organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 3,6-di-O-benzyl-2-deoxy-Nphthalimido-1-thio- β -D-glucopyranoside

Christoffer Hamark,^a Jens Landström,^a Lars Eriksson^b* and Göran Widmalm^a

^aDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and ^bDepartment of Environmental and Material Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

Correspondence e-mail: lars.eriksson@mmk.su.se

Received 10 October 2010; accepted 13 November 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.067; data-to-parameter ratio = 14.6.

In the title compound, $C_{30}H_{31}NO_6S$, the plane of the *N*-phthalimido group is nearly orthogonal to the least-squares plane of the sugar ring (defined by atoms C2, C3, C5 and O5 using standard glucose nomenclature), making a dihedral angle of 72.8 (1)°. The thioethyl group has the *exo*-anomeric conformation. The hydroxy group forms an intermolecular hydrogen bond to the O atom in the sugar ring, generating [100] chains. There are four close π - π contacts with centroid–centroid distances less than 4.0 Å, all with dihedral angles between the interacting π systems of only $\simeq 8^\circ$, supporting energetically favourable stacking interactions.

Related literature

The title thioglycoside is a valuable intermediate in synthesis of oligosaccharides containing *N*-acetyl-D-glucosamine residues, see: Söderman *et al.* (2002). For the *exo*-anomeric effect, see: Thøgersen *et al.* (1982). For total puckering amplitudes for previously described pyranosides, see: Färnbäck *et al.* (2007). For the synthesis, see: Macindoe *et al.* (1995).

Experimental

Crystal data $C_{30}H_{31}NO_6S$ $M_r = 533.62$ Orthorhombic, $P2_12_12_1$ a = 8.5313 (1) Å

b = 14.7728 (2) Å c = 21.1940 (4) Å $V = 2671.11 (7) \text{ Å}^3$ Z = 4

Mo Kα radiation
$\mu = 0.17 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Xcalibur II with
Sapphire-3 CCD diffractometer1Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2006)
 $T_{min} = 0.96, T_{max} = 0.98$ 1

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.067$ S = 0.955059 reflections 346 parameters H-atom parameters constrained $\begin{array}{l} T=100 \ \mathrm{K} \\ 0.25 \ \times \ 0.10 \ \times \ 0.05 \ \mathrm{mm} \end{array}$

17362 measured reflections 5059 independent reflections 4023 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.054$

 $\begin{array}{l} \Delta \rho_{max} = 0.49 \mbox{ e } \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.27 \mbox{ e } \mathring{A}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 2173 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } 0.01 \mbox{ (7)} \end{array}$

Table 1 Selected geometric parameters (Å, °).

-			
S1-C1	1.796 (2)	C7-S1	1.819 (2)
C1-S1-C7	99.10 (11)		
C7-S1-C1-H1 C7-S1-C1-O5	47.4 -72.06 (17)	05-C5-C6-O6	63.3 (2)

Table 2

Hydrogen-bond	geometry	(Å, °).
---------------	----------	-------	----

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H4A\cdots O5^{i}$	0.84	1.99	2.817 (2)	168
Symmetry code: (i) x	$-\frac{1}{2}, -v + \frac{3}{2}, -z$	+ 2.		

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *PLATON* (Spek, 2009).

This work was supported by a grant from the Swedish Research Council and by the Faculty of Natural Sciences at Stockholm University

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2066).

References

- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Färnbäck, M., Söderman, P., Eriksson, L. & Widmalm, G. (2007). *Acta Cryst.* **E63**, 01581–01583.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Macindoe, W. A., Nakahara, Y. & Ogawa, T. (1995). Carbohydr. Res. 271, 207–216.
- Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Söderman, P., Larsson, E. A. & Widmalm, G. (2002). Eur. J. Org. Chem. 10, 1614–1618.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Thøgersen, H., Lemieux, R. U., Bock, K. & Meyer, B. (1982). Can. J. Chem. 60, 44–57.

supporting information

Acta Cryst. (2010). E66, o3250–o3251 [https://doi.org/10.1107/S1600536810047069] Ethyl 3,6-di-O-benzyl-2-deoxy-N-phthalimido-1-thio-β-D-glucopyranoside Christoffer Hamark, Jens Landström, Lars Eriksson and Göran Widmalm

