

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Butoxy-*N*-[2-(diethylamino)ethyl]quinoline-4-carboxamide (dibucaine)

Bernard Van Eerdenbrugh,^{a,b} Phillip E. Fanwick^c and Lynne S. Taylor^a*

^aDepartment of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, ^bLaboratory for Pharmacotechnology and Biopharmacy, K.U. Leuven, Gasthuisberg O&N2, Herestraat 49, Box 921, 3000, Leuven, Belgium, and ^cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA

Correspondence e-mail: lstaylor@purdue.edu

Received 5 October 2010; accepted 5 November 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.064; wR factor = 0.168; data-to-parameter ratio = 11.9.

The molecular conformation of the title compound, $C_{20}H_{29}N_3O_2$, is stabilized by an intramolecular $C-H\cdots O$ hydrogen bond. The orientation of the amide group to the ring system is characterized by a C-C-C-O dihedral angle of 137.5 (3)°. In the crystal, intermolecular $N-H\cdots O$ hydrogen bonds between the amide groups form C(4) chains running parallel to the *a* axis.

Related literature

For a monograph on dibucaine, see: Sweetman (2009). For a comparison of the vasoactivity of dibucaine with other amide and ester local anaesthetics, see: Willatts & Reynolds (1985). For the initial crystal structure determination of dibucaine hydrochloride monohydrate, see: Hayward & Donohue (1977). For the subsequent revision of parameters, bond distances and bond angles, see Donohue & Hayward (1980). Outlier data were removed using a local program based on the method of Prince & Nicholson (1983).

Experimental

a = 4.9323 (1) Å
b = 7.2044 (1) Å
c = 26.9914 (19) Å

Cu $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.06 \text{ mm}$

22671 measured reflections

2786 independent reflections

1829 reflections with $I > 2\sigma(I)$

 $\mu = 0.62 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int}=0.096$

 $\begin{aligned} &\alpha &= 94.080 \ (7)^{\circ} \\ &\beta &= 90.611 \ (6)^{\circ} \\ &\gamma &= 94.728 \ (7)^{\circ} \\ &V &= 953.30 \ (7) \ \text{\AA}^{3} \\ &Z &= 2 \end{aligned}$

Data collection

Rigaku Rapid II diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2001) $T_{min} = 0.845, T_{max} = 0.966$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.064 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.168 & \text{independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 2786 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.28 \text{ e} \text{ Å}^{-3} \\ 234 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.22 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
C9−H9···O11 N12−H12···O11 ⁱ	0.95 0.93 (2)	2.43 1.93 (2)	3.015 (3) 2.857 (3)	119 171 (2)

Symmetry code: (i) x - 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and local programs.

The authors would like to thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERC-SOPS)(EEC-0540855). The authors thank the National Science Foundation, Directorate for Mathematical & Physical Sciences, Division of Materials Research, for financial support (NSF MPS-DMR)(DMR-0804609). BVE is a Postdoctoral Researcher of the 'Fonds voor Wetenschappelijk Onderzoek', Flanders, Belgium.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2498).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Donohue, J. & Hayward, B. S. (1980). J. Cryst. Mol. Struct. 10, 157-161.
- Hayward, B. S. & Donohue, J. (1977). J. Cryst. Mol. Struct. 7, 275–294.
- Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Prince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407-410.
- Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sweetman, S. C. (2009). Editor. *Martindale: The Complete Drug Reference*, 36th ed. London: Pharmaceutical Press.
- Willatts, D. G. & Reynolds, F. (1985). Br. J. Anaesth. 57, 1006-1011.

supporting information

Acta Cryst. (2010). E66, o3189 [https://doi.org/10.1107/S1600536810045460]
2-Butoxy-N-[2-(diethylamino)ethyl]quinoline-4-carboxamide (dibucaine)
Bernard Van Eerdenbrugh, Phillip E. Fanwick and Lynne S. Taylor

S1. Comment

Dibucaine is an amide local anaesthetic that is now generally only used for surface anaesthesia. It is one of the most potent and toxic of the long-acting local anaesthetics and its parenteral use was restricted to spinal anaesthesia (Sweetman, 2009). Although the single-crystal structure of dibucaine hydrochloride monohydrate has been published (Hayward & Donohue, 1977; Donohue & Hayward, 1980), that of the free base has not been reported.

