Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^{1'}$ )-(nitrato- $\kappa^2 O, O'$ )bis(1,10-phenanthroline- $\kappa^2 N, N'$ )gadolinium(III)

#### Junjia Zheng, Hongxiao Jin\* and Hongliang Ge

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China Correspondence e-mail: jin\_hongxiao@yahoo.com.cn

Received 14 October 2010; accepted 14 November 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.005 Å; *R* factor = 0.021; *wR* factor = 0.043; data-to-parameter ratio = 12.1.

In the mononuclear title complex,  $[Gd(C_7H_5O_3)_2(NO_3)-(C_{12}H_8N_2)_2]$ , the Gd atom is in a pseudo-bicapped squareantiprismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen) ligands and by six O atoms, four from two 2,6-dihydroxybenzoate (DHB) ligands and the other two from a nitrate anion.  $\pi$ - $\pi$  stacking interactions between phen–DHB [centroid–centroid distances = 3.5334 (18) and 3.8414 (16) Å] and phen–phen [face-to-face separation = 3.4307 (17) Å] ligands of adjacent complex molecules stabilize the crystal structure. Intramolecular O– H···O hydrogen bonds are observed in the DHB ligands.

#### **Related literature**

For background to the complexation of Gd(III) ions with multidentate ligands with *O*- and *N*-donors, see: Kido & Okamoto (2002); Lauffer (1990). For related structures, see: Ma *et al.* (2010); Wang *et al.* (2008); Xia *et al.* (2007).



### Experimental

#### Crystal data

 $\begin{bmatrix} Gd(C_7H_5O_3)_2(NO_3)(C_{12}H_8N_2)_2 \end{bmatrix} \\ M_r = 885.89 \\ Monoclinic, P2_1/c \\ a = 11.1623 (2) Å \\ b = 26.7666 (4) Å \\ c = 14.2979 (4) Å \\ \beta = 127.445 (1)^{\circ} \end{bmatrix}$ 

#### Data collection

Oxford Diffraction Gemini S Ultra diffractometer Absorption correction: multi-scan [ABSPACK in CrysAlis PRO RED (Oxford Diffraction, 2006)] T<sub>min</sub> = 0.455, T<sub>max</sub> = 0.497

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$  $wR(F^2) = 0.043$ S = 1.015979 reflections 496 parameters  $V = 3391.60 (12) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 2.03 mm^{-1} T = 298 K 0.46 \times 0.42 \times 0.40 mm

18394 measured reflections 5979 independent reflections 4815 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.024$ 

12 restraints H-atom parameters constrained  $\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$ 

| Table 1                    |     |
|----------------------------|-----|
| Hydrogen-bond geometry (Å, | °). |

| $D - H \cdots A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------|------|-------------------------|--------------|------------------|
| 07-H7···O5       | 0.82 | 1.87                    | 2.592 (2)    | 147              |
| O8−H8···O6       | 0.82 | 1.83                    | 2.563 (3)    | 148              |
| O4−H4···O1       | 0.82 | 1.86                    | 2.585 (3)    | 147              |
| O3−H3···O2       | 0.82 | 1.84                    | 2.574 (3)    | 148              |

Data collection: *CrysAlis PRO CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis PRO CCD*; data reduction: *CrysAlis PRO RED* (Oxford Diffraction, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *SHELXL97*.

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project No. 2010 Y4100495).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2280).

#### References

- Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357-2393.
- Lauffer, R. B. (1990). Magn. Reson. Q. 6, 65-92.
- Ma, P., Huang, M.-L. & Chen, K.-H. (2010). Acta Cryst. E66, m833.
- Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, S.-B., He, H.-M., Li, S. & Tang, K. (2008). Acta Cryst. E64, m516.
- Xia, J., Zhao, B., Wang, H.-S., Shi, W., Ma, Y., Song, H., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). *Inorg. Chem.* **46**, 3450–3458.

# supporting information

Acta Cryst. (2010). E66, m1614 [https://doi.org/10.1107/S1600536810047124]

Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^1'$ )(nitrato- $\kappa^2 O, O'$ )bis(1,10-phenanthroline- $\kappa^2 N, N'$ )gadolinium(III)

## Junjia Zheng, Hongxiao Jin and Hongliang Ge

### S1. Comment

The chemistry of lanthanide-based metal-organic frameworks is currently of great interest because of their unusual coordination characteristics and optical and magnetic properties. The complexation of gadolinium (III) ions with multidentate ligands with O– and N-donors, has received great attention because of its relevance in biomedical applications as magnetic resonance imaging (MRI) agents (Kido & Okamoto, 2002; Lauffer, 1990). Herein, we report on the preparation and the single-crystal X-ray structure behavior of the novel mononuclear mixed-ligand complex  $[Gd(C_{12}H_8N_2)_2 (C_7H_8O_3)_2(NO_3)].$ 

The mononuclear structure is shown in Fig. 1. The ten-coordinate geometry of the Gd<sup>III</sup> ion is completed by four 2, 6-dihydroxybenzoate (DHB) O atoms, four phenanthroline N atoms and two nitrate O atoms. In one unit cell, there are four complex molecules (Fig. 2).

The complex forms a ten-coordinate pseudo-bicapped square antiprismatic structure in which the set of O5, O9, N2 and N4 and the set of O2, O6, N1 and N3 form two approximate squares, respectively. The ninth coordinate atom O1 and tenth coordinate atom O10 are above and under the two planes formed by O5, O9, N2 and N4 and of O2, O6, N1 and N3, respectively, and locate at bicapped positions. The O2–Gd–O9 is 175.388 (1)°, close to 180°. Because the coordinate O1 and O10 atoms are excluded by O5, O9, N2 and N4 (forming the above plane) and O2, O6, N1 and N3 (forming the plane beneath), respectively, the bond distances of Gd<sup>III</sup>–O1 (2.5673 (16) Å) and Gd<sup>III</sup>–O10 (2.6022 (17) Å) are correspondingly longer than those of Gd<sup>III</sup>–O2 (2.4781 (17) Å) and Gd<sup>III</sup>–O9 (2.5039 (17) Å), respectively.

