

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido{1-[(2-hydroxyethyl)iminomethyl]-2-naphtholato}pyridineiron(III) pyridine monosolvate

Shizheng Liu, Jie Yang, Lei Lv and Dacheng Li*

School of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059 People's Republic of China Correspondence e-mail: lidacheng@lcu.edu.cn

Received 1 November 2010; accepted 11 November 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.032; wR factor = 0.085; data-to-parameter ratio = 12.1.

In the title complex, $[Fe(C_{13}H_{12}NO_2)Cl_2(C_5H_5N)]\cdot C_5H_5N$, the iron(III) atom is six-coordinated by the N and O atoms from the Schiff base ligand, the N atom from a pyridine molecule and two chloride anions in a distorted octahedral geometry. The crystal packing is stabilized by intermolecular O−H···N hydrogen bonds and $C-H \cdots \pi$ interactions.

Related literature

For the synthesis and applications of magnetic complexes, see: Oshio et al. (2004); Aromí & Brechin (2006). For related structures, see: Goodwin et al. (2000); Qian et al. (2008); Hoshino et al. (2009).

Experimental

Crystal data

$[Fe(C_{13}H_{12}NO_2)Cl_2(C_5H_5N)]$	$\beta = 90.123 \ (1)^{\circ}$
C ₅ H ₅ N	V = 1140.4 (2) Å ³
$M_r = 499.19$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 7.8590 (6) Å	$\mu = 0.92 \text{ mm}^{-1}$
b = 10.0153 (11) Å	$T = 298 { m K}$
c = 14.4884 (16) Å	$0.48 \times 0.44 \times 0.37 \text{ mm}$

 $R_{\rm int} = 0.021$

5726 measured reflections

3395 independent reflections

3143 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART 1000 CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Siemens, 1996)
  T_{\min} = 0.666, T_{\max} = 0.727
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.085$	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
3395 reflections	Absolute structure: Flack (1983),
281 parameters	1265 Friedel pairs
1 restraint	Flack parameter: 0.02 (2)

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C4-C9 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots N3$	0.82	1.81	2.617 (4)	168
$C12 - H12 \cdots Cg^{i}$	0.93	2.71	3.594 (5)	159
$C16 - H16 \cdots Cg^{ii}$	0.93	2.78	3.653 (6)	157

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z$; (ii) x, y + 1, z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996): data reduction: SAINT: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20671048, 21041002)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2519).

References

- Aromí, G. & Brechin, E. K. (2006). Struct. Bond. pp. 1-67.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Goodwin, J. C., Price, D. J., Powell, A. K. & Heath, S. L. (2000). Eur. J. Inorg. Chem. pp. 1407-1410.
- Hoshino, N., Ako, A. M., Powell, A. K. & Oshio, H. (2009). Inorg. Chem. 48, 3396-3407.
- Oshio, H., Hoshino, N., Ito, T. & Nakano, M. (2004). J. Am. Chem. Soc. 126, 8805-8812.
- Qian, J., Tian, J., Gu, W., Gao, S., Xin, L., Yan, S., Ribas, J., Liao, D. & Cheng, P. (2008). Dalton Trans. pp. 6948-6952.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2010). E66, m1585 [https://doi.org/10.1107/S1600536810046623]

Dichlorido{1-[(2-hydroxyethyl)iminomethyl]-2-naphtholato}pyridineiron(III) pyridine monosolvate

Shizheng Liu, Jie Yang, Lei Lv and Dacheng Li

S1. Comment

The considerable current interest in magnetic complexes arises from their relevance in diverse fields ranging from bioinorganic chemistry to molecular magnetic materials (Oshio *et al.*, 2004; Aromí *et al.*, 2006). We report here the synthesis and crystal structure of the title compound.

In the title complex (Fig. 1), the tridentate Schiff base ligand is derived from the condensation of 2-hydroxy-1naphthaldehyde and ethanolamine. The iron(III) metal centre is six-coordinate by the N and O atoms from the Schiff base ligand, the N atom from a pyridine molecule and two chloride anions in a distorted octahedral geometry. The Fe– O(alkoxo) bond length [Fe1–O1 = 2.105 (2) Å] is longer than the Fe–O(phenoxo) distance [Fe1–O2 = 1.897 (2) Å], which lies well within the range of values reported in the literature (Goodwin *et al.*, 2000; Qian *et al.*, 2008; Hoshino *et al.*, 2009). In the crystal structure, complex molecules and pyridine solvent molecules are linked into a three-dimensional network by O—H…N hydrogen bonds and C—H… π interactions (Table 1).

