Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hydrothermally synthesized α - $\mathrm{Ba}_{2} \mathbf{P}_{2} \mathrm{O}_{7}$

Carla Heyward, Matthew Mann and Joseph Kolis*
Department of Chemistry, Clemson University, Clemson, SC 29634, USA
Correspondence e-mail: kjoseph@clemson.edu
Received 7 September 2010; accepted 25 October 2010
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.005 \AA$; R factor $=0.047 ; ~ w R$ factor $=0.127$; data-to-parameter ratio $=32.0$.

Single crystals of $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, dibarium diphosphate, were obtained under hydrothermal conditions. The structure belongs to the diphosphate $A_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ series with A being an alkaline earth cation. $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ crystallizes isotypically with $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. All atomic sites have site symmetry m with the exception of two O atoms which reside on general positions. Both Ba^{2+} cations are coordinated by nine terminal O atoms from eclipsed diphosphate $\mathrm{P}_{2} \mathrm{O}_{7}$ anions to form a threedimensional network throughout the structure.

Related literature

For general background, see: Brown \& Calvo (1970); ElBelghitti et al. (1995); Mehdi et al. (1977); Mohri (2000). For the uses of alkaline earth diphosphates, see: McKeag \& Steward (1955); Ranby et al. (1955); Ropp \& Mooney (1960); Srivastava et al. (2003). For structurally related compounds, see: Calvo (1968); Barbier \& Echard (1998). For an independent refinement of the $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure based on data from a crystal grown by solid-state reactions, see: Zakaria et al. (2010).

Experimental

Crystal data

$\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$M_{r}=448.62$
Orthorhombic, Pnma
$a=9.2842$ (19) \AA
$b=5.6113$ (11) \AA
$c=13.796$ (3) \AA

Data collection

Rigaku AFC-8S Mercury CCD diffractometer
Absorption correction: multi-scan (REQAB; Jacobson, 1998)
$T_{\text {min }}=0.080, T_{\text {max }}=0.281$
$V=718.7(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=11.32 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.45 \times 0.15 \times 0.15 \mathrm{~mm}$

7205 measured reflections 1854 independent reflections 1510 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
58 parameters
$w R\left(F^{2}\right)=0.127$
$\Delta \rho_{\max }=6.71 \mathrm{e}^{-3}$
$S=1.11$
1854 reflections

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{Ba} 1-\mathrm{O}^{\mathrm{i}}$	$2.564(6)$	$\mathrm{Ba} 2-\mathrm{O} 5^{\text {vii }}$	$3.084(3)$
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	$2.730(4)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.514(5)$
$\mathrm{Ba} 1-\mathrm{O} 4^{\text {iii }}$	$2.799(4)$	$\mathrm{P} 1-\mathrm{O} 1^{\text {vii }}$	$1.514(5)$
$\mathrm{Ba} 1-\mathrm{O} 1$	$2.903(4)$	$\mathrm{P} 1-\mathrm{O} 2$	$1.519(6)$
$\mathrm{Ba} 1-\mathrm{O} 2^{\text {iv }}$	$2.9272(18)$	$\mathrm{P} 1-\mathrm{O} 3$	$1.588(6)$
$\mathrm{Ba} 2-\mathrm{O} 1^{\text {iv }}$	$2.765(4)$	$\mathrm{P} 2-\mathrm{O} 4$	$1.515(4)$
$\mathrm{Ba} 2-\mathrm{O} 4^{\text {vii }}$	$2.767(4)$	$\mathrm{P} 2-\mathrm{O} 4^{\text {vii }}$	$1.515(4)$
$\mathrm{Ba} 2-\mathrm{O} 2^{\mathrm{v}}$	$2.800(5)$	$\mathrm{P} 2-\mathrm{O} 5$	$1.519(6)$
$\mathrm{Ba} 2-4^{\text {vi }}$	$2.836(4)$	$\mathrm{P} 2-\mathrm{O} 3$	$1.598(5)$

$\mathrm{P} 1-\mathrm{O} 3-\mathrm{P} 2 \quad 134.7$ (4)
Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2, y+\frac{1}{2},-z+1$; (iii) $x-\frac{1}{2}, y,-z+\frac{1}{2}$; (iv)
$-x+2,-y,-z+1$; (v) $x-\frac{1}{2}, y,-z+\frac{3}{2}$; (vi) $-x+\frac{5}{2}, y+\frac{1}{2}, z+\frac{1}{2}$; (vii) $-x+\frac{5}{2},-y, z+\frac{1}{2}$; (viii) $x,-y+\frac{1}{2}, z$.