S1. Comment

The title thioglycoside is a valuable intermediate in synthesis of oligosaccharides containing *N*-acetyl-D-glucosamine residues (Söderman *et al.* 2002). In the structure the least square plane of the N-phthaloyl group makes a dihedral angle of 72.8 (1)° to the sugar ring plane defined by the four atoms (C2,C3,C5,O5). The conformation of the glycosidic torsion angle φ (H1—C1—S1—C7) is govered by the *exo*-anomeric effect (Thøgersen *et al.*, 1982) and also for this thioglucoside the torsion angles of 47.4° is typical of what is observed for glucosides with an oxygen atom at the glycosidic linkage. The Cremer-Pople parameters for the sugar ring (O5 \rightarrow C5) are: Q=0.582 (2) Å, θ =12.5 (2)° and φ =310 (1)°. The Q-value is similar to total puckering amplitudes for previously described pyranosides (Färnbäck *et al.*, 2007).

The hydroxy group present in the title compound forms an intermolecular hydrogen bond with O5 in a neighbouring molecule, making up chains along the [100] direction. Besides this conventional hydrogen bond the intermolecular packing is stabilized by interactions between substituents of the sugar rings. There are four close π - π contacts with d(*Cg* --*Cg*) < 4.0 Å, all with dihedral angles between the interacting π systems of only $\approx 8^{\circ}$ supporting energetically favourable stacking interactions.

S2. Experimental

The title compound (Macindoe *et al.*, 1995) was obtained from ethyl 4,6-*O*-benzylidene-2-deoxy-*N*-phtalimido-1-thio- β -D–glucopyranoside by bensylation of O3 and subsequent reductive opening of the 4,6-*O*-benzylidene group using NaCNBH₃ and HCl(g) in tetrahydrofuran to give the 3,6-di-*O*-benzyl derivative. The title compound was crystallized from diethyl ether/pentane at ambient temperature to give colorless crystals.

S3. Refinement

The hydrogen atoms were positioned in calculated positions and refined in riding mode with C-H = 0.95-1.00 Å, O-H = 0.84 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C,O)$ for methyl and hydroxy H atoms. The hydroxy H atom initial position was determined with a tetrahedral C—O—H angle and location such that it forms a favourable hydrogen bond to another oxygen atom. Finally the hydroxy H atoms were allowed to rotate about the C—O bond. The Flack parameter was determined to be 0.01 (7) from 2173 Friedel pairs.

Molecular structure showing 50% probability displacement ellipsoids.

Ethyl 3,6-di-O-benzyl-2-deoxy-N-(1,3-dioxo-2,3-dihydro- 1H-isoindol-2-yl)-1-thio-β-D-glucopyranoside

Crystal data

$C_{30}H_{31}NO_{6}S$ $M_{r} = 533.62$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 8.5313 (1) Å b = 14.7728 (2) Å c = 21.1940 (4) Å $V = 2671.11 (7) \text{ Å}^{3}$ Z = 4	F(000) = 1128 $D_x = 1.327 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6086 reflections $\theta = 3.7-32.3^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 100 K Prism, colourless $0.25 \times 0.10 \times 0.05 \text{ mm}$
	0.23 × 0.10 × 0.03 mm
Data collection	
Oxford Diffraction Xcalibur II with Sapphire-3 CCD diffractometer	$T_{\min} = 0.96, T_{\max} = 0.98$ 17362 measured reflections 5059 independent reflections
Radiation source: Enhance (Mo) X-ray Source	4023 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.054$
Detector resolution: 16.5467 pixels mm ⁻¹	$\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$
ω scans at differnt φ	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -13 \rightarrow 18$
(CrysAlis RED; Oxford Diffraction, 2006)	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.067$	$w = 1/[\sigma^2(F_o^2) + (0.0261P)^2]$
S = 0.95	where $P = (F_o^2 + 2F_c^2)/3$
5059 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
346 parameters	$\Delta ho_{ m max} = 0.49 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.27 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0028 (4)
map	Absolute structure: Flack (1983), 2173 Friedel pairs
	A haplute structure respected $0.01(7)$

