organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[5-(4-Methoxyphenyl)-3-phenyl-4,5dihydro-1*H*-pyrazol-1-yl]ethanone

Asghar Abbas,^a* Safdar Hussain,^b Noureen Hafeez,^b Kong Mun Lo^c and Aurangzeb Hasan^c

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, 45320 Pakistan,
 ^bDepartment of Forensic Medicine & Toxicology, National University of Sciences & Technology, Islamabad, Pakistan, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: profazmi@hotmail.com

Received 28 October 2010; accepted 8 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.164; data-to-parameter ratio = 17.2.

The title molecule, $C_{18}H_{18}N_2O_2$, is V-shaped with the pyrazoline moiety being inclined to the adjacent phenyl ring by an angle of 6.49 (9)°, while the 4-methoxy-substituted ring is inclined to the pyrazoline ring by 82.99 (9)°. In the crystal, adjacent molecules are linked by $C-H\cdots O$ interactions, forming chains propagating in [100]. There are also $C-H\cdots \pi$ interactions involving adjacent molecules and those related by an inversion center.

Related literature

For the biological and pharmacological activity of 2-pyrazoline derivatives, see: Hatheway *et al.* (1978); Lombardino & Ottemes (1981); Parmar *et al.* (1974); Rathish *et al.* (2009); Subbaramaiah *et al.* (2002). For the synthesis and crystal structure of alkoxy group-bearing 2-pyrazoline derivatives, see: Abbas *et al.* (2010); Bai *et al.* (2009); Lu *et al.* (2008); Fahrni *et al.* (2003); Jian *et al.* (2008).

Experimental

Crystal data

$C_{18}H_{18}N_2O_2$	$\alpha = 85.939 \ (9)^{\circ}$
$M_r = 294.34$	$\beta = 85.384 \ (9)^{\circ}$
Triclinic, P1	$\gamma = 64.709 \ (8)^{\circ}$
a = 6.2762 (9) Å	$V = 756.51 (17) \text{ Å}^3$
b = 7.2081 (9) Å	Z = 2
c = 18.570 (2) Å	Mo $K\alpha$ radiation

 $0.30 \times 0.30 \times 0.20 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker APEXII CCD area-detector	7199 measured reflections
diffractometer	3448 independent reflections
Absorption correction: multi-scan	2584 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.026$
$T_{\rm min} = 0.975, T_{\rm max} = 0.983$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 201 parameters $wR(F^2) = 0.164$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.18$ e Å $^{-3}$ 3448 reflections $\Delta \rho_{min} = -0.26$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg3 are the centroids of the N1,N2,C8–C10 and C11–C16 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4−H4···O2 ⁱ	0.93	2.47	3.331 (2)	154
$C1 - H1C \cdot \cdot \cdot Cg1^n$	0.96	2.96	3.755 (2)	141
$C12-H12\cdots Cg1^{iii}$	0.93	2.96	3.7783 (18)	148
$C18-H18A\cdots Cg3^{iv}$	0.96	2.63	3.544 (2)	159

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z + 1; (iii) x, y + 1, z; (iv) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Westrip, 2010).

AA is grateful to the Higher Education Commission of Pakistan for financial support for the PhD program under scholarship No. [IIC-0317109].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2223).

References

- Abbas, A., Hussain, S., Hafeez, N., Lo, K. M. & Hasan, A. (2010). Acta Cryst. E66, 02505.
- Bai, X., Chen, H., Zhang, K., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o2873. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799–3812.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem. 21, 563–567.
- Jian, F., Zhao, P., Guo, H. & Li, Y. (2008). Spectrochim. Acta A, 69, 647–653. Lombardino, G. & Ottemes, I. G. (1981). J. Med. Chem. 24, 830–834.
- Lu, Z.-K., Li, S. & Feng, Y. (2008). Acta Cryst. E64, 01827.
- Parmar, S. S., Pandey, B. R., Dwivedi, C. & Harbison, R. D. (1974). J. Pharm. Sci. 63, 1152–1255.
- Rathish, I. G., Kalim, J., Shamim, A., Sameena, B., Alam, M. S., Pillai, K. K., Surender, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Subbaramaiah, K., Norton, L., Gerald, W. & Dannenberg, A. J. (2002). J. Biol. Chem. 277, 18649–18659.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o3174 [https://doi.org/10.1107/S1600536810045861]

1-[5-(4-Methoxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]ethanone

Asghar Abbas, Safdar Hussain, Noureen Hafeez, Kong Mun Lo and Aurangzeb Hasan

S1. Comment

Pyrazoline systems are well known nitrogen-containing heterocyclic compounds which possess a wide range of biological and pharmacological activities such as antitumor (Hatheway *et al.*, 1978), immunosuppressive (Lombardino *et al.*, 1981), psychoanaleptic (Parmar *et al.*, 1974), anti-inflammation (Rathish *et al.*, 2009), and anticancer (Subbaramaiah *et al.*, 2002). In continuation of previous structural studies of alkoxy group bearing pyrazoline derivatives (Abbas *et al.*, 2010), the title compound was synthesized and its crystal structure is reported on herein.