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Science Foundation (grant No. DMR 0907395). The authors would also like to thank Dr Colin McMillen and Don VanDerveer for their help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2406).

References

Barbier, J. \& Echard, J.-P. (1998). Acta Cryst. C54, IUC9800070.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brown, I. D. \& Calvo, C. (1970). J. Solid State Chem. 1, 173-179.
Calvo, C. (1968). Inorg. Chem. 7, 1345-1351.
ElBelghitti, A. A., Elmarzouki, A., Boukhari, A. \& Holt, E. M. (1995). Acta Cryst. C51, 1478-1480.
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.
McKeag, A. H. \& Steward, E. G. (1955). Br. J. Appl. Phys. 6, S26-S31.
Mehdi, S., Hussain, M. R. \& Rao, B. R. (1977). Indian J. Chem. 15, 820-821.
Mohri, F. (2000). Acta Cryst. B56, 626-638.
Ranby, P. W., Mash, D. H. \& Henderson, S. T. (1955). Br. J. Appl. Phys. 6, S18S24.
Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
Ropp, R. C. \& Mooney, R. W. (1960). J. Electrochem. Soc. 107, 15-20.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Srivastava, A. M., Comanzo, H. A. \& McNulty, T. F. (2003). US Patent No. 6621211 B1
Zakaria, D., Erragh, F., Oudahmane, A., El-Ghozzi, M. \& Avignant, D. (2010). Acta Cryst. E66, i76-i77.

supporting information

Acta Cryst. (2010). E66, i84 [https://doi.org/10.1107/S1600536810043527]

Hydrothermally synthesized $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

Carla Heyward, Matthew Mann and Joseph Kolis

S1. Comment

Traditionally, alkaline earth diphosphates (or pyrophosphates) have been of interest as phosphor matrices in fluorescent lamps, among other applications (McKeag \& Steward, 1955; Ranby et al., 1955; Ropp \& Mooney, 1960). More recently, research is focused on using these phosphor materials for multi-colored white LED devices (Srivastava et al., 2003) to eliminate the use of mercury in fluorescent lamps. The activators ranged from metals such as manganese and tin to rareearth elements like europium.
In the diphosphate $A_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ series ($A=$ alkaline earth metal), when the ionic radius of A is greater than $0.97 \AA$, the structure is of the dichromate type and the $\mathrm{P}_{2} \mathrm{O}_{7}$ anion is in the eclipsed conformation as shown in Fig. 1 (Brown \& Calvo, 1970). These structures include $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ which crystallizes in the monoclinic space group $P 2_{1} / n(\mathrm{Calvo}, 1968)$ and $\alpha-$ $\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in the orthorhombic space group Pnma (Barbier \& Echard, 1998). In the case of barium, a hexagonal hightemperature form σ and an orthorhombic low-temperature form α are known to exist (ElBelghitti et al., 1995). The structure of $\sigma-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been previously characterized from single crystal data in space group $\overline{\operatorname{6}} 2 \mathrm{~m}$ and reported to have a very different structure from other known alkaline earth $A_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ diphosphates (ElBelghitti et al., 1995). The more stable and common form $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been characterized by X-ray powder diffraction (Mehdi et al., 1977), but there has been no previous report of the crystal structure determined from single-crystal data therefore, it is presented here. The cell parameters from our single-crystal data are in agreement with those of the previous powder diffraction study. The α nomenclature has been used for the orthorhombic $\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure in previous reports (Mehdi et al., 1977; Ranby et al., 1955), consistent with being isostructural with $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Barbier \& Echard, 1998).