 $\pi$ ...  $\pi$  stacking is observed in the crystal structure (Fig. 2). The centroid-centroid distances between the phen and DHB are 3.5334 (18) and 3.8414 (16) Å, while the face-to-face separation between parallel phen ligands is 3.4307 (17) Å.

Intramolecular O-H…O hydrogen bonds are observed in the DHB ligands (Fig. 1 & Table 1).

### **S2. Experimental**

Each reagent was commercially available and of analytical grade.  $GdNO_3 GH_2O$  (0.226 g, 0.5 mmol), 2, 6-dihydroxybenzoic acid (0.074 g 0.5 mmol), 1, 10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO<sub>3</sub> (0.042 g, 0.5 mmol) were dissolved in water-ethanol solution (10 ml, 5:5). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Orange single crystals were obtained from the filtrate after 1 d.

### **S3. Refinement**

H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding, with  $U_{iso}$  (H) = 1.2Ueq (C) and  $U_{iso}$ (H) = 1.5Ueq (O). The displacement parameters of N atom in nitrate and one O atom in DHB were restrained to be equal, while one O atom and N atom in nitrate were restrained to be approximately isotropic.



## Figure 1

The structure, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 15% probability level. Some H atoms are omitted for clarity. Dashed lines indicate the intramolecular O–H…O hydrogen bonds.



#### Figure 2

A packing diagram of the unit cell. Pink dashed lines show  $\pi$ - $\pi$  stacking between ligands.

Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^1$ )(nitrato- $\kappa^2 O, O'$ )bis(1,10-phenanthroline- $\kappa^2 N, N'$ )gadolinium(III)

### Crystal data

#### Data collection

Oxford Diffraction Gemini S Ultra diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 15.9 pixels mm<sup>-1</sup> ω scans F(000) = 1764  $D_x = 1.735 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11955 reflections  $\theta = 2.9-29.1^{\circ}$   $\mu = 2.03 \text{ mm}^{-1}$  T = 298 KBlock, orange  $0.46 \times 0.42 \times 0.40 \text{ mm}$ 

Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2006)  $T_{min} = 0.455$ ,  $T_{max} = 0.497$ 18394 measured reflections 5979 independent reflections 4815 reflections with  $I > 2\sigma(I)$ 

| $R_{\rm int} = 0.024$                                              | $k = -31 \rightarrow 31$                                   |
|--------------------------------------------------------------------|------------------------------------------------------------|
| $\theta_{\rm max} = 25.0^{\circ},  \theta_{\rm min} = 2.9^{\circ}$ | $l = -17 \rightarrow 15$                                   |
| $h = -13 \rightarrow 13$                                           |                                                            |
| Refinement                                                         |                                                            |
| Refinement on $F^2$                                                | Secondary atom site location: difference Fourier           |
| Least-squares matrix: full                                         | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.021$                                    | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.043$                                                  | neighbouring sites                                         |
| <i>S</i> = 1.01                                                    | H-atom parameters constrained                              |
| 5979 reflections                                                   | $w = 1/[\sigma^2(F_o^2) + (0.020P)^2]$                     |
| 496 parameters                                                     | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 12 restraints                                                      | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant                    | $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                                     | $\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$ |
|                                                                    |                                                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x             | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|---------------|--------------|---------------|-----------------------------|
| Gd1 | 0.930008 (14) | 0.862284 (4) | 0.221059 (11) | 0.03241 (5)                 |
| 01  | 0.8890 (2)    | 0.91866 (6)  | 0.05856 (15)  | 0.0451 (5)                  |
| O2  | 0.8450 (2)    | 0.83835 (7)  | 0.02180 (15)  | 0.0443 (4)                  |
| 03  | 0.7536 (2)    | 0.80218 (7)  | -0.17849 (17) | 0.0606 (5)                  |
| Н3  | 0.7812        | 0.8019       | -0.1106       | 0.091*                      |
| O4  | 0.8349 (3)    | 0.97874 (7)  | -0.1046 (2)   | 0.0816 (7)                  |
| H4  | 0.8533        | 0.9705       | -0.0419       | 0.122*                      |
| 05  | 0.69658 (19)  | 0.81249 (6)  | 0.13465 (16)  | 0.0434 (4)                  |
| O6  | 0.66669 (19)  | 0.89321 (6)  | 0.09915 (17)  | 0.0505 (5)                  |
| 07  | 0.4812 (2)    | 0.75919 (7)  | 0.10366 (17)  | 0.0542 (5)                  |
| H7  | 0.5652        | 0.7649       | 0.1220        | 0.081*                      |
| 08  | 0.4200 (2)    | 0.93646 (8)  | 0.0290 (2)    | 0.0753 (7)                  |
| H8  | 0.5060        | 0.9337       | 0.0492        | 0.113*                      |
| 09  | 0.8459 (2)    | 0.87228 (7)  | 0.34724 (17)  | 0.0506 (5)                  |
| O10 | 0.9519(2)     | 0.80131 (6)  | 0.37257 (17)  | 0.0492 (5)                  |
| 011 | 0.8610(3)     | 0.81841 (9)  | 0.46695 (19)  | 0.0817 (7)                  |
| N1  | 0.9754 (2)    | 0.95435 (7)  | 0.29187 (19)  | 0.0368 (5)                  |
| N2  | 1.1640 (2)    | 0.88032 (7)  | 0.43955 (18)  | 0.0357 (5)                  |
| N3  | 1.1797 (2)    | 0.86803 (7)  | 0.24844 (18)  | 0.0375 (5)                  |
| N4  | 1.0554 (2)    | 0.77981 (7)  | 0.23851 (18)  | 0.0355 (5)                  |
| N5  | 0.8865 (3)    | 0.82976 (9)  | 0.3979 (2)    | 0.0470 (6)                  |
| C1  | 0.8820 (3)    | 0.99069 (10) | 0.2201 (3)    | 0.0471 (7)                  |