The molecular structure of the title compound is shown in Figure 1. The molecular conformation is stabilized by an intramolecular C—H···O hydrogen bond (Table 1). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds into chains running parallel to the *a* axis. These hydrogen bonds, formed between the carbonyl oxygen and the amide nitrogen, have a O11···N12 distance of 2.857 (3)Å and a N12—H12···O11 angle of 171 (2)°. In the published structure of dibucaine hydrochloride monohydrate, the hydrogen bonds between the amide groups are disrupted due to hydrogen bonding with chloride and water molecules (Hayward & Donohue, 1977; Donohue & Hayward, 1980).

S2. Experimental

A non-saturated solution of the title compound was prepared by dissolving the powder to 20 ml of a 1/1 (v/v) ethanol/water mixture in 20 ml scintillation vials (Research Products International Corp., Mt. Prospect, IL, USA). The open vial was allowed to stand at room temperature to let the liquid slowly evaporate. After one week, the liquid had partly evaporated and crystals of the title compound were obtained. Subsequent to decanting the majority of the remaining liquid and prior to crystal structure determination, the crystals were allowed to dry overnight.

S3. Refinement

The H atom bound to nitrogen N12 was located in a difference Fourier map and refined freely with isotropic displacement parameters. Other H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.95 Å (aromatic), 0.99 Å (aliphatic CH₂), 0.98 Å (aliphatic CH₃) and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are presented as small spheres of arbitrary radius.

2-Butoxy-N-[2-(diethylamino)ethyl]quinoline-4-carboxamide

Crystal data

$\begin{array}{l} C_{20}H_{29}N_{3}O_{2} \\ M_{r} = 343.47 \\ \text{Triclinic, } P1 \\ \text{Hall symbol: -P 1} \\ a = 4.9323 \ (1) \ \text{\AA} \\ b = 7.2044 \ (1) \ \text{\AA} \\ c = 26.9914 \ (19) \ \text{\AA} \\ a = 94.080 \ (7)^{\circ} \\ \beta = 90.611 \ (6)^{\circ} \\ \gamma = 94.728 \ (7)^{\circ} \\ V = 953.30 \ (7) \ \text{\AA}^{3} \end{array}$	Z = 2 F(000) = 372 $D_x = 1.197 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 22671 reflections $\theta = 6-66^{\circ}$ $\mu = 0.62 \text{ mm}^{-1}$ T = 150 K Plate, colourless $0.20 \times 0.20 \times 0.06 \text{ mm}$
Data collection	
Rigaku Rapid II diffractometer Confocal optics monochromator ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2001)	$T_{\min} = 0.845, T_{\max} = 0.966$ 22671 measured reflections 2786 independent reflections 1829 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.096$ $\theta_{\max} = 66.6^{\circ}, \theta_{\min} = 6.5^{\circ}$

$h = -5 \longrightarrow 5$	$l = -32 \rightarrow 32$
$k = -8 \rightarrow 8$	
Refinement	
Refinement on F^2 Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.064$	$w = 1/[\sigma^2(F_o^2) + (0.0819P)^2]$
$wR(F^2) = 0.168$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2786 reflections	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
234 parameters	$\Delta ho_{ m min} = -0.22$ e Å ⁻³
0 restraints	Extinction correction: (SHELXL97; Sheldrick 2008)
	Extinction coefficient: 0.32E-02