The $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure contains two unique Ba atoms each surrounded by nine terminal oxygen atoms from diphosphate groups. The $\mathrm{Ba} 1 — \mathrm{O}$ bond lengths range from 2.564 (6) - 2.9272 (18) \AA and $\mathrm{Ba} 2 — \mathrm{O}$ range from 2.765 (4) 3.084 (3) \AA. The Ba 2 atoms connect to O 4 along the a-axis to give a layered pattern. Ba1 atoms lie in between the layers and connect to O 1 along the c axis resembling a ladder housing two eclipsed $\mathrm{P}_{2} \mathrm{O}_{7}$ groups in each section. Additional criss-cross action takes place with Ba 1 connected to a terminal O 5 atom and Ba 2 connected to a terminal O 2 atom of the diphosphate anion (Fig. 1). As mentioned before, $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is isostructural with $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, whereas the $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure differs slightly. In this structure, the eight-coordinate Ca^{2+} cation is edge-sharing three O atoms and cornersharing two O atoms with the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups (Calvo, 1968). In the $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structures, the nine-coordinate cations are edge-sharing four O atoms and corner-sharing one oxygen with the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups (Barbier \& Echard, 1998). The diphosphate group consists of two tetrahedral PO_{4} groups sharing O 3 to form the $\mathrm{P}_{2} \mathrm{O}_{7}$ moiety (Fig. 2). A typical P O bond length for the tetrahedral PO_{4} group is reported as $1.538 \AA$ (Mohri, 2000) and the average terminal $\mathrm{P}-\mathrm{O}$ bond distance in the title structure is $1.516 \AA$ which is comparable to the average of $1.521 \AA$ observed in both $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Barbier \& Echard, 1998) and $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1968). In diphosphate groups, the bridging $\mathrm{P}-\mathrm{O}$ bonds are characteristically longer. In the titled structure, the bridging P1—O3 and P2—O3 bonds are 1.588 (6) \AA and 1.598 (5) \AA which is in comparison to 1.579 (8) and 1.616 (8) \AA reported for $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}($ Calvo, 1968) and 1.599 (2) and 1.615 (2) \AA
observed in $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Barbier \& Echard, 1998). The bridging O 3 atom has longer bonds to P 1 and P 2 . The $\mathrm{P} 1-\mathrm{O} 3 — \mathrm{P} 2$ angle of $134.7(4)^{\circ}$ is wider than $130(4)^{\circ}$ reported for both $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Barbier \& Echard, 1998) and $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1968) to help reduce structural strain resulting from the larger Ba^{2+} cation.

An independent refinement of the $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure based on data from a crystal grown by solid state reactions has been reported by Zakaria et al. (2010). The results of both refinements in terms of geometric parameters are the same within the threefold standard deviation.

S2. Experimental

The crystals were synthesized by combining 0.17 g of BaHPO_{4} and 0.05 g of $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ with 0.4 mL of $1 \mathrm{MBa}(\mathrm{OH})_{2}$ solution in a sealed silver ampoule for $7-10$ days at 773 K with a counter pressure of $19000 \mathrm{psi}(131 \mathrm{MPa})$. The contents of the ampoule were washed with deionized water. Colorless needle shaped single crystals of $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ were the minor product and colorless polyhedrally shaped crystals of BaHPO_{4} were the major product.

S3. Refinement

Despite multiple data collections to high 2θ angles, the bridging oxygen atom O 3 of the diphosphate group always appeared as non-positive definite when refined anisotropically. Therefore, we have refined this atom isotropically. The highest remaining peak is located $0.37 \AA$ away from O3 and the deepest hole is $0.58 \AA$ away from Bal. The large density arises from O 3 being defined as isotropically. The $x y z$ coordinates for Q 1 are 1.340 .250 .41 and for Q 2 are 1.430 .250 .42 which are close to O3 at 1.380 .250 .42 . The Q peaks are 0.37 and $0.54 \AA$ away from O3 instead of the heavier atom Ba.

Figure 1

A view of the $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure along the b axis. Some $\mathrm{Ba}-\mathrm{O}$ bonds are omitted for clarity. The purple polyhedra represent the diphosphate $\mathrm{P}_{2} \mathrm{O}_{7}$ groups.

Figure 2
A view of the asymmetric unit of $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with additional symmetry-related atoms displayed to show the tetrahedral environment around phosphorus. The $\mathrm{Ba}-\mathrm{O}$ bonds were left out for clarity. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (ii) $x,-y+1 / 2, z$].

