organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1-Adamantyl)(2-methylphenyl)methanone

Eva Babjaková,^a Marek Nečas^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic Correspondence e-mail: rvicha@ft.utb.cz

Received 2 November 2010; accepted 18 November 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.084; data-to-parameter ratio = 14.0.

In the title compound, $C_{18}H_{22}O$, the dihedral angle between the carbonyl and benzene planes is 69.11 (6)°. In the adamantyl group, the three fused cyclohexane rings have almost ideal chair conformations, with C–C–C angles in the range 108.14 (11)–110.50 (11)°. No specific intermolecular interactions (other than van der Waals interactions) are present in the crystal.

Related literature

For background to the synthesis, see: Vícha *et al.* (2006); Austin & Johnson (1932). For an alternative method for the preparation of the title compound, see: Lo Fiego *et al.* (2009).

Experimental

Crystal data C₁₈H₂₂O

 $M_r = 254.36$

Monoclinic, $P2_1/c$ a = 6.6988 (4) Å b = 12.2971 (6) Å c = 16.7670 (7) Å $\beta = 92.244$ (4)° V = 1380.14 (12) Å³

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector Absorption correction: multi-scan (*CrysAlis RED*; Oxford

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.037 & 173 \text{ parameters} \\ wR(F^2) = 0.084 & \text{H-atom parameters constrained} \\ S = 0.96 & \Delta\rho_{\max} = 0.17 \text{ e } \text{\AA}^{-3} \\ 2414 \text{ reflections} & \Delta\rho_{\min} = -0.19 \text{ e } \text{\AA}^{-3} \end{array}$

Z = 4

Mo $K\alpha$ radiation

 $0.40 \times 0.40 \times 0.30 \text{ mm}$

Diffraction, 2009)

 $T_{\min} = 0.974, T_{\max} = 1.000$ 8111 measured reflections

2414 independent reflections

1673 reflections with $I > 2\sigma(I)$

 $\mu = 0.07 \text{ mm}^-$

T = 120 K

 $R_{\rm int} = 0.029$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

The financial support of this work by internal grant of TBU in Zlín No. IGA/7/FT/10/D funded from the resources of specific university research is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2284).

References

Austin, P. R. & Johnson, J. R. (1932). J. Am. Chem. Soc. 54, 647-660.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
 Lo Fiego, M. J., Lockhart, M. T. & Chopa, A. B. (2009). J. Organomet. Chem. 694, 3674–3678.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709–722.

supporting information

Acta Cryst. (2010). E66, o3292 [https://doi.org/10.1107/S160053681004818X]

(1-Adamantyl)(2-methylphenyl)methanone

Eva Babjaková, Marek Nečas and Robert Vícha

S1. Comment

The title compound arose from the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride as a product of the rearrangement of a starting Grignard reagent. Similar behavior of benzylmagnesium halides has been described previously (Austin & Johnson, 1932). Alternatively, the title compound may be prepared by the reaction of adamantane-1-carbonyl chloride with 2-methylphenyl(tributyl)stannane as Lo Fiego *et al.* (2009) have described. In the molecule of the title compound (Fig. 1), the angle between carbonyl plane P1 (C1, C11, C12, O1) and benzene ring plane P2 (C12–C17) is 69.11 (6)°. Such a large twist may be attributed to the steric hindrance between the bulky adamantane moiety and the benzene ring. Nevertheless, the carbon of the methyl group in the *ortho* position is located almost in the ring plane with a deviation of 0.0587 (15) Å. Maximum deviations from the best planes are 0.0229 (13)Å for C11 and -0.0132 (13)Å for C12, respectively. No specific intermolecular interactions were observed in crystal packing.

S2. Experimental

The title compound was prepared by the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride according to the procedure published previously (Vícha *et al.*, 2006). The colorless microcrystalline powder was isolated from a crude complex mixture by column chromatography (silicagel; petroleum ether/ethyl acetate, v/v, 16/1). A single-crystal for X-ray analysis was acquired by spontaneous evaporation from deuterochloroform at room temperature.