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Outlier data were removed using a local program based on the method of Prince and Nicholson (1983). Refinement on F^2 for ALL reflections except for 0 with very negative F^2 or flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating R_factor_obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O11	0.7912 (3)	0.4509 (2)	0.20477 (6)	0.0463 (5)
O31	-0.0013 (3)	0.4421 (2)	0.36166 (6)	0.0469 (5)
N4	0.2537 (4)	0.1888 (3)	0.34861 (7)	0.0416 (6)
N12	0.3625 (5)	0.5263 (3)	0.19137 (7)	0.0382 (6)
N15	0.2615 (4)	0.8145 (3)	0.08439 (7)	0.0409 (6)
C1	0.4443 (5)	0.3476 (3)	0.26107 (8)	0.0362 (7)
C2	0.2628 (5)	0.4293 (3)	0.29099 (8)	0.0388 (7)
C3	0.1742 (5)	0.3452 (3)	0.33440 (9)	0.0399 (7)
C5	0.4357 (5)	0.1009 (3)	0.31830 (8)	0.0392 (7)
C6	0.5198 (5)	-0.0696 (3)	0.33278 (9)	0.0460 (8)
C7	0.7017 (5)	-0.1636 (3)	0.30513 (9)	0.0484 (8)
C8	0.8064 (5)	-0.0917 (3)	0.26159 (9)	0.0473 (8)
C9	0.7263 (5)	0.0726 (3)	0.24632 (8)	0.0430 (7)
C10	0.5402 (5)	0.1733 (3)	0.27428 (8)	0.0370 (7)
C11	0.5499 (6)	0.4428 (3)	0.21690 (9)	0.0384 (7)
C13	0.4394 (4)	0.6311 (3)	0.14897 (8)	0.0392 (7)
C14	0.1956 (5)	0.7230 (3)	0.13009 (8)	0.0447 (8)
C16	0.2090 (5)	0.6808 (3)	0.04102 (8)	0.0456 (8)
C17	0.3601 (5)	0.7366 (4)	-0.00472 (8)	0.0515 (8)
C18	0.1034 (5)	0.9769 (3)	0.08026 (8)	0.0489 (8)
C19	0.2050 (6)	1.1414 (3)	0.11548 (9)	0.0644 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C32	-0.0885 (5)	0.3722 (4)	0.40823 (8)	0.0475 (8)
C33	-0.2632 (5)	0.5140 (4)	0.43239 (9)	0.0491 (8)
C34	-0.1155 (5)	0.7061 (4)	0.44398 (9)	0.0528 (8)
C35	-0.2952 (5)	0.8435 (4)	0.47007 (9)	0.0603 (9)
H2	0.1951	0.5431	0.2828	0.047*
H6	0.4492	-0.1197	0.3621	0.055*
H7	0.7576	-0.2782	0.3154	0.058*
H8	0.9337	-0.1576	0.2426	0.057*
H9	0.7967	0.1193	0.2166	0.052*
H12	0.180 (5)	0.502 (3)	0.1994 (7)	0.043 (8)*
H13A	0.5062	0.5461	0.1222	0.047*
H13B	0.5883	0.7278	0.1588	0.047*
H14A	0.0410	0.6274	0.1235	0.054*
H14B	0.1401	0.8165	0.1558	0.054*
H16A	0.0113	0.6679	0.0333	0.055*
H16B	0.2619	0.5571	0.0495	0.055*
H17A	0.3099	0.8593	-0.0133	0.077*
H17B	0.3120	0.6441	-0.0325	0.077*
H17C	0.5565	0.7427	0.0019	0.077*
H18A	-0.0895	0.9409	0.0873	0.059*
H18B	0.1126	1.0150	0.0458	0.059*
H19A	0.1885	1.1064	0.1498	0.097*
H19B	0.0961	1.2467	0.1107	0.097*
H19C	0.3962	1.1776	0.1087	0.097*
H32A	0.0708	0.3571	0.4298	0.057*
H32B	-0.1943	0.2495	0.4024	0.057*
H33A	-0.3349	0.4670	0.4637	0.059*
H33B	-0.4205	0.5264	0.4101	0.059*
H34A	-0.0502	0.7562	0.4126	0.063*
H34B	0.0456	0.6940	0.4653	0.063*
H35A	-0.4621	0.8485	0.4504	0.090*
H35B	-0.1972	0.9678	0.4736	0.090*
H35C	-0.3419	0.8026	0.5030	0.090*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
011	0.0350 (13)	0.0471 (12)	0.0590 (11)	0.0077 (10)	0.0081 (9)	0.0141 (9)
O31	0.0541 (13)	0.0469 (12)	0.0426 (10)	0.0170 (10)	0.0117 (9)	0.0061 (8)
N4	0.0475 (16)	0.0351 (13)	0.0434 (13)	0.0079 (12)	0.0037 (10)	0.0048 (10)
N12	0.0306 (15)	0.0407 (14)	0.0451 (13)	0.0037 (12)	0.0073 (11)	0.0138 (10)
N15	0.0500 (16)	0.0332 (13)	0.0413 (12)	0.0107 (11)	0.0057 (10)	0.0062 (10)
C1	0.0364 (18)	0.0312 (15)	0.0414 (14)	0.0040 (13)	0.0002 (12)	0.0035 (12)
C2	0.0416 (19)	0.0334 (16)	0.0425 (15)	0.0088 (14)	0.0002 (13)	0.0038 (12)
C3	0.0433 (18)	0.0366 (16)	0.0405 (15)	0.0098 (14)	0.0054 (12)	-0.0001 (12)
C5	0.0443 (19)	0.0334 (16)	0.0402 (15)	0.0069 (14)	-0.0013 (13)	0.0022 (12)
C6	0.058 (2)	0.0334 (16)	0.0485 (16)	0.0103 (15)	0.0027 (14)	0.0082 (13)
C7	0.056 (2)	0.0331 (16)	0.0567 (18)	0.0077 (15)	-0.0021 (14)	0.0067 (13)