Dibarium diphosphate

Crystal data

$\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$M_{r}=448.62$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=9.2842$ (19) \AA
$b=5.6113(11) \AA$
$c=13.796$ (3) \AA
$V=718.7(3) \AA^{3}$
$Z=4$

Data collection

Rigaku AFC-8S Mercury CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 14.6306 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
$T_{\text {min }}=0.080, T_{\text {max }}=0.281$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.127$
$S=1.11$
$F(000)=792$
$D_{\mathrm{x}}=4.146 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3690 reflections
$\theta=2.7-36.3^{\circ}$
$\mu=11.32 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle, colorless
$0.45 \times 0.15 \times 0.15 \mathrm{~mm}$

7205 measured reflections
1854 independent reflections
1510 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=36.3^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-8 \rightarrow 15$
$k=-7 \rightarrow 9$
$l=-21 \rightarrow 22$

1854 reflections

58 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0617 P)^{2}+4.9464 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=6.71 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-3.53 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ba 1	$0.86006(5)$	0.2500	$0.41750(3)$	$0.01365(12)$
Ba 2	$0.84160(5)$	0.2500	$0.74453(3)$	$0.01249(12)$
P 1	$1.2179(2)$	0.2500	$0.45777(12)$	$0.0120(3)$
P 2	$1.4529(2)$	0.2500	$0.31494(13)$	$0.0120(3)$
O1	$1.1427(4)$	$0.0289(8)$	$0.4204(3)$	$0.0163(8)$
O2	$1.2271(6)$	0.2500	$0.5677(4)$	$0.0164(10)$
O3	$1.3792(6)$	0.2500	$0.4196(3)$	$0.0118(9)^{*}$
O4	$1.4045(4)$	$0.0278(7)$	$0.2617(3)$	$0.0154(7)$
O5	$1.6144(7)$	0.2500	$0.3326(4)$	$0.0230(12)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.0139(2)$	$0.0148(2)$	$0.0122(2)$	0.000	$-0.00132(12)$	0.000
Ba2	$0.01179(19)$	$0.0128(2)$	$0.01293(18)$	0.000	$0.00048(12)$	0.000
P1	$0.0126(7)$	$0.0131(8)$	$0.0103(6)$	0.000	$0.0008(5)$	0.000
P2	$0.0105(7)$	$0.0119(7)$	$0.0138(7)$	0.000	$0.0002(5)$	0.000
O1	$0.0170(18)$	$0.0134(19)$	$0.0187(18)$	$-0.0009(14)$	$0.0018(12)$	$0.0001(13)$
O2	$0.018(2)$	$0.018(3)$	$0.013(2)$	0.000	$-0.0009(17)$	0.000
O4	$0.0149(17)$	$0.0108(17)$	$0.0205(15)$	$-0.0033(13)$	$0.0000(13)$	$-0.0010(13)$
O5	$0.011(2)$	$0.037(3)$	$0.022(2)$	0.000	$0.001(2)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ba} 1-\mathrm{O} 5^{\text {i }}$	2.564 (6)	$\mathrm{Ba} 2-\mathrm{O} 2^{\text {viii }}$	2.800 (5)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	2.730 (4)	$\mathrm{Ba} 2-\mathrm{O} 4{ }^{\text {ix }}$	2.836 (4)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	2.730 (4)	$\mathrm{Ba} 2-\mathrm{O} 4^{\text {x }}$	2.836 (4)
$\mathrm{Ba} 1-\mathrm{O} 4^{\text {iv }}$	2.799 (4)	$\mathrm{Ba} 2-\mathrm{O} 5^{\text {xi }}$	3.084 (3)
$\mathrm{Ba} 1-\mathrm{O} 4{ }^{\text {v }}$	2.799 (4)	$\mathrm{Ba} 2-\mathrm{O} 5^{\text {x }}$	3.084 (3)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {vi }}$	2.903 (4)	P1-O1	1.514 (5)
$\mathrm{Ba}-\mathrm{O} 1$	2.903 (4)	$\mathrm{P} 1-\mathrm{O} 1^{\text {vi }}$	1.514 (5)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.9272 (18)	P1-O2	1.519 (6)