Absolute structure parameter: 0.01 (7)

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.2. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.32681 (7)	0.66068 (4)	0.88067 (3)	0.01942 (15)	
C7	0.3666 (3)	0.73807 (17)	0.81586 (11)	0.0255 (6)	
H7A	0.3252	0.7127	0.7760	0.031*	
H7B	0.3142	0.7968	0.8237	0.031*	
C8	0.5419 (3)	0.75202 (18)	0.81042 (12)	0.0301 (6)	
H8A	0.5822	0.7771	0.8500	0.045*	
H8B	0.5639	0.7941	0.7758	0.045*	
H8C	0.5929	0.6939	0.8019	0.045*	
C1	0.1170 (2)	0.66968 (15)	0.88275 (11)	0.0156 (5)	
H1	0.0741	0.6638	0.8390	0.019*	
C2	0.0500 (3)	0.59407 (14)	0.92453 (10)	0.0149 (5)	
H2	0.1098	0.5946	0.9651	0.018*	
C3	-0.1227 (3)	0.60855 (14)	0.94058 (11)	0.0147 (5)	
H3	-0.1889	0.5930	0.9032	0.018*	
C4	-0.1537 (3)	0.70604 (14)	0.96039 (11)	0.0150 (5)	
H4	-0.1002	0.7184	1.0015	0.018*	
C5	-0.0901 (3)	0.76978 (15)	0.91011 (11)	0.0153 (5)	
H5	-0.1369	0.7540	0.8683	0.018*	
05	0.07730 (18)	0.75651 (10)	0.90779 (7)	0.0171 (4)	
C6	-0.1223 (3)	0.86722 (14)	0.92464 (11)	0.0195 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H6A	-0.2366	0.8767	0.9293	0.023*
H6B	-0.0711	0.8841	0.9649	0.023*
N2	0.0742 (2)	0.50558 (12)	0.89529 (8)	0.0144 (4)
C21	0.1697 (3)	0.43819 (15)	0.92183 (11)	0.0206 (6)
O22	0.2428 (2)	0.44655 (11)	0.97041 (8)	0.0297 (4)
C23	0.1603 (3)	0.36067 (14)	0.87817 (12)	0.0203 (5)
C24	0.2295 (3)	0.27621 (16)	0.88227 (12)	0.0295 (6)
H24	0.2966	0.2608	0.9164	0.035*
C25	0.1966 (3)	0.21488 (16)	0.83440 (12)	0.0315 (7)
H25	0.2401	0.1558	0.8364	0.038*
C26	0.1023(3)	0 23773 (16)	0 78409 (12)	0.0265 (6)
H26	0.0831	0.1944	0.7519	0.032*
C27	0.0348(3)	0.32341(15)	0.77964(11)	0.0211 (6)
027 Н27	-0.0290	0.3399	0.7447	0.0211(0)
C28	0.0649 (3)	0.38319(15)	0.82828(11)	0.025
C20	0.0047(3)	0.30319(15) 0.47748(15)	0.82788(11)	0.0103(5)
030	-0.07326(10)	0.47748(13) 0.52424(10)	0.85788(11) 0.80436(7)	0.0132(3)
030	-0.15048(19)	0.52424(10) 0.54006(10)	0.80430(7)	0.0210(4)
C21	-0.13946(18)	0.34900(10) 0.50212(15)	0.99189(7)	0.0198(4)
	-0.3003(3)	0.50215 (15)	0.98030 (11)	0.0225 (0)
HJIA	-0.3821	0.5411	0.9637	0.027*
ПЭТВ	-0.3487	0.4905	1.0291	0.027*
C32	-0.2895 (3)	0.41349 (15)	0.95149 (11)	0.0223 (6)
033	-0.1825 (3)	0.3498/(1/)	0.97248 (13)	0.0380(/)
H33	-0.1169	0.3628	1.0076	0.046*
C34	-0.1718 (4)	0.26677 (19)	0.94180 (16)	0.0544 (10)
H34	-0.1010	0.2221	0.9569	0.065*
C35	-0.2628 (4)	0.2490 (2)	0.88986 (18)	0.0575 (10)
H35	-0.2541	0.1925	0.8687	0.069*
C36	-0.3653 (4)	0.3123 (2)	0.86889 (16)	0.0570 (10)
H36	-0.4277	0.3003	0.8327	0.068*
C37	-0.3799 (3)	0.3945 (2)	0.89988 (13)	0.0406 (8)
H37	-0.4532	0.4381	0.8851	0.049*
04	-0.31735 (17)	0.71949 (11)	0.96734 (7)	0.0214 (4)
H4A	-0.3403	0.7205	1.0059	0.032*
06	-0.06402 (19)	0.92258 (10)	0.87509 (8)	0.0278 (4)
C61	-0.1367 (3)	1.01026 (15)	0.87450 (13)	0.0273 (6)
H61A	-0.0701	1.0527	0.8503	0.033*
H61B	-0.1443	1.0332	0.9183	0.033*
C62	-0.2970 (3)	1.00801 (15)	0.84587 (11)	0.0215 (6)
C63	-0.4318 (3)	0.99598 (14)	0.88219 (12)	0.0211 (5)
H63	-0.4234	0.9938	0.9269	0.025*
C64	-0.5772 (3)	0.98725 (15)	0.85426 (12)	0.0274 (6)
H64	-0.6670	0.9767	0.8797	0.033*
C65	-0.5930 (3)	0.99374 (16)	0.78969 (12)	0.0301 (7)
H65	-0.6932	0.9880	0.7705	0.036*
C66	-0.4620 (4)	1.00867 (17)	0.75332 (13)	0.0368 (7)
H66	-0.4723	1.0143	0.7089	0.044*
C67	-0.3158 (3)	1.01558 (15)	0.78078 (12)	0.0305 (7)
			······································	