supporting information

C8	0.051 (2)	0.0371 (17)	0.0542 (17)	0.0118 (15)	0.0030 (14)	-0.0003 (13)
C9	0.0460 (19)	0.0375 (16)	0.0471 (16)	0.0110 (14)	0.0042 (13)	0.0054 (13)
C10	0.0361 (18)	0.0312 (15)	0.0439 (15)	0.0059 (13)	-0.0032 (12)	0.0014 (12)
C11	0.0392 (19)	0.0321 (16)	0.0449 (15)	0.0077 (14)	0.0025 (13)	0.0029 (12)
C13	0.0326 (17)	0.0407 (16)	0.0457 (15)	0.0032 (13)	0.0047 (12)	0.0115 (13)
C14	0.0450 (19)	0.0412 (16)	0.0509 (16)	0.0121 (14)	0.0054 (13)	0.0128 (13)
C16	0.051 (2)	0.0357 (16)	0.0503 (17)	0.0066 (15)	0.0008 (14)	0.0038 (13)
C17	0.064 (2)	0.0452 (18)	0.0468 (16)	0.0125 (16)	0.0016 (14)	0.0019 (13)
C18	0.058 (2)	0.0378 (17)	0.0535 (17)	0.0161 (16)	0.0037 (14)	0.0078 (14)
C19	0.095 (3)	0.0378 (18)	0.0614 (19)	0.0118 (18)	0.0086 (17)	-0.0013 (15)
C32	0.054 (2)	0.0491 (18)	0.0405 (15)	0.0085 (16)	0.0092 (13)	0.0054 (13)
C33	0.050 (2)	0.0524 (19)	0.0454 (16)	0.0082 (16)	0.0104 (13)	-0.0003 (14)
C34	0.052 (2)	0.0502 (19)	0.0555 (18)	0.0071 (17)	0.0013 (14)	-0.0036 (15)
C35	0.061 (2)	0.056 (2)	0.0640 (18)	0.0135 (17)	0.0046 (15)	-0.0045 (15)

Geometric parameters (Å, °)