The molecular structure of the title compound is shown in Fig. 1. All the bond lengths and bond angles are similar to those observed in similar structures (Fahrni *et al.*, 2003; Bai *et al.*, 2009; Lu *et al.*, 2008). In the pyrazolinyl ring, the C8 —N2 and C10=N1 bond lengths, 1.483 (2) and 1.2860 (18) Å, respectively, are comparable with those in similar structures [C—N 1.482 (2)–1.515 (9) A°, C=N 1.291 (2)–1.300 (10) A°]. The N1—N2 bond length of 1.3867 (16) Å is slightly longer than that found in a similar structure [N–N 1.373 (2)–1.380 (8) A°] (Jian *et al.*, 2008). The plane containing the pyrazoline moiety is inclined to the adjacent phenyl ring (C16-C21) by 6.49 (9)\%, while the 4-methoxy substituted phenyl ring (C2-C7) is inclined to the pyrazoline moiety by 82.99 (9) °.

In the crystal adjacent molecules are linked by a C-H···O interaction forming chains propagating in [100]. There are also C-H··· π interactions involving adjacent molecules and those related by an inversion center; see Table 1 for details.

S2. Experimental

To a mixture of (E)-3-(4-(methoxy)phenyl)-1-phenylprop-2-en-1-one (2.94 g, 10 mmol) and hydrazine hydrate (1.0 g, 20 mmol) in acetic acid (25 ml), were added two drops of concentrated hydrochloric acid. The mixture was refluxed for 5 h. The precipitated solids were filtered, dried and recrystallized from ethanol. The crystals, suitable for X-ray diffraction analysis, were obtained from a mixture of ethyl acetate and dichloromethane (v:v / 1:1) by slow evaporation.

S3. Refinement

The H-atoms were placed at calculated positions and were treated as riding: C-H = 0.93, 0.96, 0.97 and 0.98 Å for CH(aromatic), methylene, methyl and methine H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for methyl H-atoms and 1.2 for all other H-atoms.

A view of the molecular structure of the title molecule, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

1-[5-(4-Methoxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]ethanone

Crystal data

 $C_{18}H_{18}N_2O_2$ Z = 2 $M_r = 294.34$ F(000) = 312Triclinic, $P\overline{1}$ $D_{\rm x} = 1.292 \text{ Mg m}^{-3}$ Hall symbol: -P 1 Mo *K* α radiation, $\lambda = 0.71073$ Å a = 6.2762 (9) Å Cell parameters from 2249 reflections *b* = 7.2081 (9) Å $\theta = 3.1 - 26.2^{\circ}$ c = 18.570(2) Å $\mu = 0.09 \text{ mm}^{-1}$ $\alpha = 85.939 \ (9)^{\circ}$ T = 296 K $\beta = 85.384 \ (9)^{\circ}$ Block, white $\gamma = 64.709 \ (8)^{\circ}$ $0.30 \times 0.30 \times 0.20 \text{ mm}$ $V = 756.51 (17) \text{ Å}^3$ Data collection Bruker APEXII CCD area-detector 7199 measured reflections diffractometer 3448 independent reflections Radiation source: fine-focus sealed tube 2584 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.026$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$ ω scans $h = -8 \rightarrow 7$ Absorption correction: multi-scan $k = -9 \rightarrow 9$ (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.975, T_{\rm max} = 0.983$ $l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.164$	neighbouring sites
S = 1.08	H-atom parameters constrained
3448 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0912P)^2 + 0.0545P]$
201 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta ho_{\min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.4631 (3)	-0.2736 (2)	0.45861 (9)	0.0843 (5)
C3	0.4986 (3)	-0.0139 (3)	0.37307 (9)	0.0537 (4)
Н3	0.6618	-0.0701	0.3751	0.064*
C4	0.3831 (3)	0.1595 (3)	0.32925 (9)	0.0500 (4)
H4	0.4709	0.2180	0.3018	0.060*
O2	-0.1965 (2)	0.2057 (2)	0.21830 (7)	0.0643 (4)
C16	0.4222 (3)	0.6534 (2)	0.08234 (9)	0.0494 (4)
H16	0.3703	0.5800	0.0546	0.059*
N2	0.0349 (2)	0.3699 (2)	0.20010 (7)	0.0452 (3)
N1	0.1673 (2)	0.44578 (18)	0.15426 (7)	0.0401 (3)
C1	0.7049 (4)	-0.3530 (3)	0.47300 (13)	0.0760 (6)
H1A	0.7996	-0.3994	0.4291	0.114*
H1B	0.7424	-0.4661	0.5077	0.114*
H1C	0.7366	-0.2475	0.4920	0.114*
C2	0.3689 (3)	-0.1025 (3)	0.41372 (9)	0.0564 (4)
C5	0.1405 (3)	0.2471 (2)	0.32553 (8)	0.0456 (4)
C8	0.0129 (3)	0.4317 (2)	0.27581 (8)	0.0472 (4)
H8	-0.1543	0.4988	0.2920	0.057*
C9	0.1164 (3)	0.5910 (3)	0.26675 (9)	0.0511 (4)
H9A	-0.0054	0.7288	0.2738	0.061*
H9B	0.2381	0.5615	0.3005	0.061*
C10	0.2176 (2)	0.5667 (2)	0.19012 (8)	0.0388 (3)
C11	0.3582 (3)	0.6705 (2)	0.15576 (8)	0.0399 (3)
C15	0.5613 (3)	0.7436 (3)	0.05020 (10)	0.0601 (5)
H15	0.6047	0.7297	0.0011	0.072*