supporting information

H67	-0.2266	1	.0257	0.7549	0.037*	
Atomic displacement parameters (\mathring{A}^2)						
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0140 (3)	0.0220 (3)	0.0222 (3)	0.0024 (3)	0.0021 (3)	0.0003 (3)
C7	0.0210 (16)	0.0300 (15)	0.0256 (15)	-0.0020 (12)	0.0010 (11)	0.0062 (12)
C8	0.0232 (16)	0.0318 (15)	0.0353 (17)	-0.0039 (13)	0.0063 (12)	0.0013 (13)
C1	0.0131 (12)	0.0157 (12)	0.0180 (13)	0.0045 (10)	-0.0022 (10)	-0.0044 (11)
C2	0.0171 (13)	0.0156 (13)	0.0118 (13)	0.0027 (11)	-0.0043 (10)	-0.0024 (10)
C3	0.0166 (14)	0.0183 (13)	0.0091 (13)	-0.0013 (10)	-0.0003 (10)	-0.0001 (10)
C4	0.0081 (13)	0.0219 (13)	0.0148 (13)	0.0027 (11)	-0.0007 (10)	-0.0028 (10)
C5	0.0132 (14)	0.0177 (13)	0.0151 (13)	0.0018 (10)	-0.0007 (10)	-0.0032 (10)
O5	0.0155 (9)	0.0154 (9)	0.0203 (9)	0.0016 (7)	0.0001 (7)	-0.0039 (7)
C6	0.0176 (14)	0.0193 (14)	0.0217 (14)	0.0040 (11)	0.0015 (11)	0.0014 (11)
N2	0.0189 (11)	0.0129 (10)	0.0114 (10)	0.0031 (9)	-0.0011 (8)	-0.0028 (8)
C21	0.0265 (15)	0.0184 (13)	0.0168 (14)	0.0034 (13)	0.0000 (12)	0.0002 (11)
O22	0.0424 (12)	0.0276 (10)	0.0190 (10)	0.0120 (9)	-0.0102 (9)	-0.0042 (8)
C23	0.0293 (14)	0.0155 (13)	0.0162 (13)	0.0038 (11)	0.0019 (12)	-0.0029 (11)
C24	0.0447 (17)	0.0248 (14)	0.0190 (14)	0.0126 (13)	-0.0043 (14)	-0.0001 (13)
C25	0.0480 (19)	0.0146 (13)	0.0319 (16)	0.0104 (13)	0.0022 (14)	-0.0001 (12)
C26	0.0360 (17)	0.0201 (15)	0.0236 (15)	-0.0035 (13)	0.0041 (13)	-0.0070 (12)
C27	0.0261 (15)	0.0193 (14)	0.0180 (14)	-0.0025 (12)	0.0007 (11)	-0.0021 (11)