S2. Experimental

Ethanolamine (1 mmol, 61.08 mg) was dissolved in methanol (10 ml) and added dropwise to a methanol solution of 2-hydroxy-1-naphthaldehyde (1 mmol, 172.19 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an MeCN/Py solution "(3:1 v/v, 4 ml) of FeCl₃.6H₂O(1 mmol, 270.29 mg) was added dropwise and stirred for another 7 h. The resulting black solution was filtrated and was allowed to stand at room temperature for about one week, whereupon block crystals suitable for X-ray diffraction analysis were obtained.

S3. Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(O)$.

Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

Dichlorido{1-[(2-hydroxyethyl)iminomethyl]-2-naphtholato}pyridineiron(III) pyridine monosolvate

Crystal data

 $[Fe(C_{13}H_{12}NO_2)Cl_2(C_5H_5N)] \cdot C_5H_5N$ $M_r = 499.19$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 7.8590 (6) Å b = 10.0153 (11) Åc = 14.4884 (16) Å $\beta = 90.123 (1)^{\circ}$ V = 1140.4 (2) Å³ Z = 2

Data collection

Bruker SMART 1000 CCD	5726 measured ref
diffractometer	3395 independent
Radiation source: fine-focus sealed tube	3143 reflections w
Graphite monochromator	$R_{\rm int} = 0.021$
phi and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} =$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(SADABS; Siemens, 1996)	$k = -11 \rightarrow 8$
$T_{\min} = 0.666, \ T_{\max} = 0.727$	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.085$ S = 1.003395 reflections 281 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

F(000) = 514 $D_{\rm x} = 1.454 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3504 reflections $\theta = 2.5 - 28.0^{\circ}$ $\mu = 0.92 \text{ mm}^{-1}$ T = 298 KBlock, black $0.48 \times 0.44 \times 0.37 \text{ mm}$

flections reflections with $I > 2\sigma(I)$ 1.4°

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0476P)^2 + 0.5289P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Flack (1983), 1265 Friedel pairs Absolute structure parameter: 0.02 (2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.54656 (5)	0.51232 (5)	0.28032 (3)	0.03179 (13)	
C11	0.81839 (12)	0.59516 (12)	0.27394 (7)	0.0505 (3)	
Cl2	0.61339 (13)	0.29636 (11)	0.33678 (7)	0.0486 (3)	
N1	0.2862 (3)	0.4752 (3)	0.30300 (17)	0.0321 (7)	
N2	0.4541 (4)	0.7190 (4)	0.2447 (2)	0.0386 (7)	
N3	0.7698 (4)	0.5286 (4)	0.52783 (19)	0.0458 (8)	
01	0.5126 (3)	0.5757 (3)	0.41754 (15)	0.0374 (6)	
H1	0.5968	0.5524	0.4469	0.056*	
O2	0.5074 (3)	0.4537 (3)	0.15755 (16)	0.0386 (6)	
C1	0.3621 (4)	0.5234 (5)	0.4608 (2)	0.0434 (9)	
H1A	0.3330	0.5757	0.5149	0.052*	
H1B	0.3798	0.4315	0.4796	0.052*	
C2	0.2222 (4)	0.5320 (5)	0.3892 (2)	0.0409 (10)	
H2A	0.1231	0.4827	0.4098	0.049*	
H2B	0.1894	0.6244	0.3798	0.049*	
C3	0.1855 (4)	0.4104 (4)	0.2498 (2)	0.0331 (8)	
H3	0.0734	0.4006	0.2690	0.040*	
C4	0.2316 (4)	0.3513 (4)	0.1627 (2)	0.0309 (8)	
C5	0.3927 (4)	0.3731 (4)	0.1223 (2)	0.0334 (8)	
C6	0.4347 (5)	0.3075 (5)	0.0381 (2)	0.0440 (10)	
H6	0.5403	0.3227	0.0113	0.053*	
C7	0.3239 (5)	0.2239 (5)	-0.0032 (2)	0.0505 (11)	
H7	0.3564	0.1808	-0.0572	0.061*	
C8	0.1613 (5)	0.1997 (4)	0.0327 (2)	0.0419 (10)	
C9	0.1090 (5)	0.2669 (4)	0.1152 (2)	0.0330 (8)	
C10	-0.0580 (5)	0.2445 (4)	0.1469 (3)	0.0431 (9)	
H10	-0.0968	0.2911	0.1982	0.052*	
C11	-0.1640 (6)	0.1561 (5)	0.1041 (3)	0.0566 (12)	
H11	-0.2733	0.1426	0.1268	0.068*	
C12	-0.1089 (6)	0.0855 (6)	0.0261 (3)	0.0632 (14)	
H12	-0.1796	0.0221	-0.0011	0.076*	
C13	0.0459 (6)	0.1095 (5)	-0.0094 (3)	0.0576 (12)	
H13	0.0783	0.0656	-0.0631	0.069*	
C14	0.3280 (5)	0.7367 (5)	0.1839 (3)	0.0496 (10)	
H14	0.2786	0.6622	0.1565	0.060*	
C15	0.2690 (7)	0.8615 (6)	0.1604 (3)	0.0659 (14)	
H15	0.1814	0.8708	0.1177	0.079*	
C16	0.3409 (7)	0.9727 (5)	0.2009 (4)	0.0731 (16)	
H16	0.3043	1.0580	0.1851	0.088*	
C17	0.4661 (7)	0.9548 (5)	0.2644 (4)	0.0635 (13)	
H17	0.5147	1.0279	0.2940	0.076*	
C18	0.5204 (5)	0.8271 (5)	0.2843 (3)	0.0509 (10)	
H18	0.6071	0.8160	0.3274	0.061*	
C19	0.8321 (6)	0.4104 (5)	0.5477 (3)	0.0588 (13)	
H19	0.7821	0.3355	0.5211	0.071*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