C14	0.6364 (3)	0.8549 (3)	0.09092 (11)	0.0597 (5)	
H14	0.7331	0.9138	0.0694	0.072*	
C13	0.5693 (3)	0.8791 (3)	0.16288 (10)	0.0558 (4)	
H13	0.6178	0.9566	0.1899	0.067*	
C12	0.4290 (3)	0.7881 (2)	0.19563 (9)	0.0481 (4)	
H12	0.3823	0.8059	0.2444	0.058*	
C17	-0.0737 (3)	0.2610 (2)	0.17608 (9)	0.0460 (4)	
C18	-0.0336 (3)	0.2129 (3)	0.09780 (10)	0.0546 (4)	
H18A	0.1118	0.0928	0.0906	0.082*	
H18B	-0.0251	0.3269	0.0697	0.082*	
H18C	-0.1617	0.1882	0.0828	0.082*	
C6	0.0143 (3)	0.1551 (3)	0.36706 (9)	0.0538 (4)	
H6	-0.1492	0.2116	0.3657	0.065*	
C7	0.1271 (3)	-0.0172 (3)	0.40986 (10)	0.0599 (5)	
H7	0.0396	-0.0774	0.4366	0.072*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0905 (11)	0.0808 (10)	0.0967 (11)	-0.0527 (9)	-0.0259 (9)	0.0337 (8)
C3	0.0521 (9)	0.0614 (10)	0.0550 (10)	-0.0316 (8)	0.0020 (7)	-0.0057 (8)
C4	0.0551 (9)	0.0630 (10)	0.0458 (8)	-0.0396 (8)	0.0082 (7)	-0.0047 (7)
O2	0.0651 (8)	0.0827 (9)	0.0682 (8)	-0.0548 (7)	0.0016 (6)	0.0011 (7)
C16	0.0627 (10)	0.0455 (8)	0.0521 (9)	-0.0349 (8)	0.0060 (7)	-0.0092 (7)
N2	0.0524 (8)	0.0529 (7)	0.0433 (7)	-0.0356 (6)	0.0019 (6)	-0.0019 (6)
N1	0.0424 (6)	0.0418 (6)	0.0435 (7)	-0.0257 (5)	-0.0004 (5)	0.0006 (5)
C1	0.0838 (15)	0.0640 (12)	0.0780 (14)	-0.0283 (11)	-0.0145 (11)	0.0035 (10)
C2	0.0732 (12)	0.0592 (10)	0.0508 (9)	-0.0416 (9)	-0.0063 (8)	0.0018 (8)
C5	0.0541 (9)	0.0554 (9)	0.0390 (7)	-0.0353 (8)	0.0072 (6)	-0.0070 (6)
C8	0.0514 (9)	0.0537 (9)	0.0443 (8)	-0.0307 (7)	0.0068 (7)	-0.0067 (7)
C9	0.0660 (10)	0.0497 (9)	0.0473 (9)	-0.0343 (8)	0.0059 (7)	-0.0084 (7)
C10	0.0407 (7)	0.0358 (7)	0.0438 (8)	-0.0201 (6)	-0.0016 (6)	-0.0021 (6)
C11	0.0418 (7)	0.0324 (7)	0.0492 (8)	-0.0194 (6)	-0.0034 (6)	0.0003 (6)
C15	0.0774 (12)	0.0567 (10)	0.0590 (10)	-0.0433 (9)	0.0167 (9)	-0.0087 (8)
C14	0.0634 (11)	0.0516 (10)	0.0783 (13)	-0.0400 (9)	0.0057 (9)	-0.0007 (9)
C13	0.0650 (11)	0.0491 (9)	0.0698 (11)	-0.0387 (8)	-0.0122 (9)	-0.0011 (8)
C12	0.0571 (9)	0.0458 (8)	0.0504 (9)	-0.0297 (7)	-0.0062 (7)	-0.0014 (7)
C17	0.0424 (8)	0.0482 (8)	0.0566 (9)	-0.0282 (7)	-0.0051 (7)	0.0034 (7)
C18	0.0631 (10)	0.0573 (10)	0.0587 (10)	-0.0387 (9)	-0.0103 (8)	-0.0033 (8)
C6	0.0554 (10)	0.0712 (11)	0.0497 (9)	-0.0426 (9)	0.0052 (7)	-0.0016 (8)
C7	0.0717 (12)	0.0772 (12)	0.0520 (9)	-0.0541 (10)	0.0013 (8)	0.0071 (8)