C28	0.0211 (14)	0.0149 (13)	0.0135 (13)	0.0005 (11)	0.0049 (11)	0.0012 (10)
C29	0.0139 (13)	0.0159 (13)	0.0159 (13)	-0.0005 (10)	0.0036 (11)	0.0008 (11)
O30	0.0234 (10)	0.0190 (9)	0.0205 (10)	0.0025 (8)	-0.0060 (8)	-0.0023 (7)
O3	0.0218 (9)	0.0205 (9)	0.0172 (9)	-0.0045 (8)	0.0014 (7)	0.0037 (7)
C31	0.0197 (14)	0.0204 (13)	0.0269 (14)	-0.0048 (12)	0.0062 (11)	0.0018 (11)
C32	0.0269 (16)	0.0179 (13)	0.0221 (14)	-0.0060 (12)	0.0077 (12)	0.0028 (11)
C33	0.056 (2)	0.0241 (16)	0.0342 (17)	-0.0014 (15)	0.0080 (15)	0.0051 (13)
C34	0.083 (3)	0.0226 (17)	0.057 (2)	0.0080 (18)	0.032 (2)	0.0126 (16)
C35	0.075 (3)	0.0244 (17)	0.073 (3)	-0.0148 (17)	0.031 (2)	-0.0201 (19)
C36	0.057 (2)	0.064 (2)	0.051 (2)	-0.0161 (19)	-0.0022 (18)	-0.0312 (19)
C37	0.0401 (19)	0.0418 (18)	0.0397 (19)	-0.0019 (14)	-0.0013 (15)	-0.0122 (14)
O4	0.0150 (9)	0.0266 (9)	0.0225 (9)	0.0008 (8)	0.0042 (8)	-0.0009 (8)
O6	0.0289 (10)	0.0167 (9)	0.0377 (11)	0.0066 (8)	0.0098 (9)	0.0046 (8)
C61	0.0272 (16)	0.0168 (14)	0.0378 (17)	0.0014 (11)	0.0061 (13)	0.0024 (12)
C62	0.0341 (16)	0.0085 (12)	0.0221 (14)	0.0057 (12)	0.0075 (12)	-0.0010 (10)
C63	0.0266 (15)	0.0178 (13)	0.0189 (13)	0.0078 (12)	0.0016 (13)	0.0005 (12)
C64	0.0289 (16)	0.0210 (15)	0.0325 (16)	0.0097 (13)	0.0042 (13)	0.0024 (12)
C65	0.0388 (18)	0.0205 (14)	0.0311 (16)	0.0077 (14)	-0.0114 (14)	-0.0002 (13)
C66	0.066 (2)	0.0267 (16)	0.0182 (15)	0.0091 (16)	-0.0061 (15)	-0.0012 (12)
C67	0.0456 (19)	0.0170 (14)	0.0289 (16)	0.0037 (14)	0.0160 (14)	0.0012 (12)

Geometric parameters (Å, °)

<u>S1—C1</u>	1.796 (2)	С26—Н26	0.9500
S1—C7	1.819 (2)	C27—C28	1.381 (3)

