Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-4-Methoxy-N'-(4-nitrobenzylidene)benzohvdrazide methanol monosolvate

Hong-Yan Ban

School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China Correspondence e-mail: hongyan_ban@163.com

Received 5 November 2010; accepted 13 November 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.081; wR factor = 0.204; data-to-parameter ratio = 15.6.

The hydrazone molecule of the title compound, C₁₅H₁₃N₃O₄.-CH₄O, is nearly planar, with a dihedral angle between the two benzene rings of $1.2 (4)^{\circ}$. The molecule exists in a *trans* configuration with respect to the central methylidene unit. In the crystal, the benzohydrazide and methanol molecules are linked through intermolecular $O-H \cdots O, O-H \cdots N$ and N-H···O hydrogen bonds, forming chains along the a axis.

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a,b); Li & Ban (2009a,b); Yehve et al. (2008); Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al. (2008); Ejsmont et al. (2008).

Experimental

Crystal data

C15H13N3O4·CH4O $M_{\rm w} = 331.33$ Monoclinic, $P2_1/n$ a = 6.6482 (14) Åb = 17.730(3) Å c = 13.898 (2) Å $\beta = 95.004 \ (3)^{\circ}$

V = 1631.9 (5) Å ³	
Z = 4	
Mo $K\alpha$ radiation	
$\mu = 0.10 \text{ mm}^{-1}$	
T = 298 K	
$0.20 \times 0.17 \times 0.17$ mm	n

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008) $T_{\min} = 0.980, T_{\max} = 0.983$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.081$	H atoms treated by a mixture of
$wR(F^2) = 0.204$	independent and constrained
S = 0.94	refinement
3466 reflections	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
222 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D5-H5\cdots O3$	0.82	2.03	2.812 (4)	159
$D5-H5\cdots N2$	0.82	2.61	3.194 (4)	129
$N3-H3A\cdots O5^{i}$	0.90 (1)	2.02 (2)	2.900 (4)	166 (4)

12876 measured reflections

 $R_{\rm int} = 0.115$

3466 independent reflections

1184 reflections with $I > 2\sigma(I)$

Symmetry code: (i) x - 1, y, z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author acknowledges financial support by the Research Foundation of Liaoning Province (grant No. 2008470).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2522).

References

- Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.
- Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Crvst. E64. 01128.
- Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595
- Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, 01707.
- Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.
- Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, 0876.
- Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, 0883.
- Raj, K. K. V., Naravana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, 01186.
- Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, 01824
- Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.

supporting information

Acta Cryst. (2010). E66, o3240 [https://doi.org/10.1107/S160053681004701X]

(E)-4-Methoxy-N'-(4-nitrobenzylidene)benzohydrazide methanol monosolvate

Hong-Yan Ban

S1. Comment

Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong *et al.*, 2007; Raj *et al.*, 2007; Jimenez-Pulido *et al.*, 2008). Due to the easy synthesis of such compounds, a large number of hydrazone compounds have been synthesized and structurally characterized (Yehye *et al.*, 2008; Fun, Patil, Jebas *et al.*, 2008; Fun, Patil, Rao *et al.*, 2008; Yang *et al.*, 2008; Ejsmont *et al.*, 2008). Recently, we have reported a few such compounds (Ban & Li, 2008*a*,*b*; Li & Ban, 2009*a*,*b*). Herein the crystal structure of the title new compound is reported.

The asymmetric unit of the title compound consists of a hydrazone molecule and a methanol molecule (Fig. 1). The hydrazone molecule is nearly planar, the dihedral angle between the two benzene rings being $1.2 (4)^{\circ}$. The molecule exists in a *trans* configuration with respect to the central methylidene unit. In the crystal structure, the hydrazone molecules and the methanol molecules are linked through intermolecular O—H…O, O—H…N and N—H…O hydrogen bonds (Table 1), forming chains along the *a* axis (Fig. 2).

S2. Experimental

The title compound was prepared by refluxing 4-nitrobenzaldehyde (1.0 mol) with 4-methoxybenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. A colourless solid product was filtered, and washed three times with methanol. Colourless block-shaped crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

S3. Refinement

Atom H3A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å and U_{iso} fixed at 0.08 Å². The remaining H atoms were placed in calculated positions (C—H = 0.93–0.96 Å and O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O$ and methyl C).