$\mathrm{Ba}-\mathrm{O}^{\text {vii }}$	2.9272 (18)
$\mathrm{Ba} 1-\mathrm{P} 2^{\text {iv }}$	3.320 (2)
$\mathrm{Ba} 1-\mathrm{P} 1$	3.369 (2)
$\mathrm{Ba} 1-\mathrm{P} 1^{\text {vii }}$	3.3700 (11)
$\mathrm{Ba} 2-\mathrm{O} 1^{\text {iii }}$	2.765 (4)
$\mathrm{Ba} 2-\mathrm{O} 1^{\text {ii }}$	2.765 (4)
$\mathrm{Ba} 2-\mathrm{O} 4{ }^{\text {iii }}$	2.767 (4)
$\mathrm{Ba} 2-\mathrm{O} 4{ }^{\text {ii }}$	2.767 (4)

O5 ${ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$
$\mathrm{O} 1^{1 i}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 4^{\text {iv }}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba}-\mathrm{O}^{\mathrm{iv}}$
$\mathrm{O}{ }^{1 i i}-\mathrm{Ba} 1-\mathrm{O} 4^{\mathrm{iv}}$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}^{v}$
$\mathrm{O}^{1 i}-\mathrm{Ba}-\mathrm{O}^{v}$
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{v}}$
$\mathrm{O} 4^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 4^{\mathrm{v}}$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {vi }}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O}^{\text {vi }}$
$\mathrm{O} 1^{1 i i}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {vi }}$
$\mathrm{O} 4^{\mathrm{iv}}-\mathrm{Ba}-\mathrm{Ol}^{\text {vi }}$
$\mathrm{O}^{\mathrm{v}}-\mathrm{Ba}-\mathrm{Ol}^{\mathrm{vi}}$
O5i-Ba1-O1
$\mathrm{O} 1 \mathrm{ii}-\mathrm{Ba} 1-\mathrm{O} 1$
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Ba} 1-\mathrm{O} 1$
$\mathrm{O} 4{ }^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 1$
$\mathrm{O}^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{O} 1$
$\mathrm{O} 1^{\text {vi}}-\mathrm{Ba} 1-\mathrm{O} 1$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$
$\mathrm{O} 1^{1 i}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$
$\mathrm{O}^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$
$\mathrm{O} 4^{\mathrm{iv}}-\mathrm{Ba}-\mathrm{O} 2^{\text {iii }}$
$\mathrm{O} 4^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{iii}}$
$\mathrm{O} 1^{\text {vi }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{2 \mathrm{iii}}$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$
$\mathrm{O} 1^{\text {iiii- }} \mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$
$\mathrm{O} 4^{\mathrm{iv}}-\mathrm{Ba}-\mathrm{O} 2^{\text {vii }}$
$\mathrm{O} 4^{v}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$
$\mathrm{O}^{\text {vi}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{\text {vii }}$
$\mathrm{O} 2^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 2-\mathrm{O} 1^{\text {ii }}$
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Ba} 2-\mathrm{O} 4^{\text {iii }}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{iii}}$
2.9272 (18)
3.369
3.3700 (11)
2.765 (4)
2.765 (4)
2.767 (4)
111.47 (14)
111.47 (14)
69.95 (18)
74.19 (15)
168.60 (12)
118.01 (12)
74.19 (15)
118.01 (13)
168.60 (12)
52.90 (17)
144.13 (12)
75.66 (12)
104.02 (8)
93.97 (11)
71.85 (11)
144.13 (12)
104.02 (8)
75.66 (12)
71.85 (11)
93.97 (11)
50.61 (18)
77.64 (11)
119.32 (14)
52.47 (14)
71.07 (13)
121.96 (13)
131.20 (15)
80.75 (14)
77.64 (11)
52.47 (14)
119.32 (14)
121.96 (13)
71.07 (13)
80.75 (14)
131.20 (15)
146.9 (2)
68.95 (18)
72.50 (12)
109.70 (12)

$\mathrm{P} 1-\mathrm{O} 3$	$1.588(6)$
$\mathrm{P} 1-\mathrm{Ba} 1^{\text {vii }}$	$3.3700(11)$
$\mathrm{P} 1-\mathrm{Ba} 1^{\text {iii }}$	$3.3700(11)$
$\mathrm{P} 2-\mathrm{O} 4$	$1.515(4)$
$\mathrm{P} 2-\mathrm{O} 4{ }^{\text {vi }}$	$1.515(4)$
$\mathrm{P} 2-\mathrm{O} 5$	$1.519(6)$
$\mathrm{P} 2-\mathrm{O} 3$	$1.598(5)$