C20	0.9701 (7)	0.3926 (6)	0.6070 (4)	0.0650 (14)	
H20	1.0113	0.3077	0.6200	0.078*	
C21	1.0421 (5)	0.5014 (8)	0.6448 (3)	0.0656 (14)	
H21	1.1334	0.4929	0.6852	0.079*	
C22	0.9803 (7)	0.6227 (7)	0.6233 (4)	0.0805 (19)	
H22	1.0306	0.6991	0.6476	0.097*	
C23	0.8438 (7)	0.6334 (6)	0.5658 (4)	0.0663 (14)	
H23	0.8009	0.7178	0.5527	0.080*	

Atomic displacement parameters (A	Ų)	
-----------------------------------	----	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0295 (2)	0.0306 (3)	0.0353 (2)	0.0020 (2)	-0.00537 (16)	-0.0014 (2)
Cl1	0.0305 (4)	0.0524 (7)	0.0685 (6)	-0.0014 (4)	-0.0044(4)	-0.0056 (5)
Cl2	0.0574 (6)	0.0332 (5)	0.0551 (6)	0.0102 (5)	-0.0071 (4)	0.0020 (4)
N1	0.0296 (14)	0.038 (2)	0.0290 (13)	0.0046 (12)	-0.0029 (11)	-0.0044 (12)
N2	0.0401 (17)	0.034 (2)	0.0420 (16)	0.0029 (15)	-0.0066 (13)	0.0025 (15)
N3	0.0476 (17)	0.046 (2)	0.0432 (16)	-0.0030 (18)	-0.0118 (13)	0.0028 (18)
O1	0.0377 (13)	0.0390 (16)	0.0354 (12)	0.0012 (11)	-0.0105 (10)	-0.0038 (11)
O2	0.0354 (13)	0.0449 (17)	0.0355 (12)	-0.0024 (11)	-0.0012 (10)	-0.0040 (11)
C1	0.0451 (18)	0.053 (3)	0.0323 (16)	0.001 (2)	0.0004 (13)	-0.005 (2)
C2	0.0336 (17)	0.051 (3)	0.0381 (17)	0.0047 (18)	-0.0013 (13)	-0.0170 (19)
C3	0.0307 (17)	0.032 (2)	0.0366 (18)	0.0043 (16)	-0.0019 (14)	0.0004 (16)
C4	0.0349 (18)	0.028 (2)	0.0294 (16)	0.0088 (15)	-0.0046 (14)	0.0009 (14)
C5	0.0358 (18)	0.033 (2)	0.0313 (17)	0.0065 (16)	-0.0076 (14)	0.0028 (15)
C6	0.0405 (19)	0.060 (3)	0.0319 (18)	0.006 (2)	0.0015 (15)	-0.0043 (19)
C7	0.060(2)	0.060(3)	0.0319 (19)	0.011 (2)	-0.0023 (17)	-0.014 (2)
C8	0.050 (2)	0.042 (3)	0.0339 (18)	0.002 (2)	-0.0114 (16)	-0.0019 (17)
C9	0.0387 (18)	0.029 (2)	0.0310 (16)	0.0043 (15)	-0.0086 (14)	-0.0003 (14)
C10	0.040 (2)	0.047 (3)	0.042 (2)	-0.0033 (18)	-0.0111 (16)	-0.0038 (18)
C11	0.049 (2)	0.066 (3)	0.056 (2)	-0.011 (2)	-0.016 (2)	0.001 (2)
C12	0.071 (3)	0.064 (3)	0.055 (3)	-0.020 (3)	-0.026 (2)	-0.010 (2)
C13	0.074 (3)	0.054 (3)	0.044 (2)	-0.002(2)	-0.019 (2)	-0.018 (2)
C14	0.053 (2)	0.046 (3)	0.049 (2)	0.010 (2)	-0.0076 (19)	0.007 (2)
C15	0.070 (3)	0.069 (4)	0.058 (3)	0.027 (3)	-0.006 (2)	0.012 (3)
C16	0.094 (4)	0.047 (4)	0.078 (3)	0.028 (3)	0.015 (3)	0.021 (3)
C17	0.076 (3)	0.029 (2)	0.085 (3)	0.000 (2)	0.011 (3)	0.000 (2)
C18	0.051 (2)	0.037 (3)	0.065 (3)	-0.001 (2)	-0.0052 (19)	-0.001 (2)
C19	0.060 (3)	0.049 (3)	0.067 (3)	-0.008(2)	-0.017 (2)	0.001 (2)
C20	0.063 (3)	0.058 (4)	0.074 (3)	0.005 (3)	-0.011 (2)	0.018 (3)
C21	0.042 (2)	0.099 (5)	0.056 (2)	0.012 (3)	-0.0130 (17)	-0.011 (3)
C22	0.061 (3)	0.091 (5)	0.089 (4)	-0.002 (3)	-0.021 (3)	-0.036 (4)
C23	0.066 (3)	0.049 (3)	0.084 (3)	0.009 (3)	-0.018(3)	-0.012 (3)