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.

Figure 2

The packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. (E)-4-Methoxy-N'-(4-nitrobenzylidene)benzohydrazide methanol monosolvate

Crystal data

C₁₅H₁₃N₃O₄·CH₄O $M_r = 331.33$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.6482 (14) Å b = 17.730 (3) Å c = 13.898 (2) Å $\beta = 95.004 (3)^{\circ}$ $V = 1631.9 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD area-detector	12876 measured reflections
diffractometer	3466 independent reflections
Radiation source: fine-focus sealed tube	1184 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.115$
ω scans	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 2008)	$k = -22 \rightarrow 22$
$T_{\min} = 0.980, \ T_{\max} = 0.983$	$l = -17 \rightarrow 17$
Refinement	

F(000) = 696

 $\theta = 2.7 - 26.5^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block. colourless

 $0.20 \times 0.17 \times 0.17$ mm

T = 298 K

 $D_{\rm x} = 1.349 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 794 reflections

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.081$	Hydrogen site location: inferred from
$wR(F^2) = 0.204$	neighbouring sites
<i>S</i> = 0.94	H atoms treated by a mixture of independent
3466 reflections	and constrained refinement
222 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0757P)^2]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.23$ e Å ⁻³
	$\Delta ho_{ m min} = -0.27 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$		
N1	0.4536 (7)	-0.3135 (2)	0.1424 (3)	0.0634 (12)		
N2	0.1193 (5)	0.0260 (2)	0.1132 (2)	0.0453 (9)		
N3	0.0063 (5)	0.0908 (2)	0.1112 (3)	0.0460 (9)		

01	0.3670 (6)	-0.3698 (2)	0.1665 (3)	0.0923 (13)
O2	0.6283 (6)	-0.3132 (2)	0.1217 (3)	0.0930 (13)
O3	0.2843 (4)	0.15868 (16)	0.0864 (2)	0.0650 (10)
O4	-0.3188 (4)	0.43167 (16)	0.0795 (2)	0.0709 (10)
O5	0.5933 (4)	0.05685 (17)	0.1482 (3)	0.0642 (10)
H5	0.4898	0.0767	0.1237	0.096*
C1	0.1378 (6)	-0.1068 (2)	0.1293 (3)	0.0424 (11)
C2	0.3344 (6)	-0.1112 (2)	0.1018 (3)	0.0529 (12)
H2	0.3964	-0.0682	0.0801	0.063*
C3	0.4373 (6)	-0.1786 (3)	0.1064 (3)	0.0549 (13)
H3	0.5680	-0.1817	0.0876	0.066*
C4	0.3437 (7)	-0.2407 (2)	0.1391 (3)	0.0493 (12)
C5	0.1521 (7)	-0.2403 (3)	0.1657 (3)	0.0586 (13)
H5A	0.0922	-0.2840	0.1866	0.070*
C6	0.0480 (6)	-0.1719 (3)	0.1607 (3)	0.0563 (13)
H6	-0.0834	-0.1699	0.1786	0.068*
C7	0.0276 (6)	-0.0354 (3)	0.1262 (3)	0.0495 (12)
H7	-0.1100	-0.0350	0.1338	0.059*
C8	0.1041 (7)	0.1569 (2)	0.0971 (3)	0.0461 (11)
С9	-0.0195 (6)	0.2263 (2)	0.0959 (3)	0.0449 (11)
C10	-0.2157 (6)	0.2311 (2)	0.1201 (3)	0.0508 (12)
H10	-0.2785	0.1877	0.1403	0.061*
C11	-0.3223 (6)	0.2981 (2)	0.1153 (3)	0.0535 (12)
H11	-0.4551	0.2998	0.1314	0.064*
C12	-0.2287 (7)	0.3619 (2)	0.0864 (3)	0.0540 (12)
C13	-0.0345 (7)	0.3593 (3)	0.0605 (4)	0.0829 (18)
H13	0.0277	0.4028	0.0402	0.100*
C14	0.0666 (7)	0.2920 (3)	0.0649 (4)	0.0745 (16)
H14	0.1977	0.2904	0.0465	0.089*
C15	-0.5263 (8)	0.4384 (3)	0.0967 (4)	0.0833 (17)
H15A	-0.6078	0.4115	0.0477	0.125*
H15B	-0.5642	0.4907	0.0951	0.125*
H15C	-0.5467	0.4177	0.1589	0.125*
C16	0.5721 (7)	0.0414 (3)	0.2467 (4)	0.0823 (17)
H16A	0.6181	-0.0089	0.2617	0.123*
H16B	0.4327	0.0459	0.2588	0.123*
H16C	0.6512	0.0767	0.2863	0.123*
H3A	-0.128 (2)	0.087 (2)	0.116 (3)	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.077 (3)	0.054 (3)	0.060 (3)	0.021 (3)	0.006 (2)	0.000 (2)
N2	0.041 (2)	0.038 (2)	0.056 (2)	0.0098 (19)	0.0024 (17)	0.0028 (18)
N3	0.030(2)	0.039 (2)	0.069 (3)	0.0102 (19)	0.0049 (19)	0.0039 (19)
01	0.117 (3)	0.047 (2)	0.115 (3)	0.022 (2)	0.025 (2)	0.015 (2)
O2	0.078 (3)	0.077 (3)	0.128 (3)	0.043 (2)	0.031 (2)	0.021 (2)
03	0.0322 (17)	0.053 (2)	0.111 (3)	0.0070 (15)	0.0143 (17)	0.0145 (18)

