Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathbf{1 0 H}$-Phenothiazine 5 -oxide

Rui-Fang Jin, Kai Yu, Shi-Yao Yang* and Rong-Bin Huang

Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
Correspondence e-mail: syyang@xmu.edu.cn

Received 9 November 2010; accepted 17 November 2010

Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in main residue; R factor $=0.063 ; w R$ factor $=0.175$; data-to-parameter ratio $=16.2$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NOS}$, the sulfoxide O atom is disordered over two sites with occupancies of 0.907 (4) and 0.093 (4). The dihedral angle betweeen the two aromatic rings is $18.40(14)^{\circ}$. Different types of supramolecular interactions including intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ contacts [centroid-centroid distances $=3.9096(16)$ and 4.1423 (16) A] between the aromatic rings of symmetryrelated molecules are observed in the crystal structure.

Related literature

For N -arylphenothiazine structures, see: Chu \& Van der Helm (1974, 1975, 1976) and for N-arylphenothiazine oxide structures, see: Chu et al. (1985), Wang et al. (2009). For a dioxophenothiazinium cation co-crystallized with terephthalate trihydrate, see: Zhu et al. (2007).

Experimental

$$
\begin{aligned}
& \text { Crystal data } \\
& \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NOS}
\end{aligned} \quad M_{r}=215.26
$$

Monoclinic, $P 2_{1} / c$
$a=6.4482$ (4) A
$b=7.6610$ (5) \AA
$c=22.0956$ (14) \AA
$\beta=110.466$ (2) ${ }^{\circ}$
$V=1022.62(11) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
$0.50 \times 0.50 \times 0.40 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.871, T_{\text {max }}=0.895$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063 \quad 6$ restraints
$w R\left(F^{2}\right)=0.175$
$S=1.04$
2361 reflections
146 parameters

7632 measured reflections
2361 independent reflections 1962 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 10-\mathrm{H} 10 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.10	$2.856(3)$	146

Symmetry code: (i) $x-1, y, z$.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

We are grateful for financial support by the National Natural Science Foundation of China (Nos. 20471049, 21071117) and NFFTBS (No. J1030415).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2310).

References

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chu, S. S. C., de Meester, P., Jovanovic, M. V. \& Biehl, E. R. (1985). Acta Cryst. C41, 1111-1114.
Chu, S. S. C. \& Van der Helm, D. (1974). Acta Cryst. B30, 2489-2490
Chu, S. S. C. \& Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.
Chu, S. S. C. \& Van der Helm, D. (1976). Acta Cryst. B32, 1012-1016.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, Q., Yang, L., Xu, Z. \& Sun, Y. (2009). Acta Cryst. E65, o1978.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhu, D.-X., Sun, W., Yang, G.-F. \& Ng, S. W. (2007). Acta Cryst. E63, 04830.

supporting information

Acta Cryst. (2010). E66, o3267 [https://doi.org/10.1107/S1600536810047914]

10 H -Phenothiazine 5 -oxide

Rui-Fang Jin, Kai Yu, Shi-Yao Yang and Rong-Bin Huang

S1. Comment

The crystal structures of N-arylphenothiazine (Chu \& Van der Helm, 1974, 1975, 1976), N-arylphenothiazine oxides (Chu et al., 1985; Wang et al., 2009) and dioxide (Zhu et al., 2007) have been reported, yet that of phenothiazine or its oxide has not been reported. The title compound (I) was obtained by the oxidation of phenothiazine in THF solution in air. In the structure of I (Fig. 1), the sulfoxide O atom is disordered over two sites and the occupancy factors are 0.907 (4) (boat-axial $\mathrm{S}-\mathrm{O}$) and 0.093 (4) (boat-equatorial $\mathrm{S}-\mathrm{O}$). The same disorder in 10-acetyl-10H-phenothiazine 5-oxide was reported recently (Wang et al., 2009). The weighted average $\mathrm{S}-\mathrm{O}$ distance of $1.471 \AA$ in I is comparable to $1.466 \AA$ in 10 -acetyl-10H-phenothiazine 5-oxide, 1.498 (2) \AA in 10 -methylphenothiazine 5 -oxide, and longer than $1.446 \AA$ for dioxophenothiazinium cation (Zhu et al. 2007). The significantly shorter N - C distances in I than those in other N -arylphenothiazines or oxides are due to $\mathrm{N}-\mathrm{H}$ instead of N -aryl groups (see the following table). For the same reason the dihedral angle betweeen the two benzene rings $18.40(14)^{\circ}$ in I is smaller than those in the other compounds.
$\mathrm{N} — \mathrm{C}(\AA)$ substituent (reference)
1.365 (3), 1.368 (3) H (this work)
1.402 (2), 1.455 (5) methyl (Chu \& Van der Helm, 1974)
1.406 (4), 1.427 (4) ethyl (Chu \& Van der Helm, 1975)
1.410 (2), 1.414 (2) isopropyl (Chu \& Van der Helm, 1976)
1.428 (2), 1.436 (2) acetyl (Wang et al., 2009)
1.409 (3), 1.409 (3) 2-dimethylammonium-propyl (Zhu et al. 2007)