011—C11	1.236 (2)	C13—H13B	0.9900
O31—C3	1.348 (2)	C14—H14A	0.9900
O31—C32	1.444 (2)	C14—H14B	0.9900
N4—C3	1.304 (3)	C16—C17	1.511 (3)
N4—C5	1.383 (3)	C16—H16A	0.9900
N12-C11	1.352 (3)	C16—H16B	0.9900
N12-C13	1.452 (3)	C17—H17A	0.9800
N12—H12	0.94 (2)	C17—H17B	0.9800
N15-C14	1.466 (3)	C17—H17C	0.9800
N15-C18	1.469 (2)	C18—C19	1.513 (3)
N15-C16	1.469 (3)	C18—H18A	0.9900
C1—C2	1.354 (3)	C18—H18B	0.9900
C1-C10	1.444 (3)	C19—H19A	0.9800
C1—C11	1.494 (3)	C19—H19B	0.9800
С2—С3	1.414 (3)	C19—H19C	0.9800
С2—Н2	0.9500	C32—C33	1.508 (3)
С5—С6	1.408 (3)	C32—H32A	0.9900
C5—C10	1.417 (3)	C32—H32B	0.9900
С6—С7	1.365 (3)	C33—C34	1.520 (3)
С6—Н6	0.9500	С33—Н33А	0.9900
С7—С8	1.404 (3)	С33—Н33В	0.9900
С7—Н7	0.9500	C34—C35	1.523 (3)
С8—С9	1.368 (3)	C34—H34A	0.9900
С8—Н8	0.9500	C34—H34B	0.9900
C9—C10	1.409 (3)	С35—Н35А	0.9800
С9—Н9	0.9500	С35—Н35В	0.9800
C13—C14	1.520 (3)	С35—Н35С	0.9800
C13—H13A	0.9900		
C3—O31—C32	117.98 (18)	H14A—C14—H14B	108.10
C3—N4—C5	116.6 (2)	N15—C16—C17	113.6 (2)

C11—N12—C13	120.9 (2)	N15—C16—H16A	108.90
C11—N12—H12	117.6 (13)	C17—C16—H16A	108.90
C13—N12—H12	121.0 (13)	N15-C16-H16B	108.90
C14—N15—C18	110.81 (18)	C17—C16—H16B	108.90
C14—N15—C16	109.95 (18)	H16A—C16—H16B	107.70
C18—N15—C16	110.41 (18)	C16—C17—H17A	109.50
C2-C1-C10	118.5 (2)	C16—C17—H17B	109.50
C2—C1—C11	119.8 (2)	H17A—C17—H17B	109.50
C10-C1-C11	121.6 (2)	C16—C17—H17C	109.50
C1—C2—C3	120.0 (2)	H17A—C17—H17C	109.50
C1—C2—H2	120.00	H17B—C17—H17C	109.50
C3—C2—H2	120.00	N15-C18-C19	112.7 (2)
N4—C3—O31	121.0 (2)	N15-C18-H18A	109.10
N4—C3—C2	124.6 (2)	C19—C18—H18A	109.10
O31—C3—C2	114.4 (2)	N15-C18-H18B	109.10
N4—C5—C6	117.2 (2)	C19—C18—H18B	109.10
N4—C5—C10	123.7 (2)	H18A—C18—H18B	107.80
C6—C5—C10	119.2 (2)	C18—C19—H19A	109.50
C7—C6—C5	120.6 (2)	C18—C19—H19B	109.50
С7—С6—Н6	119.70	H19A—C19—H19B	109.50
С5—С6—Н6	119.70	C18—C19—H19C	109.50
C6—C7—C8	120.3 (2)	H19A—C19—H19C	109.50
С6—С7—Н7	119.90	H19B—C19—H19C	109.50
С8—С7—Н7	119.90	O31—C32—C33	106.61 (19)
C9—C8—C7	120.4 (2)	O31—C32—H32A	110.40
С9—С8—Н8	119.80	С33—С32—Н32А	110.40
С7—С8—Н8	119.80	O31—C32—H32B	110.40
C8—C9—C10	120.6 (2)	C33—C32—H32B	110.40
С8—С9—Н9	119.70	H32A—C32—H32B	108.60
С10—С9—Н9	119.70	C32—C33—C34	114.2 (2)
C9—C10—C5	118.9 (2)	С32—С33—Н33А	108.70
C9—C10—C1	124.4 (2)	С34—С33—Н33А	108.70
C5—C10—C1	116.6 (2)	С32—С33—Н33В	108.70
O11—C11—N12	121.4 (2)	С34—С33—Н33В	108.70
O11—C11—C1	123.5 (2)	H33A—C33—H33B	107.60
N12—C11—C1	115.1 (2)	C33—C34—C35	112.7 (2)
N12—C13—C14	109.85 (19)	С33—С34—Н34А	109.10
N12—C13—H13A	109.70	C35—C34—H34A	109.10
C14—C13—H13A	109.70	C33—C34—H34B	109.10
N12—C13—H13B	109.70	C35—C34—H34B	109.10
C14—C13—H13B	109.70	H34A—C34—H34B	107.80
H13A—C13—H13B	108.20	С34—С35—Н35А	109.50
N15-C14-C13	110.76 (19)	C34—C35—H35B	109.50
N15—C14—H14A	109.50	H35A—C35—H35B	109.50
C13—C14—H14A	109.50	C34—C35—H35C	109.50
N15—C14—H14B	109.50	H35A—C35—H35C	109.50
C13—C14—H14B	109.50	H35B—C35—H35C	109.50