Geometric parameters (Å, °)

01—C2	1.370 (2)	C8—C9	1.537 (2)	
01—C1	1.415 (2)	C8—H8	0.9800	
C3—C2	1.384 (2)	C9—C10	1.501 (2)	
C3—C4	1.388 (2)	С9—Н9А	0.9700	

supporting information

С3—Н3	0.9300	С9—Н9В	0.9700
C4—C5	1.382 (2)	C10—C11	1.467 (2)
C4—H4	0.9300	C11—C12	1.389 (2)
O2—C17	1.2202 (19)	C15—C14	1.380 (3)
C16—C15	1.374 (2)	С15—Н15	0.9300
C16—C11	1.389 (2)	C14—C13	1.369 (3)
C16—H16	0.9300	C14—H14	0.9300
N2—C17	1.3544 (19)	C13—C12	1.388 (2)
N2—N1	1.3867 (16)	С13—Н13	0.9300
N2—C8	1 483 (2)	С12—Н12	0.9300
N1-C10	1.105(2) 1.2860(18)	C17 - C18	1495(2)
C1—H1A	0.9600	C18 - H18A	0.9600
C1 H1B	0.9600	C18 H18B	0.9600
	0.9000		0.9000
C_{1}	0.3000		0.9000
$C_2 = C_1$	1.379 (3)		1.570 (5)
	1.393 (2)		0.9300
05-08	1.516 (2)	С/—Н/	0.9300
C2-01-C1	118.98 (16)	С8—С9—Н9В	111.2
C2-C3-C4	119.52 (16)	H9A—C9—H9B	109.1
C2—C3—H3	120.2	N1-C10-C11	120.66 (14)
C4—C3—H3	120.2	N1-C10-C9	113 99 (13)
$C_{5}-C_{4}-C_{3}$	121.48 (15)	$C_{11} - C_{10} - C_{9}$	125 34 (13)
$C_5 - C_4 - H_4$	119.3	C_{16} C_{11} C_{12}	123.31(13) 118.70(14)
$C_3 - C_4 - H_4$	119.3	C_{16} C_{11} C_{10}	120.40(13)
C_{15}	120.83 (15)	C_{12} C_{11} C_{10}	120.40(13) 120.90(14)
C15 C16 H16	110.6	$C_{12} = C_{11} = C_{10}$	120.90(14) 110.84(17)
$C_{11} = C_{10} = H_{10}$	119.0	$C_{10} = C_{15} = C_{14}$	119.04 (17)
C17 N2 N1	117.0	$C_{10} = C_{15} = H_{15}$	120.1
C17 = N2 = C8	122.42(13) 124.22(12)	C12 - C13 - H15	120.1 120.20(15)
$V_1 - N_2 - C_8$	124.22(13)	C13 - C14 - C13	120.30 (13)
NI - N2 - C8	113.24 (11)	C13—C14—H14	119.8
C10-N1-N2	108.02 (12)	C15—C14—H14	119.8
OI—CI—HIA	109.5	C14—C13—C12	120.07 (15)
OI—CI—HIB	109.5	С14—С13—Н13	120.0
H1A—C1—H1B	109.5	C12—C13—H13	120.0
01—C1—H1C	109.5	C13—C12—C11	120.19 (16)
H1A—C1—H1C	109.5	C13—C12—H12	119.9
H1B—C1—H1C	109.5	C11—C12—H12	119.9
O1—C2—C7	115.83 (16)	O2—C17—N2	119.62 (16)
O1—C2—C3	124.75 (17)	O2—C17—C18	123.10 (14)
C7—C2—C3	119.42 (16)	N2—C17—C18	117.28 (13)
C4—C5—C6	117.83 (15)	C17—C18—H18A	109.5
C4—C5—C8	122.07 (14)	C17—C18—H18B	109.5
C6—C5—C8	120.04 (15)	H18A—C18—H18B	109.5
N2—C8—C5	110.93 (13)	C17—C18—H18C	109.5
N2—C8—C9	100.75 (12)	H18A—C18—H18C	109.5
C5—C8—C9	115.68 (13)	H18B—C18—H18C	109.5
N2—C8—H8	109.7	C7—C6—C5	121.05 (16)