$\mathrm{O} 2^{\text {viii }}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{x}}$
$\mathrm{O} 4^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{x}}$
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{xi}}$
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{xi}}$
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{xi}}$
$\mathrm{O} 4{ }^{\mathrm{iii}}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{xi}}$
$\mathrm{O} 2^{\text {viii }}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{xi}}$
$\mathrm{O} 4^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{xi}}$
$\mathrm{O} 4^{\mathrm{x}}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{xi}}$
$\mathrm{O} 1^{\text {iiii- }} \mathrm{Ba} 2-\mathrm{O}^{\mathrm{x}}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{x}}$
$\mathrm{O} 4^{\mathrm{iii}}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{x}}$
$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{O}^{\mathrm{x}}$
$\mathrm{O} 2^{\text {viii }}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{x}}$
$\mathrm{O} 4^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{O}^{\mathrm{x}}$
$\mathrm{O} 4^{\mathrm{x}}-\mathrm{Ba} 2-\mathrm{O} 5^{\mathrm{x}}$
$\mathrm{O} 5^{\mathrm{xi}}-\mathrm{Ba} 2-\mathrm{O}^{\mathrm{x}}$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O}^{\text {vi }}$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$
$\mathrm{O}^{\mathrm{vi}}-\mathrm{P} 1-\mathrm{O} 2$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$
$\mathrm{O} 1^{\mathrm{vi}}-\mathrm{P} 1-\mathrm{O} 3$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$
$\mathrm{O} 4-\mathrm{P} 2-\mathrm{O} 4^{\text {vi }}$
O4-P2-O5
O4 ${ }^{\text {vi- }} \mathrm{P} 2-\mathrm{O} 5$
$\mathrm{O} 4-\mathrm{P} 2-\mathrm{O} 3$
O4 ${ }^{\text {vi- }} \mathrm{P} 2-\mathrm{O} 3$
O5-P2-O3
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\mathrm{iii}}$
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ba} 2^{\text {iii }}$
$\mathrm{Ba} 1^{\mathrm{iii}}-\mathrm{O} 1-\mathrm{Ba} 2^{\mathrm{iii}}$
P1-O1-Bal
$\mathrm{Ba} 1{ }^{\text {iii- }}-\mathrm{O} 1-\mathrm{Ba} 1$
$\mathrm{Ba} 2{ }^{\text {iii }}-\mathrm{O} 1-\mathrm{Ba} 1$
$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ba}^{\text {xii }}$
$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\mathrm{iii}}$
$\mathrm{Ba} 2^{\mathrm{xii}}-\mathrm{O} 2-\mathrm{Ba} 1^{\mathrm{iii}}$
$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$
1.588 (6)
3.3700 (11)
3.3700 (11)
1.515 (4)
1.515 (4)
1.598 (5)
103.79 (13)
66.70 (16)
146.29 (14)
78.59 (14)
129.35 (14)
66.99 (14)
71.70 (11)
49.98 (14)
110.92 (14)
78.59 (14)
146.29 (14)
66.99 (14)
129.35 (14)
71.70 (11)
110.92 (14)
49.98 (14)
130.9 (2)
110.0 (3)
111.48 (19)
111.48 (19)
108.79 (19)
108.79 (19)
106.1 (3)
110.7 (3)
111.7 (2)
111.7 (2)
108.14 (19)
108.14 (19)
106.1 (3)
101.23 (18)
136.0 (2)
110.49 (16)
94.1 (2)
104.34 (12)
106.17 (13)
160.9 (4)
93.11 (12)
92.31 (11)
93.11 (12)
supporting information