| H1  | 0.8063     | 0.9831       | 0.1414      | 0.057*     |
|-----|------------|--------------|-------------|------------|
| C2  | 0.8935 (4) | 1.03981 (10) | 0.2589 (3)  | 0.0534 (8) |
| H2  | 0.8261     | 1.0641       | 0.2065      | 0.064*     |
| C3  | 1.0030 (4) | 1.05157 (10) | 0.3726 (3)  | 0.0517 (8) |
| H3A | 1.0116     | 1.0841       | 0.3989      | 0.062*     |
| C4  | 1.1037 (3) | 1.01476 (9)  | 0.4510 (3)  | 0.0407 (7) |
| C5  | 1.0847 (3) | 0.96619 (9)  | 0.4060 (2)  | 0.0343 (6) |
| C6  | 1.2220 (3) | 1.02442 (10) | 0.5721 (3)  | 0.0510 (8) |
| H6  | 1.2346     | 1.0566       | 0.6013      | 0.061*     |
| C7  | 1.3153 (3) | 0.98818 (11) | 0.6447 (3)  | 0.0530 (8) |
| H7A | 1.3911     | 0.9957       | 0.7234      | 0.064*     |
| C8  | 1.3011 (3) | 0.93797 (10) | 0.6037 (2)  | 0.0403 (6) |
| C9  | 1.1850 (3) | 0.92708 (9)  | 0.4844 (2)  | 0.0347 (6) |
| C10 | 1.3956 (3) | 0.89923 (11) | 0.6760 (3)  | 0.0496 (7) |
| H10 | 1.4723     | 0.9051       | 0.7554      | 0.060*     |
| C11 | 1.3754 (3) | 0.85270 (10) | 0.6303 (3)  | 0.0475 (7) |
| H11 | 1.4387     | 0.8265       | 0.6774      | 0.057*     |
| C12 | 1.2586 (3) | 0.84516 (10) | 0.5121 (2)  | 0.0421 (7) |
| H12 | 1.2458     | 0.8132       | 0.4818      | 0.050*     |
| C13 | 1.2402 (3) | 0.91126 (10) | 0.2505 (2)  | 0.0475 (7) |
| H13 | 1.1814     | 0.9400       | 0.2262      | 0.057*     |
| C14 | 1.3874 (3) | 0.91551 (12) | 0.2872 (3)  | 0.0566 (8) |
| H14 | 1.4255     | 0.9465       | 0.2875      | 0.068*     |
| C15 | 1.4749 (3) | 0.87395 (12) | 0.3226 (3)  | 0.0565 (8) |
| H15 | 1.5739     | 0.8765       | 0.3485      | 0.068*     |
| C16 | 1.4167 (3) | 0.82720 (11) | 0.3202 (2)  | 0.0436 (7) |
| C17 | 1.2668 (3) | 0.82630 (9)  | 0.2817 (2)  | 0.0360 (6) |
| C18 | 1.1987 (3) | 0.77906 (9)  | 0.2718 (2)  | 0.0350 (6) |
| C19 | 1.2788 (3) | 0.73454 (10) | 0.2958 (2)  | 0.0412 (7) |
| C20 | 1.4327 (3) | 0.73749 (12) | 0.3397 (2)  | 0.0541 (8) |
| H20 | 1.4884     | 0.7082       | 0.3602      | 0.065*     |
| C21 | 1.4990 (3) | 0.78140 (12) | 0.3522 (2)  | 0.0542 (8) |
| H21 | 1.5998     | 0.7821       | 0.3820      | 0.065*     |
| C22 | 1.2026 (3) | 0.68959 (10) | 0.2755 (2)  | 0.0482 (7) |
| H22 | 1.2507     | 0.6593       | 0.2871      | 0.058*     |
| C23 | 1.0593 (3) | 0.69013 (10) | 0.2392 (2)  | 0.0478 (7) |
| H23 | 1.0075     | 0.6604       | 0.2246      | 0.057*     |
| C24 | 0.9899 (3) | 0.73592 (10) | 0.2237 (2)  | 0.0435 (7) |
| H24 | 0.8926     | 0.7358       | 0.2020      | 0.052*     |
| C25 | 0.8459 (3) | 0.88219 (10) | -0.0120 (2) | 0.0375 (6) |
| C26 | 0.7966 (3) | 0.89003 (9)  | -0.1327 (2) | 0.0357 (6) |
| C27 | 0.7529 (3) | 0.84952 (10) | -0.2109 (2) | 0.0420 (7) |
| C28 | 0.7051 (3) | 0.85738 (11) | -0.3242 (3) | 0.0534 (8) |
| H28 | 0.6756     | 0.8305       | -0.3752     | 0.064*     |
| C29 | 0.7015 (3) | 0.90493 (13) | -0.3609 (3) | 0.0605 (8) |
| H29 | 0.6690     | 0.9100       | -0.4375     | 0.073*     |
| C30 | 0.7443 (4) | 0.94522 (12) | -0.2884 (3) | 0.0633 (9) |
| H30 | 0.7408     | 0.9772       | -0.3154     | 0.076*     |
|     |            |              |             |            |