supporting information

O4	0.056 (2)	0.0407 (19)	0.115 (3)	0.0141 (17)	-0.0002 (19)	-0.0034 (19)
05	0.0343 (18)	0.056 (2)	0.102 (3)	0.0096 (16)	0.0027 (17)	0.017 (2)
C1	0.037 (3)	0.040 (3)	0.049 (3)	0.002 (2)	0.004 (2)	0.001 (2)
C2	0.050 (3)	0.036 (3)	0.073 (3)	0.004 (2)	0.013 (2)	0.000 (2)
C3	0.037 (3)	0.050 (3)	0.077 (4)	0.005 (2)	0.006 (2)	0.002 (3)
C4	0.058 (3)	0.042 (3)	0.048 (3)	0.017 (2)	0.003 (2)	0.003 (2)
C5	0.061 (3)	0.044 (3)	0.073 (3)	-0.002 (3)	0.017 (3)	0.008 (2)
C6	0.048 (3)	0.052 (3)	0.070 (4)	0.007 (3)	0.017 (2)	0.002 (3)
C7	0.034 (2)	0.051 (3)	0.063 (3)	0.007 (2)	0.004 (2)	0.002 (2)
C8	0.042 (3)	0.044 (3)	0.053 (3)	0.007 (2)	0.001 (2)	0.009 (2)
C9	0.035 (3)	0.044 (3)	0.056 (3)	0.001 (2)	-0.001 (2)	0.002 (2)
C10	0.052 (3)	0.031 (3)	0.071 (3)	0.003 (2)	0.010 (2)	0.007 (2)
C11	0.049 (3)	0.039 (3)	0.074 (3)	0.008 (2)	0.013 (2)	0.009 (2)
C12	0.059 (3)	0.034 (3)	0.067 (3)	0.013 (2)	-0.005 (3)	0.002 (2)
C13	0.051 (3)	0.047 (3)	0.152 (5)	0.005 (3)	0.020 (3)	0.015 (3)
C14	0.037 (3)	0.057 (3)	0.131 (5)	0.003 (3)	0.012 (3)	0.020 (3)
C15	0.091 (4)	0.057 (3)	0.106 (4)	0.036 (3)	0.029 (3)	0.009 (3)
C16	0.069 (4)	0.082 (4)	0.094 (5)	0.006 (3)	-0.009 (3)	-0.002 (3)

Geometric parameters (Å, °)