Geometric parameters (Å, °)

Fe1—O2	1.897 (2)	C8—C13	1.417 (6)
Fe1—O1	2.105 (2)	C8—C9	1.433 (5)

supporting information

Fe1—N1	2.106 (3)	C9—C10	1.409 (5)
Fe1—N2	2.254 (3)	C10-C11	1.364 (6)
Fe1—Cl1	2.2938 (10)	C10—H10	0.9300
Fe1—Cl2	2.3709 (12)	C11—C12	1.403 (7)
N1—C3	1 280 (4)	C11—H11	0.9300
N1—C2	1.260(1) 1.462(4)	C_{12} C_{13}	1344(7)
N2	1.402(4)	C12_H12	0.9300
N2 C14	1.331(0) 1.336(5)	C12 H12	0.9300
N2 C10	1.330(3) 1.212(7)	C14 C15	0.9300
N3-C19	1.312(7)		1.373(7)
N3-C23	1.319 (6)		0.9300
OI—CI	1.439 (4)	C15—C16	1.379 (8)
O1—H1	0.8200	С15—Н15	0.9300
O2—C5	1.313 (4)	C16—C17	1.357 (7)
C1—C2	1.513 (4)	C16—H16	0.9300
C1—H1A	0.9700	C17—C18	1.379 (6)
C1—H1B	0.9700	С17—Н17	0.9300
C2—H2A	0.9700	C18—H18	0.9300
C2—H2B	0.9700	C19—C20	1.393 (7)
C3—C4	1.440 (5)	С19—Н19	0.9300
С3—Н3	0.9300	C20—C21	1.344 (9)
C4—C5	1.414 (5)	С20—Н20	0.9300
C4—C9	1.455 (5)	C21—C22	1.345 (9)
C5—C6	1.424 (5)	C21—H21	0.9300
C6—C7	1 348 (6)	C^{22} C^{23}	1 361 (8)
С6—Н6	0.9300	C22_H22	0.9300
C7 $C8$	1 402 (6)	C22 H23	0.9300
C7 H7	0.0300	025-1125	0.9500
C/—II/	0.9500		
O_2 Fe1 O_1	163 37 (10)	Сб. С7. Н7	110.0
$O_2 = F_{e1} = O_1$	86.33(10)	C_{0} C_{7} H_{7}	119.0
O_2 — I_{C1} — N_1 O_1 Eq.1 N1	77, 22, (0)	$C_{0} = C_{1} = C_{1}$	119.0 122.2(4)
$O_1 = Fe_1 = N_1$	77.52(9)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	122.2(4)
02—FeI—N2	91.01 (11)	$C_{12} = C_{8} = C_{9}$	119.5 (3)
01—FeI—N2	84.14 (11)		118.3 (4)
NI—FeI—N2	83.39 (11)	C10—C9—C8	117.8 (3)
O2—Fe1—Cl1	102.90 (8)	C10—C9—C4	123.7 (3)
O1—Fe1—Cl1	92.81 (7)	C8—C9—C4	118.5 (3)
N1—Fe1—Cl1	167.24 (9)	C11—C10—C9	121.6 (4)
N2—Fe1—Cl1	87.61 (8)	C11—C10—H10	119.2
O2—Fe1—Cl2	94.40 (9)	C9—C10—H10	119.2
O1—Fe1—Cl2	88.73 (8)	C10-C11-C12	120.3 (4)
N1—Fe1—Cl2	90.00 (9)	C10-C11-H11	119.9
N2—Fe1—Cl2	171.18 (9)	C12—C11—H11	119.9
Cl1—Fe1—Cl2	97.95 (4)	C13—C12—C11	119.9 (4)
C3—N1—C2	119.9 (3)	C13—C12—H12	120.0
C3—N1—Fe1	126.5 (2)	C11—C12—H12	120.0
C2—N1—Fe1	113.6 (2)	C12—C13—C8	121.9 (4)
C18—N2—C14	117.8 (4)	C12—C13—H13	119.0
C18—N2—Fe1	121.5 (3)	C8—C13—H13	119.0

