni1—O2	$100\ 10\ (7)$	C_{21} C_{20} C_{19}	1193(2)
05^{i} Ni1 -02	154 69 (6)	$C_{21} = C_{20} = H_{20}$	120.3
01 - Ni1 - 02	62 76 (6)	C_{19} C_{20} H_{20}	120.3
N1 - Ni1 - O2	158.99(7)	C_{20}^{-1120}	120.3 110.9(2)
N2 Ni1 $O4^{i}$	150.55 (7) 99.73 (6)	$C_{5} = C_{5} = C_{2}$	120.0
N2 - N11 - 04	55.75 (0) 62.20 (6)	$C_2 = C_2 = H_2$	120.0
03 - 101 - 04	02.20(0)	$C_2 = C_3 = H_3$	120.0
$O_1 = N_1 = O_4^{-1}$	91.07(0)	$C_{9} = C_{8} = C_{12}$	117.07(19)
02—N11—O4 [•]	102.26(6)	$C_{9} = C_{8} = C_{12}$	121.8(2)
NI—NII—CI	98.02 (7)	03-08-012	121.12 (19)
N2—N11—C1	131.15 (8)	C_{5} C_{4} C_{6}	119.1 (2)
OS ¹ —N11—C1	126.32 (7)	C5—C4—H4	120.4
O1—Ni1—C1	31.37 (7)	C6—C4—H4	120.4
02—Ni1—C1	31.38 (6)	C3—C2—C7	120.5 (2)
O4 ⁱ —Ni1—C1	97.98 (6)	C3—C2—H2	119.8
N1—Ni1—C13 ⁱ	128.32 (8)	C7—C2—H2	119.8
$N2-Ni1-C13^{i}$	103.84 (7)	C8—C9—C10	119.5 (2)
O5 ⁱ —Ni1—C13 ⁱ	31.15 (6)	С8—С9—Н9	120.2
O1—Ni1—C13 ⁱ	93.58 (6)	С10—С9—Н9	120.2
O2—Ni1—C13 ⁱ	130.16 (6)	N1-C18-C17	121.0 (2)
O4 ⁱ —Ni1—C13 ⁱ	31.08 (6)	N1-C18-C19	114.53 (17)
C1-Ni1-C13 ⁱ	114.35 (7)	C17—C18—C19	124.5 (2)
C5—O3—C8	118.40 (15)	C16—C17—C18	119.0 (2)
C13—O4—Ni1 ⁱⁱ	86.18 (12)	С16—С17—Н17	120.5
C1—O2—Ni1	87.30 (13)	C18—C17—H17	120.5
O1—C1—O2	119.76 (19)	C14—N1—C18	119.28 (19)
O1—C1—C7	118.8 (2)	C14—N1—Ni1	124.68 (15)
O2—C1—C7	121.5 (2)	C18—N1—Ni1	115.90 (14)
O1—C1—Ni1	58.44 (11)	N2—C23—C22	122.2 (2)
O2—C1—Ni1	61.32 (11)	N2—C23—H23	118.9
C7—C1—Ni1	177.03 (17)	C22—C23—H23	118.9
C13—O5—Ni1 ⁱⁱ	91.63 (13)	$C_{21} - C_{22} - C_{23}$	118.9 (2)
04-013-05	119.9 (2)	C21—C22—H22	120.5
04—C13—C12	122.70 (18)	C_{23} C_{22} H_{22}	120.5
05-C13-C12	117.40 (18)	$C_{20} = C_{21} = C_{22}$	119.5 (2)
$04-013-Ni1^{ii}$	62.74 (11)	C_{20} C_{21} H_{21}	120.3
05-013-Ni1 ⁱⁱ	57 21 (11)	$C_{22} = C_{21} = H_{21}$	120.3
	~ / • 🖬 • (• • /		

172.74 (15)	C10-C28-C11	119.7 (2)
90.19 (13)	C10-C28-H28	120.2
120.79 (19)	C11—C28—H28	120.2
115.13 (18)	C28—C10—C9	120.2 (2)
123.98 (19)	C28—C10—H10	119.9
116.98 (19)	С9—С10—Н10	119.9
118.66 (19)	N1—C14—C15	122.7 (2)
124.35 (18)	N1—C14—H14	118.7
118.89 (19)	C15—C14—H14	118.7
122.1 (2)	C16—C15—C14	118.2 (2)
119.0 (2)	C16—C15—H15	120.9
118.88 (19)	C14—C15—H15	120.9
125.94 (15)	C15—C16—C17	119.8 (2)
114.91 (14)	C15—C16—H16	120.1
120.8 (2)	C17—C16—H16	120.1
119.6		
	172.74 (15) 90.19 (13) 120.79 (19) 115.13 (18) 123.98 (19) 116.98 (19) 118.66 (19) 124.35 (18) 118.89 (19) 122.1 (2) 119.0 (2) 118.88 (19) 125.94 (15) 114.91 (14) 120.8 (2) 119.6	172.74 (15) $C10-C28-C11$ $90.19 (13)$ $C10-C28-H28$ $120.79 (19)$ $C11-C28-H28$ $115.13 (18)$ $C28-C10-C9$ $123.98 (19)$ $C28-C10-H10$ $116.98 (19)$ $C9-C10-H10$ $118.66 (19)$ $N1-C14-C15$ $124.35 (18)$ $N1-C14-H14$ $118.89 (19)$ $C15-C14-H14$ $122.1 (2)$ $C16-C15-C14$ $119.0 (2)$ $C16-C15-H15$ $118.88 (19)$ $C14-C15-H15$ $125.94 (15)$ $C15-C16-C17$ $114.91 (14)$ $C15-C16-H16$ $120.8 (2)$ $C17-C16-H16$ 119.6 $C19-C19-H16$

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) -*x*+1, *y*-1/2, -*z*+3/2.