In the crystal structure (Fig. 2), intermolecular interactions $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and $\pi-\pi$ contacts between the aromatic rings [centroid to centroid distances $=3.9096$ (16) and $4.1423(16) \AA$] of symmetry-related molecules are observed.

S2. Experimental

A mixture of 1,3,5-benzenetricarboxylic acid (0.5 mmol) and phenothiazine (0.5 mmol) was dissolved in 10 ml THF. The solution changed from colorless to red in air in several hours. Brown crystals were obtained by slow evaporation for about 4 days at room temperature.

S3. Refinement

The aromatic H atoms were generated geometrically $(\mathrm{C}-\mathrm{H} 0.93, \mathrm{~N}-\mathrm{H} 0.86 \AA)$ and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms. The position of the oxygen atom is refined at two sites, with occupancy factors of 0.907 (4) and 0.093 (4).

Figure 1
Thermal ellipsoid plot of I. Displacement ellipsoids are drawn at the 50% probabability level.

Figure 2
A perspective view of the crystal structure of I. Hydrogen atoms have been omitted for clarity.

10 H -Phenothiazine 5-oxide

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NOS}$
$M_{r}=215.26$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.4482$ (4) \AA
$b=7.6610$ (5) \AA
$c=22.0956(14) \AA$
$\beta=110.466(2)^{\circ}$
$V=1022.62(11) \AA^{3}$
$Z=4$
$F(000)=448$
$D_{\mathrm{x}}=1.398 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3079 reflections
$\theta=2.7-27.3^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, brown
$0.50 \times 0.50 \times 0.40 \mathrm{~mm}$

Data collection

Bruker APEX area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min }=0.871, T_{\text {max }}=0.895$

> 7632 measured reflections
> 2361 independent reflections
> 1962 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.029$
> $\theta_{\max }=28.6^{\circ}, \theta_{\min }=2.0^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-9 \rightarrow 9$
> $l=-28 \rightarrow 29$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.175$
$S=1.04$
2361 reflections
146 parameters
6 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$	Occ. (<1)
S5	$0.42382(10)$	$0.16598(9)$	$0.58407(3)$	$0.0511(3)$	
O5	$0.5476(3)$	$0.3348(3)$	$0.60011(10)$	$0.0515(6)$	$0.907(4)$
O5 $^{\prime}$	$0.537(2)$	$0.0431(17)$	$0.5773(6)$	$0.024(4)$	$0.093(4)$
N10	$-0.0212(3)$	$0.2763(3)$	$0.59516(10)$	$0.0465(5)$	
H10A	-0.1256	0.3363	0.6009	0.056^{*}	
C1	$-0.1959(5)$	$0.3230(3)$	$0.48155(14)$	$0.0563(7)$	
H1A	-0.3197	0.3677	0.4885	0.068^{*}	$0.0695(9)$
C2	$-0.1951(6)$	$0.3105(4)$	$0.42027(16)$	0.083^{*}	
H2A	-0.3182	0.3472	0.3859	$0.0746(10)$	
C3	$-0.0141(7)$	$0.2438(4)$	$0.40843(15)$	0.090^{*}	
H3A	-0.0169	0.2332	0.3662	$0.0459(6)$	
C4A	$0.1721(4)$	$0.2076(3)$	$0.52193(12)$	$0.0624(8)$	
C4	$0.1689(6)$	$0.1936(4)$	$0.45877(15)$	0.075^{*}	
H4A	0.2917	0.1500	0.4509	$0.0458(6)$	
C5A	$0.3231(4)$	$0.1236(3)$	$0.64649(12)$	$0.0621(8)$	
C6	$0.4605(5)$	$0.0291(4)$	$0.69942(15)$		