| 0.7930 (3) | 0.93800 (11)                                                                                                                               | -0.1744 (3)                                                                                                                                                                                                                                                                                                                           | 0.0512 (7)                                           |                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0.6141 (3) | 0.85113 (10)                                                                                                                               | 0.1004 (2)                                                                                                                                                                                                                                                                                                                            | 0.0422 (7)                                           |                                                      |
| 0.4596 (3) | 0.84803 (9)                                                                                                                                | 0.0660 (2)                                                                                                                                                                                                                                                                                                                            | 0.0386 (6)                                           |                                                      |
| 0.3692 (3) | 0.89083 (11)                                                                                                                               | 0.0327 (2)                                                                                                                                                                                                                                                                                                                            | 0.0508 (7)                                           |                                                      |
| 0.2258 (3) | 0.88797 (13)                                                                                                                               | 0.0027 (3)                                                                                                                                                                                                                                                                                                                            | 0.0600 (8)                                           |                                                      |
| 0.1660     | 0.9164                                                                                                                                     | -0.0201                                                                                                                                                                                                                                                                                                                               | 0.072*                                               |                                                      |
| 0.1739 (3) | 0.84251 (13)                                                                                                                               | 0.0071 (3)                                                                                                                                                                                                                                                                                                                            | 0.0583 (8)                                           |                                                      |
| 0.0775     | 0.8406                                                                                                                                     | -0.0132                                                                                                                                                                                                                                                                                                                               | 0.070*                                               |                                                      |
| 0.2579 (3) | 0.79927 (12)                                                                                                                               | 0.0404 (2)                                                                                                                                                                                                                                                                                                                            | 0.0520 (8)                                           |                                                      |
| 0.2190     | 0.7690                                                                                                                                     | 0.0427                                                                                                                                                                                                                                                                                                                                | 0.062*                                               |                                                      |
| 0.4019 (3) | 0.80189 (11)                                                                                                                               | 0.0705 (2)                                                                                                                                                                                                                                                                                                                            | 0.0426 (7)                                           |                                                      |
|            | 0.7930 (3)<br>0.6141 (3)<br>0.4596 (3)<br>0.3692 (3)<br>0.2258 (3)<br>0.1660<br>0.1739 (3)<br>0.0775<br>0.2579 (3)<br>0.2190<br>0.4019 (3) | $\begin{array}{cccccccc} 0.7930 (3) & 0.93800 (11) \\ 0.6141 (3) & 0.85113 (10) \\ 0.4596 (3) & 0.84803 (9) \\ 0.3692 (3) & 0.89083 (11) \\ 0.2258 (3) & 0.88797 (13) \\ 0.1660 & 0.9164 \\ 0.1739 (3) & 0.84251 (13) \\ 0.0775 & 0.8406 \\ 0.2579 (3) & 0.79927 (12) \\ 0.2190 & 0.7690 \\ 0.4019 (3) & 0.80189 (11) \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | <i>U</i> <sup>12</sup> | U <sup>13</sup> | U <sup>23</sup> |
|-----|-------------|-----------------|-----------------|------------------------|-----------------|-----------------|
| Gd1 | 0.03358 (7) | 0.02755 (7)     | 0.03929 (8)     | 0.00033 (6)            | 0.02381 (6)     | -0.00046 (6)    |
| 01  | 0.0562 (12) | 0.0395 (11)     | 0.0428 (12)     | -0.0024 (9)            | 0.0317 (10)     | -0.0020 (9)     |
| O2  | 0.0514 (12) | 0.0361 (11)     | 0.0439 (12)     | -0.0019 (9)            | 0.0282 (10)     | 0.0033 (9)      |
| O3  | 0.0691 (14) | 0.0414 (12)     | 0.0488 (13)     | -0.0016 (10)           | 0.0242 (11)     | -0.0072 (10)    |
| O4  | 0.141 (2)   | 0.0415 (13)     | 0.0582 (15)     | -0.0182 (14)           | 0.0586 (16)     | -0.0043 (11)    |
| O5  | 0.0347 (10) | 0.0386 (11)     | 0.0571 (13)     | 0.0035 (9)             | 0.0281 (10)     | 0.0013 (9)      |
| O6  | 0.0426 (11) | 0.0421 (12)     | 0.0640 (14)     | 0.0030 (9)             | 0.0310(11)      | 0.0097 (9)      |
| O7  | 0.0449 (11) | 0.0497 (12)     | 0.0694 (15)     | 0.0009 (10)            | 0.0354 (12)     | 0.0074 (10)     |
| 08  | 0.0592 (14) | 0.0560 (14)     | 0.102 (2)       | 0.0174 (12)            | 0.0444 (14)     | 0.0139 (13)     |
| O9  | 0.0563 (11) | 0.0455 (12)     | 0.0608 (13)     | 0.0035 (9)             | 0.0412 (10)     | -0.0022 (9)     |
| O10 | 0.0541 (12) | 0.0383 (11)     | 0.0579 (13)     | 0.0010 (9)             | 0.0354 (11)     | 0.0016 (9)      |
| O11 | 0.0799 (16) | 0.124 (2)       | 0.0590 (16)     | -0.0099 (15)           | 0.0517 (14)     | 0.0115 (14)     |
| N1  | 0.0465 (13) | 0.0265 (11)     | 0.0444 (15)     | 0.0023 (10)            | 0.0312 (12)     | 0.0038 (10)     |
| N2  | 0.0358 (12) | 0.0318 (12)     | 0.0413 (13)     | 0.0038 (10)            | 0.0244 (11)     | 0.0025 (10)     |
| N3  | 0.0377 (12) | 0.0396 (13)     | 0.0400 (13)     | -0.0057 (10)           | 0.0261 (11)     | -0.0030 (10)    |
| N4  | 0.0362 (12) | 0.0331 (12)     | 0.0399 (14)     | -0.0023 (10)           | 0.0244 (11)     | -0.0025 (10)    |
| N5  | 0.0413 (12) | 0.0588 (15)     | 0.0441 (14)     | -0.0096 (11)           | 0.0275 (11)     | -0.0031 (11)    |
| C1  | 0.0557 (18) | 0.0389 (16)     | 0.054 (2)       | 0.0056 (14)            | 0.0374 (17)     | 0.0061 (14)     |
| C2  | 0.074 (2)   | 0.0281 (16)     | 0.077 (3)       | 0.0104 (15)            | 0.056 (2)       | 0.0109 (15)     |
| C3  | 0.075 (2)   | 0.0262 (15)     | 0.083 (3)       | -0.0060 (15)           | 0.063 (2)       | -0.0072 (16)    |
| C4  | 0.0507 (17) | 0.0308 (15)     | 0.062 (2)       | -0.0094 (13)           | 0.0457 (17)     | -0.0074 (14)    |
| C5  | 0.0390 (15) | 0.0303 (14)     | 0.0474 (18)     | -0.0039 (12)           | 0.0334 (15)     | -0.0031 (12)    |
| C6  | 0.061 (2)   | 0.0370 (17)     | 0.076 (2)       | -0.0197 (15)           | 0.052 (2)       | -0.0204 (16)    |
| C7  | 0.0485 (18) | 0.057 (2)       | 0.059 (2)       | -0.0200 (16)           | 0.0356 (17)     | -0.0208 (17)    |
| C8  | 0.0352 (15) | 0.0462 (17)     | 0.0482 (18)     | -0.0081 (13)           | 0.0299 (15)     | -0.0077 (14)    |
| C9  | 0.0380 (15) | 0.0339 (15)     | 0.0472 (18)     | -0.0058 (12)           | 0.0336 (15)     | -0.0044 (12)    |
| C10 | 0.0332 (15) | 0.068 (2)       | 0.0407 (18)     | -0.0031 (14)           | 0.0189 (14)     | -0.0040 (15)    |
| C11 | 0.0393 (16) | 0.055 (2)       | 0.0460 (19)     | 0.0062 (14)            | 0.0246 (15)     | 0.0073 (14)     |
| C12 | 0.0449 (16) | 0.0393 (16)     | 0.0453 (19)     | 0.0035 (13)            | 0.0291 (16)     | 0.0007 (13)     |
| C13 | 0.0537 (18) | 0.0454 (17)     | 0.0510 (19)     | -0.0092 (14)           | 0.0358 (16)     | -0.0039 (14)    |
| C14 | 0.0531 (19) | 0.060 (2)       | 0.061 (2)       | -0.0240 (17)           | 0.0367 (18)     | -0.0091 (17)    |
| C15 | 0.0399 (17) | 0.083 (2)       | 0.050 (2)       | -0.0146 (17)           | 0.0292 (16)     | -0.0107 (17)    |
| C16 | 0.0357 (15) | 0.0623 (19)     | 0.0350 (17)     | -0.0046(14)            | 0.0226 (14)     | -0.0050 (14)    |