supporting information

C7—C8	1.513 (3)	C27—H27	0.9500
C7—H7A	0.9900	C28—C29	1.487 (3)
C7—H7B	0.9900	C29—O30	1.213 (3)
C8—H8A	0.9800	O3—C31	1.436 (3)
C8—H8B	0.9800	C31—C32	1.510 (3)
C8—H8C	0.9800	C31—H31A	0.9900
C1—O5	1.429 (2)	C31—H31B	0.9900
C1—C2	1.536 (3)	C32—C37	1.367 (4)
С1—Н1	1.0000	C32—C33	1.383 (3)
C2—N2	1.462 (3)	C33—C34	1.392 (4)
$C^2 - C^3$	1 526 (3)	C33—H33	0.9500
С2—Н2	1 0000	C34-C35	1 373 (5)
$C_3 = O_3$	1 433 (3)	C34—H34	0.9500
C_{3} C_{4}	1.523 (3)	C35-C36	1 356 (4)
С3—Н3	1 0000	C35—H35	0.9500
C4-O4	1.0000	$C_{36} - C_{37}$	1 386 (4)
C4-C5	1.117(2) 1.522(3)	C36—H36	0.9500
C4—H4	1.0000	C37H37	0.9500
C_{5}	1.0000	O4 - H4A	0.9500
C5-C6	1.442(5)	06-C61	1436(3)
C5-H5	1.498 (5)	C61-C62	1.496(3)
C606	1.0000	C61—H61A	0.9900
С6—Н6А	0.9900	C61—H61B	0.9900
C6—H6B	0.9900	C62-C67	1 393 (3)
N2-C29	1.402(3)	C62 - C63	1 395 (3)
$N_2 - C_2$	1.402(3)	C63 - C64	1.393(3) 1 381(3)
$C_{21} = 0_{22}$	1.404(3)	C63—H63	0.9500
$C_{21} - C_{23}$	1.210(3) 1.474(3)	C64C65	1 378 (3)
C_{23} C_{23} C_{28}	1.474(3) 1 376(3)	C64—H64	0.9500
C_{23} C_{24}	1.370(3)	C65-C66	1.376(4)
$C_{23} C_{24} C_{25}$	1.389(3)	C65—H65	0.9500
C24 C25	0.9500	C65—C67	1.380(4)
$C_{24} = 1124$ $C_{25} = C_{26}$	1.377(3)	С66—Н66	0.9500
C25 H25	0.9500	C67 H67	0.9500
C_{23} C_{25} C_{27}	1.304(3)	00/	0.9500
0.20-0.27	1.594 (5)		
$C1_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1$	99 10 (11)	C24_C25_H25	119.2
C1 = -C1 = -C7	100 13 (17)	$C_{24} = C_{25} = 1125$	119.2 121 1 (2)
C8-C7-H7A	109.15 (17)	C25-C26-H26	121.1 (2)
S1 C7 H7A	109.9	$C_{23} - C_{20} - H_{20}$	119.5
$C_{\rm R} = C_{\rm T} = H_{\rm T} R$	109.9	C_{2}^{2} C_{2}^{2} C_{2}^{2} C_{2}^{2}	119.3 117.0(2)
$S_1 = C_7 = H_7B$	109.9	$C_{28} = C_{27} = C_{20}$	117.0 (2)
$H7\Delta (7 H7P)$	109.9	$C_{20} = C_{27} = H_{27}$	121.3
$\Gamma_{1} = 0$ $\Gamma_{1} = 0$ $\Gamma_{1} = 0$ $\Gamma_{2} = 0$ Γ_{2	100.5	C_{20} C_{27} C_{28} C_{27}	121.3 121.0(2)
C7_C8_ H8R	109.5	C_{23} C_{26} C_{27} C_{20}	121.7(2) 108.2(2)
	109.5	C_{23} C_{20} C_{29} C_{27} C_{28} C_{29}	100.2(2) 1200(2)
C7 C8 H8C	109.5	$O_2 = O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	123.3(2) 124.7(2)
	109.5	030-029-028	127.7(2) 1207(2)
1101 00 1100	107.5	030-029-020	$1 \Delta \mathcal{I} , I (\Delta)$