H6A	0.5904	-0.0202	0.6979	0.075^{*}
C7	$0.4058(6)$	$0.0086(4)$	$0.75312(16)$	$0.0750(9)$
H7A	0.4974	-0.0554	0.7880	0.090^{*}
C8	$0.2155(7)$	$0.0822(4)$	$0.75575(15)$	$0.0725(9)$
H8A	0.1807	0.0699	0.7930	0.087^{*}
C9A	$0.1255(4)$	$0.1936(3)$	$0.64756(12)$	$0.0433(5)$
C9	$0.0752(5)$	$0.1739(4)$	$0.70411(15)$	$0.0592(7)$
H9A	-0.0533	0.2232	0.7067	0.071^{*}
C10A	$-0.0122(4)$	$0.2694(3)$	$0.53439(12)$	$0.0429(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S5	$0.0328(4)$	$0.0552(4)$	$0.0649(5)$	$0.0046(2)$	$0.0165(3)$	$-0.0057(3)$
O5	$0.0265(9)$	$0.0631(13)$	$0.0647(13)$	$-0.0072(8)$	$0.0156(9)$	$-0.0056(9)$
O5'	$0.024(4)$	$0.025(4)$	$0.025(4)$	$0.0011(10)$	$0.0089(16)$	$-0.0008(10)$
N10	$0.0303(9)$	$0.0531(12)$	$0.0573(13)$	$0.0056(9)$	$0.0166(9)$	$0.0031(10)$
C1	$0.0421(14)$	$0.0503(14)$	$0.0633(17)$	$-0.0057(11)$	$0.0018(12)$	$0.0081(12)$
C2	$0.067(2)$	$0.0634(18)$	$0.0589(18)$	$-0.0144(15)$	$-0.0016(15)$	$0.0080(14)$
C3	$0.096(3)$	$0.073(2)$	$0.0481(17)$	$-0.026(2)$	$0.0172(17)$	$-0.0066(15)$
C4A	$0.0401(13)$	$0.0447(12)$	$0.0511(14)$	$-0.0055(10)$	$0.0139(11)$	$-0.0057(10)$
C4	$0.0675(19)$	$0.0626(17)$	$0.0614(17)$	$-0.0154(14)$	$0.0279(15)$	$-0.0152(14)$
C5A	$0.0364(12)$	$0.0416(12)$	$0.0532(14)$	$-0.0010(10)$	$0.0077(10)$	$-0.0025(10)$
C6	$0.0524(16)$	$0.0517(15)$	$0.0674(18)$	$0.0074(12)$	$0.0024(13)$	$0.0060(13)$
C7	$0.080(2)$	$0.0612(19)$	$0.063(2)$	$-0.0008(17)$	$-0.0001(17)$	$0.0118(15)$
C8	$0.095(3)$	$0.0701(19)$	$0.0504(17)$	$-0.0125(18)$	$0.0227(17)$	$0.0062(14)$
C9A	$0.0352(12)$	$0.0415(12)$	$0.0502(14)$	$-0.0050(9)$	$0.0113(10)$	$-0.0005(10)$
C9	$0.0559(17)$	$0.0644(17)$	$0.0630(17)$	$-0.0101(13)$	$0.0278(14)$	$-0.0038(13)$
C10A	$0.0333(11)$	$0.0391(11)$	$0.0526(14)$	$-0.0056(9)$	$0.0101(10)$	$0.0009(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

S5-O5'	1.233 (13)	C4A-C10A	1.393 (3)
S5-O5	1.496 (2)	C4A-C4	1.393 (4)
S5-C5A	1.748 (3)	C4-H4A	0.9300
S5-C4A	1.750 (3)	C5A-C9A	1.390 (3)
N10-C10A	1.365 (3)	C5A-C6	1.397 (4)
N10-C9A	1.368 (3)	C6-C7	1.360 (5)
N10-H10A	0.8600	C6-H6A	0.9300
C1-C2	1.359 (5)	C7-C8	1.370 (5)
C1-C10A	1.403 (3)	C7-H7A	0.9300
C1-H1A	0.9300	C8-C9	1.376 (5)
$\mathrm{C} 2-\mathrm{C} 3$	1.380 (5)	C8-H8A	0.9300
C2-H2A	0.9300	C9A-C9	1.404 (4)
C3-C4	1.364 (5)	C9-H9A	0.9300
C3-H3A	0.9300		
O5'-S5-O5	113.5 (6)	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.0