# supporting information

| C17 | 0.0355 (14) | 0.0444 (16) | 0.0291 (15) | -0.0008 (13) | 0.0203 (13) | -0.0025 (12) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C18 | 0.0373 (15) | 0.0391 (15) | 0.0315 (15) | 0.0014 (12)  | 0.0224 (13) | -0.0012 (12) |
| C19 | 0.0457 (17) | 0.0467 (17) | 0.0358 (17) | 0.0133 (14)  | 0.0271 (15) | 0.0033 (13)  |
| C20 | 0.0507 (19) | 0.064 (2)   | 0.048 (2)   | 0.0203 (16)  | 0.0303 (17) | 0.0051 (16)  |
| C21 | 0.0359 (16) | 0.079 (2)   | 0.0451 (19) | 0.0125 (16)  | 0.0234 (15) | 0.0017 (16)  |
| C22 | 0.065 (2)   | 0.0359 (16) | 0.0473 (19) | 0.0130 (15)  | 0.0358 (17) | 0.0019 (13)  |
| C23 | 0.0609 (19) | 0.0329 (16) | 0.0479 (19) | 0.0004 (14)  | 0.0321 (17) | -0.0024 (13) |
| C24 | 0.0462 (16) | 0.0359 (16) | 0.0477 (19) | -0.0007 (13) | 0.0282 (15) | -0.0019 (13) |
| C25 | 0.0289 (14) | 0.0428 (16) | 0.0396 (17) | -0.0007 (12) | 0.0201 (13) | -0.0018 (14) |
| C26 | 0.0284 (13) | 0.0377 (15) | 0.0392 (16) | 0.0025 (12)  | 0.0196 (13) | 0.0011 (12)  |
| C27 | 0.0313 (14) | 0.0457 (18) | 0.0432 (18) | 0.0026 (12)  | 0.0195 (14) | -0.0016 (13) |
| C28 | 0.0468 (17) | 0.063 (2)   | 0.0461 (19) | -0.0013 (16) | 0.0263 (16) | -0.0140 (16) |
| C29 | 0.065 (2)   | 0.076 (2)   | 0.045 (2)   | -0.0119 (18) | 0.0356 (18) | -0.0035 (18) |
| C30 | 0.085 (2)   | 0.057 (2)   | 0.050 (2)   | -0.0113 (18) | 0.042 (2)   | 0.0047 (17)  |
| C31 | 0.062 (2)   | 0.0495 (19) | 0.0443 (19) | -0.0095 (15) | 0.0333 (17) | -0.0050 (15) |
| C32 | 0.0373 (15) | 0.0504 (19) | 0.0384 (17) | 0.0010 (14)  | 0.0227 (14) | -0.0002 (13) |
| C33 | 0.0311 (14) | 0.0488 (17) | 0.0330 (16) | 0.0065 (12)  | 0.0180 (13) | 0.0033 (12)  |
| C34 | 0.0482 (18) | 0.054 (2)   | 0.0454 (19) | 0.0092 (15)  | 0.0258 (16) | 0.0042 (15)  |
| C35 | 0.0411 (18) | 0.080 (2)   | 0.054 (2)   | 0.0259 (17)  | 0.0260 (16) | 0.0097 (17)  |
| C36 | 0.0330 (16) | 0.097 (3)   | 0.0443 (19) | 0.0055 (17)  | 0.0231 (16) | 0.0017 (17)  |
| C37 | 0.0391 (17) | 0.075 (2)   | 0.0426 (19) | -0.0039 (16) | 0.0251 (15) | 0.0011 (15)  |
| C38 | 0.0367 (15) | 0.0589 (19) | 0.0315 (16) | 0.0004 (14)  | 0.0203 (14) | 0.0005 (13)  |
|     |             |             |             |              |             |              |