H8B—C8—H8C	109.5	N2—C29—C28	105.5 (2)
O5—C1—C2	110.52 (17)	C3—O3—C31	115.16 (17)
O5—C1—S1	108.16 (14)	O3—C31—C32	112.04 (18)
C2—C1—S1	109.35 (15)	O3—C31—H31A	109.2
O5—C1—H1	109.6	C32—C31—H31A	109.2
C2—C1—H1	109.6	O3—C31—H31B	109.2
S1—C1—H1	109.6	C32—C31—H31B	109.2
N2—C2—C3	110.89 (18)	H31A—C31—H31B	107.9
N2—C2—C1	110.68 (18)	C37—C32—C33	119.4 (2)
C3—C2—C1	112.68 (17)	C37—C32—C31	121.0 (2)
N2—C2—H2	107.4	C33—C32—C31	119.6 (2)
C3—C2—H2	107.4	C_{32} C_{33} C_{34}	119.5 (3)
C1-C2-H2	107.4	C32—C33—H33	120.3
03-C3-C4	109 41 (17)	C34—C33—H33	120.3
03-C3-C2	107 13 (17)	C_{35} C_{34} C_{33}	120.2 120.4(3)
C4-C3-C2	111 22 (18)	C35—C34—H34	119.8
03—C3—H3	109.7	C33—C34—H34	119.8
C4-C3-H3	109.7	C_{36} C_{35} C_{34}	119.7 (3)
$C^2 - C^3 - H^3$	109.7	$C_{36} = C_{35} = H_{35}$	120.1
04 - C4 - C5	109.7	C_{34} C_{35} H_{35}	120.1
04 - C4 - C3	109.43 (18)	C_{35} C_{36} C_{37}	120.1 120.5(3)
C_{5} C_{4} C_{3}	109.15(10) 109.25(17)	$C_{35} = C_{36} = H_{36}$	119.8
O4-C4-H4	109.25 (17)	C_{37} $-C_{36}$ H_{36}	119.8
$C_5 - C_4 - H_4$	109.5	$C_{32} - C_{37} - C_{36}$	120.5(3)
$C_3 - C_4 - H_4$	109.5	$C_{32} = C_{37} = H_{37}$	119.7
05	108.63 (19)	$C_{32} = C_{37} = H_{37}$	119.7
05 - C5 - C4	107.04(18)	C4 - O4 - H4A	109.5
C6-C5-C4	112 65 (18)	C_{6}	111.98 (18)
05-C5-H5	109 5	06-C61-C62	112 21 (19)
C6-C5-H5	109.5	06-C61-H61A	109.2
C4-C5-H5	109.5	$C62 - C61 - H61 \Delta$	109.2
$C_1 C_5 C_5$	111.66 (16)	$O_{6} C_{61} H_{61B}$	109.2
06 06 05	100.60 (18)	C62 $C61$ $H61B$	109.2
06 - C6 + 64	109.09 (18)	$H_{61A} = C_{61} = H_{61B}$	107.2
C_{5} C_{6} H_{6A}	109.7	C67 $C62$ $C63$	107.9 117.5(2)
06 C6 H6B	109.7	C67 C62 C61	117.3(2) 1204(2)
C5 C6 H6B	109.7	C63 - C62 - C61	120.4(2) 122.2(2)
HeA C6 H6B	109.7	C64 C63 C62	122.2(2) 121.1(2)
C_{29} N2 C_{21}	111 67 (18)	C64 - C63 - C62	119.5
$C_{29} = N_2 = C_{21}$	125 19 (18)	C62 - C63 - H63	119.5
C_{2} N_{2} C_{2}	123.17(18)	C65 C64 C63	119.5 120.5(3)
022 - 021 - 022	123.14(10) 124.6(2)	C65 - C64 - H64	110.8
022 - 021 - 023	124.0(2) 129.9(2)	C63 - C64 - H64	119.8
$N_2 - C_2 $	129.9(2) 105 5 (2)	C65 - C65 - C64	119.2 (3)
C_{28} C_{23} C_{24}	103.3(2) 121.3(2)	C66—C65—H65	120.4
$C_{20} = C_{23} = C_{24}$	121.3(2) 109.05(19)	C64—C65—H65	120.4
C_{24} C_{23} C_{21}	129.7 (2)	C_{65} C_{66} C_{67}	120.7 120.7(2)
C_{23} C_{24} C_{25} C_{21}	1172(2)	C65—C66—H66	119 7
023 - 027 - 023	11/14 (4)		11/1/