C14—N2—Fe1	120.7 (3)	N2-C14-C15	122.2 (5)
C19—N3—C23	117.5 (3)	N2—C14—H14	118.9
C1-O1-Fe1	114.1 (2)	C15—C14—H14	118.9
C1-01-H1	109.5	C14—C15—C16	119.4 (4)
Fe1—O1—H1	107.4	C14—C15—H15	120.3
C5-02-Fe1	131.7 (2)	C16—C15—H15	120.3
01	106.1 (3)	C17—C16—C15	118.5 (5)
01—C1—H1A	110.5	C17—C16—H16	120.7
C2-C1-H1A	110.5	C15—C16—H16	120.7
01-C1-H1B	110.5	C16 - C17 - C18	1192(5)
$C_2 - C_1 - H_1B$	110.5	C_{16} C_{17} H_{17}	120.4
$H_1 A - C_1 - H_1 B$	108.7	C18 - C17 - H17	120.4
N1 C2 C1	108.2 (2)	$N_2 C_{18} C_{17}$	120.4 122.0(4)
N1 = C2 = C1	108.5 (5)	$N_2 = C_{18} = C_{17}$	122.9 (4)
NI = C2 = H2A	110.0	$N_2 = C_{10} = H_{10}$	110.0
CI-C2-H2A	110.0	C1/-C18H18	118.0
N1 - C2 - H2B	110.0	N3-C19-C20	122.7 (5)
C1—C2—H2B	110.0	N3—C19—H19	118.7
H2A—C2—H2B	108.4	C20—C19—H19	118.7
N1—C3—C4	125.4 (3)	C21—C20—C19	118.3 (5)
N1—C3—H3	117.3	C21—C20—H20	120.8
С4—С3—Н3	117.3	С19—С20—Н20	120.8
C5—C4—C3	121.8 (3)	C20—C21—C22	119.1 (4)
C5—C4—C9	119.1 (3)	C20—C21—H21	120.5
C3—C4—C9	119.1 (3)	C22—C21—H21	120.5
O2—C5—C4	123.2 (3)	C21—C22—C23	119.8 (6)
O2—C5—C6	117.2 (3)	C21—C22—H22	120.1
C4—C5—C6	119.6 (3)	С23—С22—Н22	120.1
C7—C6—C5	121.1 (4)	N3—C23—C22	122.6 (5)
С7—С6—Н6	119.5	N3—C23—H23	118.7
С5—С6—Н6	119.5	С22—С23—Н23	118.7
C6—C7—C8	122.1 (4)		
Ω^2 —Fe1—N1—C3	129(3)	$C_{3} - C_{4} - C_{5} - O_{2}^{2}$	-41(5)
01—Fe1—N1—C3	-1702(3)	$C_{2}^{0} - C_{4}^{0} - C_{5}^{0} - O_{2}^{0}$	176.0(3)
N_2 Fe1 N_1 C_3	1/0.2(3)	$C_{3} = C_{4} = C_{5} = C_{2}$	170.0(3) 177.2(3)
$\frac{11}{100} = \frac{100}{100} = \frac$	104.4(3)	$C_{3} - C_{4} - C_{5} - C_{6}$	-28(5)
C12 = Fe1 = N1 = C3	-915(3)	$C_{2} = C_{4} = C_{5} = C_{6}$	-2.8(3)
$C_1 = -N_1 = C_3$	-81.3(3)	02 - 03 - 00 - 07	-1/9.3(4)
02—FeI—NI— $C2$	-16/.0(3)	C4 - C5 - C6 - C7	-0.7(6)
VI = FeI = NI = C2	9.8 (2)	$C_{5} - C_{6} - C_{7} - C_{8}$	1.7(7)
N2—Fe1— $N1$ — $C2$	-/5.6 (3)	C6—C7—C8—C13	-178.5 (4)
Cl1—Fe1—N1—C2	-30.2 (5)	C6—C7—C8—C9	0.8 (7)
Cl2—Fe1—N1—C2	98.5 (3)	C7—C8—C9—C10	177.3 (4)
O2—Fe1—N2—C18	-146.3 (3)	C13—C8—C9—C10	-3.4 (5)
O1—Fe1—N2—C18	49.6 (3)	C7—C8—C9—C4	-4.2 (5)
N1—Fe1—N2—C18	127.5 (3)	C13—C8—C9—C4	175.1 (4)
Cl1—Fe1—N2—C18	-43.5 (3)	C5—C4—C9—C10	-176.5 (3)
O2—Fe1—N2—C14	34.9 (3)	C3—C4—C9—C10	3.6 (5)
O1—Fe1—N2—C14	-129.1 (3)	C5-C4-C9-C8	5.1 (5)