supporting information

C5—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—H9A C8—C9—H9A C10—C9—H9B	109.7 109.7 102.96 (12) 111.2 111.2 111.2	C7—C6—H6 C5—C6—H6 C6—C7—C2 C6—C7—H7 C2—C7—H7	119.5 119.5 120.69 (16) 119.7 119.7
C2-C3-C4-C5 $C17-N2-N1-C10$ $C8-N2-N1-C10$ $C1-01-C2-C7$ $C1-01-C2-C3$ $C4-C3-C2-01$ $C4-C3-C2-01$ $C4-C3-C2-C7$ $C3-C4-C5-C6$ $C3-C4-C5-C8$ $C17-N2-C8-C5$ $N1-N2-C8-C5$ $N1-N2-C8-C9$ $N1-N2-C8-C9$ $N1-N2-C8-C9$ $C4-C5-C8-N2$ $C6-C5-C8-N2$ $C4-C5-C8-N2$ $C4-C5-C8-C9$ $C6-C5-C8-C9$ $C10$	$\begin{array}{c} 0.4 (3) \\ 170.50 (14) \\ -5.73 (17) \\ -171.49 (18) \\ 8.9 (3) \\ 179.81 (17) \\ 0.2 (3) \\ -0.3 (2) \\ -177.65 (15) \\ 70.55 (18) \\ -113.30 (14) \\ -166.43 (15) \\ 9.72 (16) \\ 77.68 (18) \\ -99.57 (17) \\ -36.3 (2) \\ 146.50 (15) \\ 2.24 (15) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-173.86 (14) 2.7 (2) -177.55 (15) 5.5 (2) -173.24 (14) -174.79 (13) 6.5 (2) -0.8 (3) -1.2 (3) 1.3 (3) 0.7 (3) -2.7 (2) 177.64 (14) -176.77 (14) -1.0 (2) 3.8 (2) 179.57 (14)
N2-C8-C9-C10 C5-C8-C9-C10 N2-N1-C10-C11 N2-N1-C10-C9 C8-C9-C10-N1	-9.34 (15) 110.31 (14) 179.75 (12) -1.36 (17) 7.31 (17)	$\begin{array}{c} C4 - C5 - C6 - C7 \\ C8 - C5 - C6 - C7 \\ C5 - C6 - C7 - C2 \\ O1 - C2 - C7 - C6 \\ C3 - C2 - C7 - C6 \end{array}$	-0.3 (3) 177.01 (16) 1.0 (3) 179.48 (17) -0.8 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N1,N2,C8–C10 and C11–C16 rings, respectively.

D—H···A	D—H	Н…А	D···· A	<i>D</i> —H··· <i>A</i>	
C4—H4…O2 ⁱ	0.93	2.47	3.331 (2)	154	
C1— $H1C$ ··· $Cg1$ ⁱⁱ	0.96	2.96	3.755 (2)	141	
С12—Н12…Сд1 ^{ііі}	0.93	2.96	3.7783 (18)	148	
C18—H18 A ····Cg3 ^{iv}	0.96	2.63	3.544 (2)	159	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+1, –*y*, –*z*+1; (iii) *x*, *y*+1, *z*; (iv) *x*, *y*–1, *z*.