C23—C24—H24	121.4	С67—С66—Н66	119.7
C25—C24—H24	121.4	C66—C67—C62	121.1 (2)
C26—C25—C24	121.6 (2)	С66—С67—Н67	119.5
C26—C25—H25	119.2	С62—С67—Н67	119.5
C7—S1—C1—H1	47.4	C24—C25—C26—C27	-0.6 (4)
C1—S1—C7—C8	172.39 (18)	C25—C26—C27—C28	-1.0 (4)
C7—S1—C1—O5	-72.06 (17)	C24—C23—C28—C27	-0.8 (4)
C7—S1—C1—C2	167.52 (16)	C21—C23—C28—C27	179.8 (2)
O5—C1—C2—N2	173.35 (17)	C24—C23—C28—C29	179.6 (2)
S1—C1—C2—N2	-67.7 (2)	C21—C23—C28—C29	0.2 (3)
O5—C1—C2—C3	48.5 (2)	C26—C27—C28—C23	1.7 (4)
S1—C1—C2—C3	167.49 (15)	C26—C27—C28—C29	-178.8 (2)
N2-C2-C3-O3	70.3 (2)	C21—N2—C29—O30	-177.1 (2)
C1—C2—C3—O3	-164.98 (17)	C2—N2—C29—O30	2.2 (3)
N2-C2-C3-C4	-170.16 (17)	C21—N2—C29—C28	1.4 (2)
C1—C2—C3—C4	-45.5 (2)	C2—N2—C29—C28	-179.31 (19)
O3—C3—C4—O4	-69.0 (2)	C23—C28—C29—O30	177.4 (2)
C2—C3—C4—O4	172.88 (17)	C27—C28—C29—O30	-2.1 (4)
O3—C3—C4—C5	170.90 (17)	C23—C28—C29—N2	-1.0(2)
C2—C3—C4—C5	52.7 (2)	C27—C28—C29—N2	179.5 (2)
O4—C4—C5—O5	176.83 (17)	C4—C3—O3—C31	102.6 (2)
C3—C4—C5—O5	-63.2 (2)	C2—C3—O3—C31	-136.77 (18)
O4—C4—C5—C6	57.5 (2)	C3—O3—C31—C32	88.6 (2)
C3—C4—C5—C6	177.45 (19)	O3—C31—C32—C37	-125.6 (3)
C2-C1-O5-C5	-61.2 (2)	O3—C31—C32—C33	55.3 (3)
S1—C1—O5—C5	179.08 (15)	C37—C32—C33—C34	-1.8 (4)
C6-C5-O5-C1	-169.14 (17)	C31—C32—C33—C34	177.4 (2)
C4—C5—O5—C1	69.0 (2)	C32—C33—C34—C35	2.1 (4)
O5—C5—C6—O6	63.3 (2)	C33—C34—C35—C36	-0.9 (5)
C4—C5—C6—O6	-178.31 (19)	C34—C35—C36—C37	-0.6 (5)
C3—C2—N2—C29	62.2 (3)	C33—C32—C37—C36	0.3 (4)
C1—C2—N2—C29	-63.6 (3)	C31—C32—C37—C36	-178.9 (3)
C3—C2—N2—C21	-118.6 (2)	C35—C36—C37—C32	0.9 (5)
C1-C2-N2-C21	115.6 (2)	C5-C6-O6-C61	159.61 (19)
C29—N2—C21—O22	178.0 (2)	C6—O6—C61—C62	-78.3 (3)
C2—N2—C21—O22	-1.3 (4)	O6—C61—C62—C67	-85.7 (3)
C29—N2—C21—C23	-1.3 (3)	O6—C61—C62—C63	92.6 (3)
C2—N2—C21—C23	179.4 (2)	C67—C62—C63—C64	3.3 (3)
O22—C21—C23—C28	-178.6 (3)	C61—C62—C63—C64	-175.0 (2)
N2-C21-C23-C28	0.7 (3)	C62—C63—C64—C65	-2.5 (3)
O22—C21—C23—C24	2.1 (5)	C63—C64—C65—C66	0.3 (4)
N2-C21-C23-C24	-178.7 (2)	C64—C65—C66—C67	1.1 (4)
C28—C23—C24—C25	-0.9 (4)	C65—C66—C67—C62	-0.3 (4)
C21—C23—C24—C25	178.4 (3)	C63—C62—C67—C66	-1.9 (3)
C23—C24—C25—C26	1.6 (4)	C61—C62—C67—C66	176.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H… <i>A</i>
O4— $H4A$ ···O5 ⁱ	0.84	1.99	2.817 (2)	168

Symmetry code: (i) x-1/2, -y+3/2, -z+2.