S3. Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH₃), 0.99 Å (R₂CH₂), 1.00 Å (R₃CH), 0.95 Å (C_{Ar}H), and with U_{iso} (H) values set to either 1.2 U_{eq} or 1.5 U_{eq} (RCH₃) of the attached atom.

An ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids.

Part of the crystal structure showing unit cell projected along the *a*-axis. H-atoms have been omitted for clarity.

(1-Adamantyl)(2-methylphenyl)methanone

Crystal data	
C ₁₈ H ₂₂ O	<i>b</i> = 12.2971 (6) Å
$M_r = 254.36$	c = 16.7670 (7) Å
Monoclinic, $P2_1/c$	$\beta = 92.244 \ (4)^{\circ}$
Hall symbol: -P 2ybc	$V = 1380.14 (12) \text{ Å}^3$
a = 6.6988 (4) Å	Z = 4

F(000) = 552	$\theta = 3.3 - 27.3^{\circ}$
$D_{\rm x} = 1.224 {\rm ~Mg} {\rm ~m}^{-3}$	$\mu=0.07~\mathrm{mm}^{-1}$
Melting point: 345 K	T = 120 K
Mo Ka radiation, $\lambda = 0.71073$ Å	Block, colourless
Cell parameters from 2705 reflections	$0.40 \times 0.40 \times 0.30 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 8.4353 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009) $T_{min} = 0.974, T_{max} = 1.000$	8111 measured reflections 2414 independent reflections 1673 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.5^{\circ}$ $h = -7 \rightarrow 6$ $k = -14 \rightarrow 14$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.084$	neighbouring sites
S = 0.96	H-atom parameters constrained
2414 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0418P)^2]$
173 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.03229 (15)	0.67052 (8)	0.17539 (6)	0.0327 (3)	
C1	0.0839 (2)	0.76864 (11)	0.29798 (8)	0.0198 (3)	
C2	0.2536 (2)	0.71524 (12)	0.34999 (8)	0.0275 (4)	
H2A	0.2572	0.6361	0.3393	0.033*	
H2B	0.3839	0.7466	0.3361	0.033*	
C3	0.2185 (2)	0.73491 (13)	0.43858 (9)	0.0311 (4)	
Н3	0.3283	0.7000	0.4716	0.037*	
C4	0.2157 (2)	0.85708 (14)	0.45562 (9)	0.0362 (4)	
H4A	0.1940	0.8697	0.5130	0.043*	
H4B	0.3458	0.8896	0.4428	0.043*	
C5	0.0483 (2)	0.91065 (12)	0.40506 (9)	0.0309 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Н5	0.0471	0.9906	0.4161	0.037*
C6	-0.1514 (2)	0.86164 (12)	0.42657 (9)	0.0292 (4)
H6A	-0.2608	0.8966	0.3945	0.035*
H6B	-0.1747	0.8748	0.4837	0.035*