## Geometric parameters (Å, °)

| Gd1—O6  | 2.4764 (17) | C8—C10  | 1.389 (4) |
|---------|-------------|---------|-----------|
| Gd1—O2  | 2.4781 (17) | C8—C9   | 1.409 (4) |
| Gd1—O5  | 2.4854 (16) | C10—C11 | 1.360 (4) |
| Gd109   | 2.5039 (17) | C10—H10 | 0.9300    |
| Gd1—N4  | 2.5433 (19) | C11—C12 | 1.384 (4) |
| Gd101   | 2.5673 (16) | C11—H11 | 0.9300    |
| Gd1—N3  | 2.5728 (19) | C12—H12 | 0.9300    |
| Gd1—N1  | 2.5943 (19) | C13—C14 | 1.392 (4) |
| Gd1010  | 2.6022 (17) | C13—H13 | 0.9300    |
| Gd1—N2  | 2.625 (2)   | C14—C15 | 1.359 (4) |
| Gd1—C32 | 2.847 (3)   | C14—H14 | 0.9300    |
| Gd1—C25 | 2.910 (3)   | C15—C16 | 1.401 (4) |
| O1—C25  | 1.270 (3)   | C15—H15 | 0.9300    |
| O2—C25  | 1.271 (3)   | C16—C17 | 1.407 (3) |
| O3—C27  | 1.347 (3)   | C16—C21 | 1.430 (4) |
| O3—H3   | 0.8201      | C17—C18 | 1.438 (3) |
| O4—C31  | 1.355 (3)   | C18—C19 | 1.402 (3) |
| O4—H4   | 0.8201      | C19—C22 | 1.399 (4) |
| O5—C32  | 1.268 (3)   | C19—C20 | 1.428 (4) |
| O6—C32  | 1.275 (3)   | C20—C21 | 1.342 (4) |
| O7—C38  | 1.343 (3)   | C20—H20 | 0.9300    |
| O7—H7   | 0.8199      | C21—H21 | 0.9300    |
| O8—C34  | 1.361 (3)   | C22—C23 | 1.348 (4) |
|         |             |         |           |

# supporting information

| 00 110                  | 0.0001                 | 622 1122                | 0.0200               |
|-------------------------|------------------------|-------------------------|----------------------|
| O8—H8                   | 0.8201                 | C22—H22                 | 0.9300               |
| O9—N5                   | 1.275 (3)              | C23—C24                 | 1.394 (4)            |
| O10—N5                  | 1.252 (3)              | С23—Н23                 | 0.9300               |
| O11—N5                  | 1.220 (3)              | C24—H24                 | 0.9300               |
| N1—C1                   | 1.336 (3)              | C25—C26                 | 1.473 (3)            |
| N1—C5                   | 1 353 (3)              | $C_{26}^{$              | 1406(3)              |
| N2 C12                  | 1.333(3)               | C26 C27                 | 1.400(3)             |
| N2-C12                  | 1.521(3)               | $C_{20} = C_{27}$       | 1.414(3)             |
| N2                      | 1.360 (3)              | $C_2/-C_28$             | 1.380 (4)            |
| N3—C13                  | 1.331 (3)              | C28—C29                 | 1.368 (4)            |
| N3—C17                  | 1.363 (3)              | C28—H28                 | 0.9300               |
| N4—C24                  | 1.331 (3)              | C29—C30                 | 1.365 (4)            |
| N4—C18                  | 1.364 (3)              | С29—Н29                 | 0.9300               |
| C1—C2                   | 1.402 (3)              | C30—C31                 | 1.384 (4)            |
| C1—H1                   | 0.9300                 | C30—H30                 | 0.9300               |
| $C^2$ — $C^3$           | 1349(4)                | $C_{32}$ $C_{33}$       | 1480(3)              |
| C2 H2                   | 0.0300                 | $C_{33}$ $C_{34}$       | 1.405(3)             |
| $C_2 = C_1$             | 1,400,(4)              | $C_{22}$ $C_{28}$       | 1.403(4)             |
| $C_{3}$                 | 1.400 (4)              | C35—C38                 | 1.415 (5)            |
| C3—H3A                  | 0.9300                 | C34—C35                 | 1.385 (4)            |
| C4—C5                   | 1.408 (3)              | C35—C36                 | 1.366 (4)            |
| C4—C6                   | 1.424 (4)              | С35—Н35                 | 0.9300               |
| C5—C9                   | 1.442 (3)              | C36—C37                 | 1.379 (4)            |
| С6—С7                   | 1.338 (4)              | С36—Н36                 | 0.9300               |
| С6—Н6                   | 0.9300                 | C37—C38                 | 1.390 (3)            |
| C7—C8                   | 1.436 (4)              | С37—Н37                 | 0.9300               |
| С7—Н7А                  | 0.9300                 |                         |                      |
|                         | 0.9500                 |                         |                      |
| 06 Cd1 02               | 70 42 (6)              | N1 C5 C0                | 110 2 (2)            |
| 00-001-02               | 79.42 (0)<br>52.50 (C) | NI = C3 = C9            | 110.2(2)             |
| 06-01-05                | 52.59 (6)              | C4—C5—C9                | 119.0 (2)            |
| 02—Gd1—O5               | 74.76 (6)              | C/C6C4                  | 121.4 (3)            |
| O6—Gd1—O9               | 70.53 (6)              | С7—С6—Н6                | 119.3                |
| O2—Gd1—O9               | 143.80 (6)             | С4—С6—Н6                | 119.3                |
| O5—Gd1—O9               | 71.11 (6)              | C6—C7—C8                | 121.4 (3)            |
| O6—Gd1—N4               | 134.90 (6)             | С6—С7—Н7А               | 119.3                |
| O2—Gd1—N4               | 72.04 (6)              | С8—С7—Н7А               | 119.3                |
| Q5—Gd1—N4               | 86.06 (6)              | C10—C8—C9               | 118.0(2)             |
| 09—Gd1—N4               | 116 56 (6)             | C10-C8-C7               | 1233(3)              |
| 06-Gd1-01               | 71 59 (6)              | $C_{9} = C_{8} = C_{7}$ | 123.3(3)<br>118.7(3) |
| $O_2 \subset d_1 = O_1$ | (1.5)(0)               | $C_{2} = C_{2} = C_{1}$ | 110.7(3)             |
|                         | 51.57(5)               | $N_2 = C_9 = C_8$       | 122.0(2)             |
|                         | 108.00 (6)             | N2                      | 118.1 (2)            |
| O9—Gd1—O1               | 130.59 (6)             | C8—C9—C5                | 119.9 (2)            |
| N4—Gd1—O1               | 112.56 (6)             | C11—C10—C8              | 119.8 (3)            |
| O6—Gd1—N3               | 143.09 (6)             | C11—C10—H10             | 120.1                |
| O2—Gd1—N3               | 79.18 (6)              | C8—C10—H10              | 120.1                |
| O5—Gd1—N3               | 144.99 (6)             | C10-C11-C12             | 118.5 (3)            |
| O9—Gd1—N3               | 136.91 (6)             | C10-C11-H11             | 120.7                |
| N4—Gd1—N3               | 63.67 (6)              | C12—C11—H11             | 120.7                |
| O1—Gd1—N3               | 71.53 (6)              | N2—C12—C11              | 124.4 (2)            |
| 06—Gd1—N1               | 79.85 (6)              | N2-C12-H12              | 117.8                |
|                         |                        |                         |                      |