O5'-S5-C5A	110.7 (6)
O5-S5-C5A	106.75 (12)
O5'-S5-C4A	118.1 (6)
O5-S5-C4A	107.46 (12)
C5A-S5-C4A	98.86 (12)
C10A-N10-C9A	124.1 (2)
C10A-N10-H10A	118.0
C9A-N10-H10A	118.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10 \mathrm{~A}$	120.8 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.6
C10A-C1-H1A	119.6
C1-C2-C3	120.8 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.9 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
C10A-C4A-C4	120.6 (3)
C10A-C4A-S5	121.9 (2)
C4-C4A-S5	117.2 (2)
C3-C4-C4A	120.1 (3)
C3-C4-H4A	120.0
C10A-C1-C2-C3	0.3 (4)
C1-C2-C3-C4	-1.6(5)
O5'-S5-C4A-C10A	145.5 (7)
O5-S5-C4A-C10A	-84.5 (2)
C5A-S5-C4A-C10A	26.3 (2)
$\mathrm{O} 5-\mathrm{S} 5-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4$	-40.9 (7)
O5-S5-C4A-C4	89.1 (2)
C5A-S5-C4A-C4	-160.1 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	0.8 (5)
C10A-C4A-C4-C3	1.3 (4)
S5-C4A-C4-C3	-172.4 (2)
O5'-S5-C5A-C9A	-151.4 (7)
O5-S5-C5A-C9A	84.6 (2)
C4A-S5-C5A-C9A	-26.7 (2)
O5'-S5-C5A-C6	34.7 (7)
O5-S5-C5A-C6	-89.3 (2)
C4A-S5-C5A-C6	159.4 (2)
C9A-C5A-C6-C7	-1.8 (4)
S5-C5A-C6-C7	172.2 (2)

C9A-C5A-C6	120.1 (3)
C9A-C5A-S5	122.5 (2)
C6-C5A-S5	117.0 (2)
C7-C6-C5A	120.5 (3)
C7-C6-H6A	119.7
C5A-C6-H6A	119.7
C6-C7-C8	119.9 (3)
C6-C7-H7A	120.0
C8-C7-H7A	120.0
C7-C8-C9	120.9 (3)
C7-C8-H8A	119.5
C9-C8-H8A	119.5
N10-C9A-C5A	122.1 (2)
N10-C9A-C9	119.8 (2)
C5A-C9A-C9	118.2 (2)
C8-C9-C9A	120.2 (3)
C8-C9-H9A	119.9
C9A-C9-H9A	119.9
N10-C10A-C4A	122.7 (2)
N10-C10A-C1	119.6 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 1$	117.7 (3)
C5A-C6-C7-C8	-0.6(5)
C6-C7-C8-C9	1.5 (5)
C10A-N10-C9A-C5A	13.3 (4)
C10A-N10-C9A-C9	-165.2 (2)
C6-C5A-C9A-N10	-175.3 (2)
S5-C5A-C9A-N10	11.0 (3)
C6-C5A-C9A-C9	3.2 (4)
S5-C5A-C9A-C9	-170.48 (19)
C7-C8-C9-C9A	0.0 (5)
N10-C9A-C9-C8	176.2 (3)
C5A-C9A-C9-C8	-2.3 (4)
C9A-N10-C10A-C4A	-13.6 (4)
C9A-N10-C10A-C1	165.2 (2)
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{N} 10$	176.3 (2)
S5-C4A-C10A-N10	-10.4 (3)
C4-C4A-C10A-C1	-2.5 (4)
S5-C4A-C10A-C1	170.87 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10 \mathrm{~A}-\mathrm{N} 10$	-177.1 (2)
C2-C1-C10A-C4A	1.7 (4)

Hydrogen-bond geometry ($\AA,{ }^{o}$)
$D — \mathrm{H} \cdots A \quad D — \mathrm{H} \cdots A \quad D \cdots A \quad D — \mathrm{H} \cdots A$

supporting information

$\mathrm{N} 10 — \mathrm{H} 10 A \cdots \mathrm{O} 5^{\mathrm{i}}$	0.86	2.10	$2.856(3)$	146

Symmetry code: (i) $x-1, y, z$.