C10—C1—C2—C3	0.8 (4)	C2—C1—C10—C9	179.3 (2)
$C_1 - C_1 - C_2 - C_3$	-1/0.4(2)	C11 - C1 - C10 - C9	-3.3(4)
C5—IN4—C5—O51	-1/9.5 (2)	C2C1C10C5	-0.2(3)
C5—N4—C3—C2	-0.5(4)	C11—C1—C10—C5	176.9 (2)
C32—O31—C3—N4	2.9 (4)	C13—N12—C11—O11	-0.8 (4)
C32—O31—C3—C2	-176.12 (19)	C13—N12—C11—C1	177.23 (19)
C1-C2-C3-N4	-0.5 (4)	C2-C1-C11-O11	137.5 (3)
C1—C2—C3—O31	178.5 (2)	C10-C1-C11-O11	-39.6 (4)
C3—N4—C5—C6	-179.0 (2)	C2-C1-C11-N12	-40.5 (3)
C3—N4—C5—C10	1.2 (4)	C10-C1-C11-N12	142.4 (2)
N4—C5—C6—C7	-179.2 (2)	C11—N12—C13—C14	-175.3 (2)
C10—C5—C6—C7	0.6 (4)	C18—N15—C14—C13	-149.9 (2)
C5—C6—C7—C8	-0.4 (4)	C16-N15-C14-C13	87.7 (2)
C6—C7—C8—C9	-0.3 (4)	N12-C13-C14-N15	-174.54 (18)
C7—C8—C9—C10	0.8 (4)	C14—N15—C16—C17	-159.16 (19)
C8—C9—C10—C5	-0.5 (4)	C18—N15—C16—C17	78.3 (2)
C8—C9—C10—C1	180.0 (2)	C14—N15—C18—C19	74.0 (3)
N4—C5—C10—C9	179.6 (2)	C16—N15—C18—C19	-164.0 (2)
C6—C5—C10—C9	-0.2 (4)	C3—O31—C32—C33	175.6 (2)
N4—C5—C10—C1	-0.8 (4)	O31—C32—C33—C34	-61.5 (3)
C6C5C10C1	179.4 (2)	C32—C33—C34—C35	-177.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
С9—Н9…О11	0.95	2.43	3.015 (3)	119
N12—H12…O11 ⁱ	0.93 (2)	1.93 (2)	2.857 (3)	171 (2)

Symmetry code: (i) x-1, y, z.