N1-01	1.214 (4)	C5—H5A	0.9300
N1	1.221 (5)	С6—Н6	0.9300
N1-C4	1.482 (5)	С7—Н7	0.9300
N2C7	1.269 (5)	C8—C9	1.479 (5)
N2—N3	1.372 (4)	C9—C10	1.377 (5)
N3—C8	1.363 (5)	C9—C14	1.383 (5)
N3—H3A	0.902 (10)	C10—C11	1.383 (5)
O3—C8	1.221 (4)	C10—H10	0.9300
O4—C12	1.374 (5)	C11—C12	1.367 (5)
O4—C15	1.426 (5)	C11—H11	0.9300
O5—C16	1.415 (5)	C12—C13	1.371 (6)
O5—H5	0.8200	C13—C14	1.369 (6)
C1—C6	1.386 (5)	C13—H13	0.9300
C1—C2	1.395 (5)	C14—H14	0.9300
C1—C7	1.461 (5)	C15—H15A	0.9600
С2—С3	1.376 (5)	C15—H15B	0.9600
С2—Н2	0.9300	C15—H15C	0.9600
C3—C4	1.362 (5)	C16—H16A	0.9600
С3—Н3	0.9300	C16—H16B	0.9600
C4—C5	1.357 (5)	C16—H16C	0.9600
C5—C6	1.395 (5)		
01 NI 02	122 5 (4)	$N_2 C_2 C_0$	1165(4)
01-N1-02	123.5 (4)	$N_3 = C_8 = C_9$	116.5 (4)
OI-NI-C4	118.7 (4)	C10-C9-C14	116.8 (4)
02-N1-C4	117.7 (5)	C10-C9-C8	125.8 (4)
C'—N2—N3	116.9 (3)	C14—C9—C8	117.4 (4)
C8—N3—N2	117.2 (3)	C9—C10—C11	122.2 (4)

C8—N3—H3A	124 (3)	С9—С10—Н10	118.9
N2—N3—H3A	119 (3)	C11—C10—H10	118.9
C12—O4—C15	119.1 (4)	C12-C11-C10	118.7 (4)
С16—О5—Н5	109.5	C12—C11—H11	120.7
C6—C1—C2	118.6 (4)	C10-C11-H11	120.6
C6—C1—C7	120.1 (4)	C11—C12—C13	120.9 (4)
C2—C1—C7	121.3 (4)	C11—C12—O4	123.9 (4)
C3—C2—C1	120.6 (4)	C13—C12—O4	115.2 (4)
С3—С2—Н2	119.7	C14—C13—C12	119.2 (5)
C1—C2—H2	119.7	C14—C13—H13	120.4
C4—C3—C2	118.5 (4)	С12—С13—Н13	120.4
С4—С3—Н3	120.7	C13—C14—C9	122.2 (4)
С2—С3—Н3	120.7	C13—C14—H14	118.9
C5—C4—C3	123.6 (4)	C9—C14—H14	118.9
C5—C4—N1	118.0 (4)	O4—C15—H15A	109.5
C3—C4—N1	118.4 (4)	O4—C15—H15B	109.5
C4—C5—C6	117.7 (4)	H15A—C15—H15B	109.5
С4—С5—Н5А	121.2	O4—C15—H15C	109.5
С6—С5—Н5А	121.2	H15A—C15—H15C	109.5
C1—C6—C5	120.9 (4)	H15B—C15—H15C	109.5
С1—С6—Н6	119.5	O5—C16—H16A	109.5
С5—С6—Н6	119.5	O5—C16—H16B	109.5
N2—C7—C1	120.1 (4)	H16A—C16—H16B	109.5
N2—C7—H7	120.0	O5—C16—H16C	109.5
С1—С7—Н7	120.0	H16A—C16—H16C	109.5
O3—C8—N3	121.7 (4)	H16B—C16—H16C	109.5
O3—C8—C9	121.8 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
O5—H5…O3	0.82	2.03	2.812 (4)	159	
O5—H5…N2	0.82	2.61	3.194 (4)	129	
N3—H3A····O5 ⁱ	0.90 (1)	2.02 (2)	2.900 (4)	166 (4)	

Symmetry code: (i) x-1, y, z.