| O2—Gd1—N1                  | 122.79 (6) | C11—C12—H12                       | 117.8       |
|----------------------------|------------|-----------------------------------|-------------|
| O5—Gd1—N1                  | 126.90 (6) | N3—C13—C14                        | 123.1 (3)   |
| O9—Gd1—N1                  | 71.77 (6)  | N3—C13—H13                        | 118.5       |
| N4—Gd1—N1                  | 145.17 (7) | C14—C13—H13                       | 118.5       |
| O1—Gd1—N1                  | 71.33 (6)  | C15—C14—C13                       | 119.3 (3)   |
| N3—Gd1—N1                  | 86.98 (6)  | C15—C14—H14                       | 120.3       |
| O6—Gd1—O10                 | 105.44 (6) | C13—C14—H14                       | 120.3       |
| O2—Gd1—O10                 | 124.86 (6) | C14—C15—C16                       | 120.3 (3)   |
| O5—Gd1—O10                 | 67.48 (6)  | C14—C15—H15                       | 119.8       |
| O9—Gd1—O10                 | 49.75 (6)  | C16—C15—H15                       | 119.8       |
| N4—Gd1—O10                 | 66.82 (6)  | C15—C16—C17                       | 116.6 (3)   |
| O1—Gd1—O10                 | 175.38 (6) | C15—C16—C21                       | 124.0 (3)   |
| N3—Gd1—O10                 | 111.47 (6) | C17—C16—C21                       | 119.4 (3)   |
| N1—Gd1—O10                 | 111.94 (6) | N3—C17—C16                        | 123.3(2)    |
| O6—Gd1—N2                  | 132.26 (6) | N3-C17-C18                        | 117.6 (2)   |
| $\Omega_{2}$ Gd1 $N_{2}$   | 145.49 (6) | $C_{16} - C_{17} - C_{18}$        | 119.0(2)    |
| O5-Gd1-N2                  | 132.37 (6) | N4-C18-C19                        | 122.5(2)    |
| O9-Gd1-N2                  | 70 16 (6)  | N4-C18-C17                        | 1174(2)     |
| N4—Gd1—N2                  | 87.30(6)   | C19 - C18 - C17                   | 120.2(2)    |
| $\Omega_1 - Gd_1 - N_2$    | 118.02 (6) | $C^{22}$ $C^{19}$ $C^{18}$        | 117.6(2)    |
| N3—Gd1—N2                  | 66 79 (6)  | $C^{22}$ $C^{19}$ $C^{20}$        | 123.8(3)    |
| N1 - Gd1 - N2              | 62 87 (7)  | C18 - C19 - C20                   | 1125.0(3)   |
| 010-Gd1-N2                 | 66 59 (6)  | $C_{21}$ $C_{20}$ $C_{19}$        | 121.7(3)    |
| 06-Gd1-C32                 | 26 57 (6)  | C21—C20—H20                       | 119.1       |
| $0^{2}$ -Gd1-C32           | 78 98 (6)  | C19 - C20 - H20                   | 119.1       |
| 05-Gd1-C32                 | 26 43 (6)  | $C_{20}$ $C_{21}$ $C_{16}$        | 120.8(3)    |
| 09 - Gd1 - C32             | 65.09(7)   | $C_{20} = C_{21} = H_{21}$        | 119.6       |
| N4—Gd1—C32                 | 111.92(7)  | $C_{16} - C_{21} - H_{21}$        | 119.6       |
| $\Omega_1 - Gd_1 - C_3^2$  | 92 26 (7)  | $C^{23}$ $C^{22}$ $C^{19}$        | 120.0(2)    |
| $N_3$ —Gd1—C32             | 157.93(7)  | $C_{23} = C_{22} = H_{22}$        | 120.0 (2)   |
| N1-Gd1-C32                 | 102.26(7)  | C19 - C22 - H22                   | 120.0       |
| 010-Gd1-C32                | 83 90 (7)  | $C^{22}$ $C^{23}$ $C^{24}$        | 1190(3)     |
| $N_{2}$ -Gd1-C32           | 13525(7)   | $C^{22}$ $C^{23}$ H <sup>23</sup> | 120.5       |
| $\Omega_{6}$ Gd1 $-C^{25}$ | 73 40 (6)  | $C^{24}$ $C^{23}$ H <sup>23</sup> | 120.5       |
| $\Omega_{2}^{2}$ -Gd1-C25  | 25.73 (6)  | N4—C24—C23                        | 123.6(3)    |
| 05-Gd1-C25                 | 91.04 (6)  | N4—C24—H24                        | 118.2       |
| 09 - Gd1 - C25             | 143 56 (7) | $C^{23}$ $C^{24}$ $H^{24}$        | 118.2       |
| N4—Gd1—C25                 | 92.66(7)   | $01 - C^{25} - 0^{2}$             | 119.6(2)    |
| O1-Gd1-C25                 | 25.85 (6)  | 01 - C25 - C26                    | 120.8(2)    |
| N3—Gd1—C25                 | 74.25 (6)  | 02 - C25 - C26                    | 119.5 (2)   |
| N1—Gd1—C25                 | 97.09 (7)  | O1-C25-Gd1                        | 61.84(13)   |
| 010-Gd1-C25                | 150.44 (7) | O2-C25-Gd1                        | 57.80 (13)  |
| N2—Gd1—C25                 | 136.38 (6) | C26—C25—Gd1                       | 176.71 (18) |
| C32—Gd1—C25                | 84.65 (7)  | C31—C26—C27                       | 117.2 (2)   |
| C25—O1—Gd1                 | 92.31 (15) | C31—C26—C25                       | 121.4 (2)   |
| C25—O2—Gd1                 | 96.46 (15) | C27—C26—C25                       | 121.4 (2)   |
| С27—О3—Н3                  | 109.5      | O3—C27—C28                        | 117.7 (2)   |
| C31—O4—H4                  | 109.5      | O3—C27—C26                        | 121.5 (2)   |
|                            |            |                                   | × /         |