C7	-0.1501 (2)	0.73938 (12)	0.41004 (8)	0.0247 (4)
H7	-0.2811	0.7073	0.4243	0.030*
C8	-0.1164 (2)	0.71996 (12)	0.32129 (8)	0.0244 (4)
H8A	-0.2263	0.7538	0.2888	0.029*
H8B	-0.1173	0.6409	0.3102	0.029*
C9	0.0183 (2)	0.68552 (12)	0.46001 (9)	0.0293 (4)
H9A	-0.0036	0.6968	0.5175	0.035*
H9B	0.0192	0.6063	0.4495	0.035*
C10	0.0831 (2)	0.89173 (11)	0.31629 (8)	0.0268 (4)
H10A	0.2126	0.9240	0.3024	0.032*
H10B	-0.0239	0.9277	0.2835	0.032*
C11	0.1261 (2)	0.74157 (11)	0.21138 (8)	0.0217 (3)
C12	0.2950 (2)	0.79751 (11)	0.17062 (8)	0.0200 (3)
C13	0.2765 (2)	0.90683 (12)	0.14885 (8)	0.0262 (4)
H13	0.1590	0.9456	0.1611	0.031*
C14	0.4271 (2)	0.95941 (12)	0.10975 (9)	0.0306 (4)
H14	0.4125	1.0336	0.0947	0.037*
C15	0.5985 (2)	0.90312 (13)	0.09284 (8)	0.0312 (4)
H15	0.7042	0.9390	0.0673	0.037*
C16	0.6163 (2)	0.79443 (12)	0.11302 (8)	0.0269 (4)
H16	0.7346	0.7565	0.1006	0.032*
C17	0.4658 (2)	0.73909 (11)	0.15109 (8)	0.0218 (3)
C18	0.4921 (2)	0.61964 (12)	0.16948 (9)	0.0297 (4)
H18A	0.6308	0.5985	0.1613	0.045*
H18B	0.4026	0.5770	0.1340	0.045*
H18C	0.4598	0.6059	0.2251	0.045*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0341 (7)	0.0331 (6)	0.0309 (6)	-0.0089 (5)	0.0016 (5)	-0.0102 (5)
C1	0.0196 (8)	0.0194 (8)	0.0203 (8)	0.0001 (6)	0.0004 (6)	0.0000 (6)
C2	0.0223 (9)	0.0350 (9)	0.0253 (9)	0.0044 (7)	0.0000 (7)	0.0016 (7)
C3	0.0246 (9)	0.0471 (11)	0.0213 (8)	0.0065 (8)	-0.0027 (7)	0.0032 (7)
C4	0.0332 (10)	0.0530 (12)	0.0227 (9)	-0.0160 (8)	0.0029 (8)	-0.0080 (8)
C5	0.0445 (11)	0.0230 (9)	0.0258 (9)	-0.0058 (7)	0.0082 (8)	-0.0059 (7)
C6	0.0322 (10)	0.0299 (9)	0.0259 (9)	0.0060 (7)	0.0047 (7)	0.0001 (7)
C7	0.0212 (9)	0.0276 (9)	0.0255 (8)	-0.0032 (7)	0.0031 (7)	0.0017 (7)
C8	0.0231 (9)	0.0233 (8)	0.0266 (8)	-0.0033 (6)	-0.0006 (7)	-0.0009 (6)
C9	0.0359 (10)	0.0277 (9)	0.0247 (8)	0.0044 (7)	0.0050 (7)	0.0033 (7)
C10	0.0339 (10)	0.0210 (8)	0.0258 (8)	-0.0035 (7)	0.0039 (7)	-0.0006 (6)
C11	0.0215 (8)	0.0185 (8)	0.0248 (8)	0.0040 (7)	-0.0041 (7)	0.0007 (6)
C12	0.0243 (9)	0.0206 (8)	0.0150 (7)	-0.0006 (6)	-0.0020 (6)	-0.0010 (6)
C13	0.0317 (9)	0.0245 (9)	0.0224 (8)	0.0036 (7)	0.0019 (7)	-0.0006 (6)