N1—Fe1—N2—C14	-51.3 (3)	C3—C4—C9—C8	-174.8 (3)
Cl1—Fe1—N2—C14	137.8 (3)	C8—C9—C10—C11	3.8 (6)
O2—Fe1—O1—C1	29.9 (5)	C4-C9-C10-C11	-174.6 (4)
N1—Fe1—O1—C1	19.0 (3)	C9-C10-C11-C12	-0.6 (7)
N2—Fe1—O1—C1	103.5 (3)	C10-C11-C12-C13	-3.2 (8)
Cl1—Fe1—O1—C1	-169.2 (3)	C11—C12—C13—C8	3.5 (8)
Cl2—Fe1—O1—C1	-71.3 (3)	C7—C8—C13—C12	179.1 (5)
O1—Fe1—O2—C5	-36.4 (6)	C9—C8—C13—C12	-0.2 (7)
N1—Fe1—O2—C5	-25.7 (3)	C18—N2—C14—C15	1.4 (6)
N2—Fe1—O2—C5	-109.0 (3)	Fe1—N2—C14—C15	-179.8 (3)
Cl1—Fe1—O2—C5	163.2 (3)	N2-C14-C15-C16	-0.3 (7)
Cl2—Fe1—O2—C5	64.0 (3)	C14—C15—C16—C17	-1.3 (8)
Fe1-01-C1-C2	-42.2 (4)	C15—C16—C17—C18	1.8 (8)
C3—N1—C2—C1	145.1 (4)	C14—N2—C18—C17	-0.9 (6)
Fe1—N1—C2—C1	-34.9 (4)	Fe1—N2—C18—C17	-179.7 (3)
O1-C1-C2-N1	48.7 (5)	C16—C17—C18—N2	-0.7 (7)
C2—N1—C3—C4	179.1 (4)	C23—N3—C19—C20	0.5 (7)
Fe1—N1—C3—C4	-0.9 (5)	N3-C19-C20-C21	-0.3 (8)
N1—C3—C4—C5	-7.3 (6)	C19—C20—C21—C22	-0.8 (7)
N1—C3—C4—C9	172.6 (4)	C20—C21—C22—C23	1.7 (8)
Fe1	25.9 (5)	C19—N3—C23—C22	0.3 (8)
Fe1	-155.4 (3)	C21—C22—C23—N3	-1.5 (10)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1…N3	0.82	1.81	2.617 (4)	168
C12—H12···· <i>Cg</i> ⁱ	0.93	2.71	3.594 (5)	159
C16—H16··· Cg^{ii}	0.93	2.78	3.653 (6)	157

Symmetry codes: (i) –*x*, *y*–1/2, –*z*; (ii) *x*, *y*+1, *z*.