| C32—O5—Gd1 | 92.88 (15)  | C28—C27—C26 | 120.8 (3)   |
|------------|-------------|-------------|-------------|
| C32—O6—Gd1 | 93.12 (15)  | C29—C28—C27 | 119.5 (3)   |
| С38—О7—Н7  | 109.5       | С29—С28—Н28 | 120.2       |
| С34—О8—Н8  | 109.5       | С27—С28—Н28 | 120.2       |
| N5—O9—Gd1  | 98.88 (13)  | C30—C29—C28 | 121.9 (3)   |
| N5         | 94.79 (14)  | С30—С29—Н29 | 119.0       |
| C1—N1—C5   | 117.8 (2)   | С28—С29—Н29 | 119.0       |
| C1—N1—Gd1  | 121.05 (18) | C29—C30—C31 | 119.3 (3)   |
| C5—N1—Gd1  | 120.81 (15) | С29—С30—Н30 | 120.3       |
| C12—N2—C9  | 117.3 (2)   | С31—С30—Н30 | 120.3       |
| C12—N2—Gd1 | 123.06 (17) | O4—C31—C30  | 117.9 (3)   |
| C9—N2—Gd1  | 119.48 (16) | O4—C31—C26  | 121.0 (2)   |
| C13—N3—C17 | 117.4 (2)   | C30—C31—C26 | 121.1 (3)   |
| C13—N3—Gd1 | 122.94 (17) | O5—C32—O6   | 119.6 (2)   |
| C17—N3—Gd1 | 118.78 (15) | O5—C32—C33  | 120.5 (2)   |
| C24—N4—C18 | 117.2 (2)   | O6—C32—C33  | 119.9 (2)   |
| C24—N4—Gd1 | 122.31 (16) | O5—C32—Gd1  | 60.70 (13)  |
| C18—N4—Gd1 | 120.37 (15) | O6—C32—Gd1  | 60.30 (13)  |
| O11—N5—O10 | 123.2 (3)   | C33—C32—Gd1 | 166.12 (18) |
| O11—N5—O9  | 120.3 (2)   | C34—C33—C38 | 118.3 (2)   |
| O10—N5—O9  | 116.6 (2)   | C34—C33—C32 | 121.3 (2)   |
| O11—N5—Gd1 | 175.9 (2)   | C38—C33—C32 | 120.4 (2)   |
| O10—N5—Gd1 | 60.47 (12)  | O8—C34—C35  | 117.9 (3)   |
| O9—N5—Gd1  | 56.11 (11)  | O8—C34—C33  | 120.9 (2)   |
| N1—C1—C2   | 122.6 (3)   | C35—C34—C33 | 121.1 (3)   |
| N1—C1—H1   | 118.7       | C36—C35—C34 | 118.5 (3)   |
| C2—C1—H1   | 118.7       | С36—С35—Н35 | 120.7       |
| C3—C2—C1   | 119.6 (3)   | С34—С35—Н35 | 120.7       |
| С3—С2—Н2   | 120.2       | C35—C36—C37 | 123.1 (3)   |
| C1—C2—H2   | 120.2       | С35—С36—Н36 | 118.5       |
| C2—C3—C4   | 119.9 (3)   | С37—С36—Н36 | 118.5       |
| С2—С3—НЗА  | 120.0       | C36—C37—C38 | 118.7 (3)   |
| С4—С3—НЗА  | 120.0       | С36—С37—Н37 | 120.7       |
| C3—C4—C5   | 117.4 (3)   | С38—С37—Н37 | 120.7       |
| C3—C4—C6   | 123.0 (3)   | O7—C38—C37  | 117.1 (2)   |
| C5—C4—C6   | 119.6 (3)   | O7—C38—C33  | 122.6 (2)   |
| N1—C5—C4   | 122.8 (2)   | C37—C38—C33 | 120.3 (3)   |
|            |             |             |             |

## Hydrogen-bond geometry (Å, °)

| Н…А        | <i>D</i> —H | H…A  | D···A     | D—H···A |
|------------|-------------|------|-----------|---------|
| 07—H7···O5 | 0.82        | 1.87 | 2.592 (2) | 147     |
| O8—H8…O6   | 0.82        | 1.83 | 2.563 (3) | 148     |
| O4—H4…O1   | 0.82        | 1.86 | 2.585 (3) | 147     |
| O3—H3…O2   | 0.82        | 1.84 | 2.574 (3) | 148     |