supporting information

C14	0.0459 (11)	0.0214 (0)	0 0245 (9)	-0.0030(7)	0.0026 (8)	0.0029 (6)
C14	0.0439(11) 0.0341(10)	0.0214(9) 0.0357(10)	0.0243(9) 0.0240(8)	-0.0093(8)	0.0020(3) 0.0040(7)	0.0029(0)
C16	0.0229 (9)	0.0356 (10)	0.0221 (8)	0.0013 (7)	0.0013(7)	-0.0034(7)
C17	0.0246 (9)	0.0239 (8)	0.0167 (7)	0.0012 (6)	-0.0028 (6)	-0.0020 (6)
C18	0.0313 (9)	0.0263 (9)	0.0315 (9)	0.0065 (7)	-0.0001 (7)	-0.0024 (7)

Geometric parameters (Å, °)

01—C11	1.2219 (16)	С7—Н7	1.0000
C1—C11	1.5268 (18)	C8—H8A	0.9900
C1—C8	1.5338 (19)	C8—H8B	0.9900
C1—C10	1.5445 (18)	С9—Н9А	0.9900
C1—C2	1.551 (2)	С9—Н9В	0.9900
C2—C3	1.5321 (19)	C10—H10A	0.9900
C2—H2A	0.9900	C10—H10B	0.9900
C2—H2B	0.9900	C11—C12	1.5101 (19)
С3—С9	1.528 (2)	C12—C13	1.3972 (18)
C3—C4	1.530 (2)	C12—C17	1.4009 (19)
С3—Н3	1.0000	C13—C14	1.3843 (19)
C4—C5	1.529 (2)	С13—Н13	0.9500
C4—H4A	0.9900	C14—C15	1.380 (2)
C4—H4B	0.9900	C14—H14	0.9500
C5—C6	1.5232 (19)	C15—C16	1.383 (2)
C5—C10	1.5332 (19)	C15—H15	0.9500
С5—Н5	1.0000	C16—C17	1.3918 (19)
C6—C7	1.529 (2)	C16—H16	0.9500
С6—Н6А	0.9900	C17—C18	1.5097 (19)
С6—Н6В	0.9900	C18—H18A	0.9800
С7—С9	1.529 (2)	C18—H18B	0.9800
С7—С8	1.5325 (18)	C18—H18C	0.9800
C11—C1—C8	110.71 (12)	C1—C8—H8A	109.6
C11—C1—C10	113.89 (11)	С7—С8—Н8В	109.6
C8-C1-C10	108.78 (11)	C1—C8—H8B	109.6
C11—C1—C2	106.46 (11)	H8A—C8—H8B	108.1
C8—C1—C2	108.70 (11)	C3—C9—C7	109.53 (12)
C10—C1—C2	108.14 (12)	С3—С9—Н9А	109.8
C3—C2—C1	109.96 (12)	С7—С9—Н9А	109.8
C3—C2—H2A	109.7	С3—С9—Н9В	109.8
C1—C2—H2A	109.7	С7—С9—Н9В	109.8
C3—C2—H2B	109.7	Н9А—С9—Н9В	108.2
C1—C2—H2B	109.7	C5-C10-C1	110.09 (11)
H2A—C2—H2B	108.2	C5-C10-H10A	109.6
C9—C3—C4	109.22 (12)	C1C10H10A	109.6
C9—C3—C2	109.56 (13)	C5-C10-H10B	109.6
C4—C3—C2	109.85 (12)	C1-C10-H10B	109.6
С9—С3—Н3	109.4	H10A—C10—H10B	108.2
С4—С3—Н3	109.4	O1-C11-C12	118.83 (13)

С2—С3—Н3	109.4	01—C11—C1	120.98 (13)
C5—C4—C3	109.49 (12)	C12—C11—C1	120.07 (12)
C5—C4—H4A	109.8	C13—C12—C17	119.81 (13)
C3—C4—H4A	109.8	C13—C12—C11	119.76 (12)
C5—C4—H4B	109.8	C17—C12—C11	120.36 (12)
C3—C4—H4B	109.8	C14—C13—C12	120.96 (14)
H4A—C4—H4B	108.2	C14—C13—H13	119.5
C6—C5—C4	109.28 (12)	С12—С13—Н13	119.5
C6—C5—C10	109.77 (13)	C15—C14—C13	119.38 (14)
C4—C5—C10	109.68 (13)	C15—C14—H14	120.3
С6—С5—Н5	109.4	C13—C14—H14	120.3
С4—С5—Н5	109.4	C14—C15—C16	119.94 (14)
С10—С5—Н5	109.4	C14—C15—H15	120.0
C5—C6—C7	109.56 (12)	C16—C15—H15	120.0
С5—С6—Н6А	109.8	C15—C16—C17	121.86 (14)
С7—С6—Н6А	109.8	C15—C16—H16	119.1
С5—С6—Н6В	109.8	C17—C16—H16	119.1
С7—С6—Н6В	109.8	C16—C17—C12	117.99 (13)
H6A—C6—H6B	108.2	C16—C17—C18	119.27 (13)
С6—С7—С9	109.62 (12)	C12—C17—C18	122.74 (12)
C6—C7—C8	109.35 (11)	C17—C18—H18A	109.5
С9—С7—С8	109.33 (12)	C17—C18—H18B	109.5
С6—С7—Н7	109.5	H18A—C18—H18B	109.5
С9—С7—Н7	109.5	C17—C18—H18C	109.5
С8—С7—Н7	109.5	H18A—C18—H18C	109.5
C7—C8—C1	110.50 (12)	H18B—C18—H18C	109.5
С7—С8—Н8А	109.6		