$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 2-\mathrm{O} 4{ }^{\text {ii }}$	109.70 (12)	$\mathrm{Ba} 2{ }^{\text {xii }}-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	92.31 (11)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{O} 4{ }^{\mathrm{ii}}$	72.50 (12)	$\mathrm{Ba} 1^{\text {iii }}-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	146.9 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 2-\mathrm{O} 4{ }^{\text {ii }}$	68.58 (18)	$\mathrm{P} 1-\mathrm{O} 3-\mathrm{P} 2$	134.7 (4)
$\mathrm{O} 1^{\text {iii-}}-\mathrm{Ba} 2-\mathrm{O} 2^{\text {viii }}$	141.37 (10)	$\mathrm{P} 2-\mathrm{O} 4-\mathrm{Ba} 2{ }^{\text {iii }}$	136.3 (2)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{O} 2{ }^{\text {viii }}$	141.37 (10)	$\mathrm{P} 2-\mathrm{O} 4-\mathrm{Ba} 1^{\text {xiii }}$	96.06 (19)
$\mathrm{O} 4{ }^{\text {iii- }} \mathrm{Ba} 2-\mathrm{O} 2{ }^{\text {viii }}$	73.45 (13)	$\mathrm{Ba} 2{ }^{\text {iii }}-\mathrm{O} 4-\mathrm{Ba} 1^{\text {xiii }}$	95.85 (12)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{O} 2{ }^{\text {viii }}$	73.45 (13)	$\mathrm{P} 2-\mathrm{O} 4-\mathrm{Ba} 2^{\text {xiv }}$	104.2 (2)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 2-\mathrm{O} 4^{\text {ix }}$	109.63 (12)	$\mathrm{Ba} 2{ }^{\text {iii }}-\mathrm{O} 4-\mathrm{Ba} 2{ }^{\text {xiv }}$	111.96 (14)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{ix}}$	73.36 (12)	$\mathrm{Ba} 1^{\text {xiii }}-\mathrm{O} 4-\mathrm{Ba} 2^{\text {xiv }}$	107.08 (13)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 2-\mathrm{O} 4^{\text {ix }}$	176.88 (2)	$\mathrm{P} 2-\mathrm{O} 5-\mathrm{Ba} 1^{\mathrm{xv}}$	162.0 (4)
$\mathrm{O} 44^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{ix}}$	112.28 (14)	$\mathrm{P} 2-\mathrm{O} 5-\mathrm{Ba} 2^{\text {xiv }}$	93.88 (15)
$\mathrm{O} 2{ }^{\text {viii }}-\mathrm{Ba} 2-\mathrm{O} 4{ }^{\text {ix }}$	103.79 (13)	$\mathrm{Ba} 1^{\mathrm{xv}}-\mathrm{O} 5-\mathrm{Ba} 2^{\text {xiv }}$	93.56 (13)
$\mathrm{O} 1^{\text {iii] }}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{x}}$	73.36 (12)	$\mathrm{P} 2-\mathrm{O} 5-\mathrm{Ba} 2^{\mathrm{xvi}}$	93.88 (15)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{x}}$	109.63 (12)	$\mathrm{Ba} 1^{\mathrm{xv}}-\mathrm{O} 5-\mathrm{Ba} 2^{\mathrm{xvi}}$	93.56 (13)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{x}}$	112.28 (14)	$\mathrm{Ba} 2{ }^{\text {xiv }}-\mathrm{O} 5-\mathrm{Ba} 2{ }^{\text {xvi }}$	130.9 (2)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{O} 4^{\mathrm{x}}$	176.88 (2)		

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2, y+1 / 2,-z+1$; (iii) $-x+2,-y,-z+1$; (iv) $x-1 / 2, y,-z+1 / 2$; (v) $x-1 / 2,-y+1 / 2,-z+1 / 2$; (vi) $x,-y+1 / 2, z$; (vii) $-x+2$, $-y+1,-z+1$; (viii) $x-1 / 2, y,-z+3 / 2$; (ix) $-x+5 / 2, y+1 / 2, z+1 / 2 ;$ (x) $-x+5 / 2,-y, z+1 / 2$; (xi) $-x+5 / 2,-y+1, z+1 / 2$; (xii) $x+1 / 2, y,-z+3 / 2$; (xiii) $x+1 / 2, y$, $-z+1 / 2$; (xiv) $-x+5 / 2,-y, z-1 / 2$; (xv) $x+1, y, z$; (xvi) $-x+5 / 2,-y+1, z-1 / 2$.

