

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E,6E)-2,6-Bis(2-fluoro-5-methoxybenzylidene)cyclohexan-1-one

Linfeng Chen, Li Zhang, Zhe Wang, Yunjie Wu and Guang Liang*

School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China Correspondence e-mail: wzmcliangguang@163.com

Received 8 November 2010; accepted 22 November 2010

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.147; data-to-parameter ratio = 13.5.

The title compound, $C_{22}H_{20}F_2O_3$, a derivative of curcumin, crystallized with two independent molecules in the asymmetric unit. The mean planes of the two 2-fluoro-5-methoxyphenyl groups are aligned at 24.88 (11)° in one molecule and $24.19(15)^{\circ}$ in the other. The dihedral angles between the mean plane of the penta-1,4-dien-3-one group and those of the two 2-fluoro-5-methoxyphenyl rings are 51.16 (11) and 49.16 $(10)^{\circ}$ in the first molecule, and 45.69 (15)and 54.00 (14)° in the second. The molecules adopt E configurations about the central olefinic bonds.

Related literature

For related structures, see: Liang et al. (2007); Zhao et al. (2009); Zhao, Yang, Liang et al. (2010). For background to and applications of related compounds, see: Aggarwal et al. (2003); Began et al. (1999); Ganesh & Aggarwal (2007); Liang et al.(2009); Zhao, Yang, Wang et al. (2010).

Experimental

Crystal data C22H20F2O3

 $M_r = 370.38$

organic compounds

6634 independent reflections

 $R_{\rm int} = 0.101$

3949 reflections with $I > 2\sigma(I)$

Triclinic, $P\overline{1}$ a = 9.2334 (10) Å b = 9.7601 (11) Å c = 21.433 (2) Å $\alpha = 90.195$ (2)° $\beta = 100.568$ (2)° $\gamma = 92.934$ (2)°	$V = 1896.1 (4) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 273 K $0.10 \times 0.10 \times 0.10 \text{ mm}$
Data collection Bruker APEXII CCD area-detector	10069 measured reflections

diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2004) $T_{\min} = 0.990, \ T_{\max} = 0.990$

Refinement

$R[F^{2} > 2\sigma(F^{2})] = 0.057$	492 parameters
wR(F ²) = 0.147	H-atom parameters not refined
S = 1.00	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
6634 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Xinmiao Talent Project of Zhejiang Province (CLF). The use of the X-ray crystallographic service at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and the valuable assistance of the staff is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5065).

References

- Aggarwal, B. B., Kumar, A. & Bharti, A. C. (2003). Anticancer Res. 23, 363-
- Began, G., Sudharshan, E., Sankar, K. U. A. & Appu, R. G. (1999). J. Agric. Food Chem. 47, 4992-4997.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ganesh, J. C. & Aggarwal, B. B. (2007). Clin. Immunol. 27, 19-35.
- Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). Bioorg. Med. Chem. 17, 2623-2631.
- Liang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007). Acta Cryst. E63, 03630.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhao, C. G., Yang, J., Huang, Y., Liang, G. & Li, X. K. (2009). Z. Kristallogr. New Cryst. Struct. 224, 337-338.
- Zhao, C. G., Yang, J., Liang, D. L., Tang, Q. Q., Zhang, Y., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem. 30, 289-294.
- Zhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388-2393.

Acta Cryst. (2010). E66, o3309 [https://doi.org/10.1107/S1600536810048610] (2E,6E)-2,6-Bis(2-fluoro-5-methoxybenzylidene)cyclohexan-1-one Linfeng Chen, Li Zhang, Zhe Wang, Yunjie Wu and Guang Liang

S1. Comment

The title compound, (2E,6E)-2,6-bis(2-fluoro-5-hydroxybenzylidene)cyclohexanone (I), is one of mono-carbonyl analogues of curcumin designed and synthesized by our group.Curcumin reportedly possesses several pharmacological properties including anti-inflammatory, antimicrobial, antiviral, antifungal, antioxidant, chemosensitizing, radiosensitizing, and wound healing activities. Curcumin can suppress tumor initiation, promotion, and metastasis in experimental models. (Began, et al. 1999: Ganesh et al. 2007). Unlike most chemotherapeutic agents, curcumin has been reported to show almost nontoxicity. These compound have attracted more and more attention. (Aggarwal et al. 2003). The need for curcumin-like compounds with improved bioavailability characteristics has led to the chemical synthesis of a series of analogues, using curcumin as the primary structure. In our previous study, a series of fluorine-containing, mono-carbonyl analogues of curcumin were designed and synthesized by the deletion of β -diketone moiety, and their bioactivities were evaluated (Liang et al., 2009; Zhao et al., 2010). Among those compounds, the cyclohexanonecontaining analogues exhibited better anti-tumor properties and a wider anti-tumor spectrum than acetone- and cyclopentanone-containing analogues. As a continuation of our broad program of work on the synthesis and structural study of chalcones, the title chalcone derivative has been obtained and an X-ray diffraction study was carried out. Therefore, the structure of one of cyclohexanone-containing compounds (I), was further determined and analyzed using single-crystal X-ray diffraction. Accumulation of detailed structural and pharmacological data facilitated the explanation of the observed structure-activity relationships and modeling of new compounds with potential biological activity.

In this paper, we report the molecular and crystal structures of fluorine-containing, mono-carbonyl analogues of curcumin, (I). The molecule (I), consists of three ring systems, i.e., one cyclohexanone ring and two aryl rings. The central cyclohexanone ring has a distorted chair conformation, and molecular structures have an *E*-configuration towards the central olefinic bonds, exhibiting a butterfly-shaped geometry. The dihedral angle between the two terminal phenyl rings is $27.19 (13)^{\circ}$, and the two phenyl rings are twisted out of the plane of the central cyclohexanone on the two sides, respectively. Among these derivatives, some of them were reported of their crystal structures (Liang *et al.*, 2007; Zhao *et al.*, 2009; Zhao *et al.*, 2010).

S2. Experimental

Cyclohexanone (7.5 mmol) was dissolved in ethanol (5 ml) and crushed KOH (15 mmol) was added. The flask was immersed in a bath of crushed ice and a solution of 2-fluoro-5-hydroxybenzaldehyde (15 mmol) in ethanol (5 mmol) was added. The reaction mixture was stirred at 300 K and completion of the reaction was monitored by thin-layer chromatography. Ice-cold water was added to the reaction mixture after 48 h and the yellow solid that separated was filtered off, washed with water and cold ethanol, dried and purified by column chromatography on silica gel (yield: 58.3%). Single crystals of the title compound were grown in a CH_2Cl_2/CH_3OH mixture (5:2 ν/ν) by slow evaporation (mp 91.3-93.4 °C).

Yellow powder, 58.3% yield, mp 91.3-93.4°C. ¹H-NMR (CDCl₃) δ : 7.77 (2H, s, Ar-CH=C×2), 7.03 (2H, t, J=9.0Hz, Ar-H³×2), 6.83-6.87 (4H, m, Ar-H^{4,6}×2), 3.80 (6H, s, Ar-OCH₃×2), 2.81 (4H, t, J=5.4Hz, CH₂-C-CH₂), 1.78 (2H, m, >CH₂). ESI-MS *m/z*: 371.0 (M+H)⁺, calcd for C₂₂H₂₀F₂O₃: 370.39.

S3. Refinement

The H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figure 1

The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.

(2E,6E)-2,6-Bis(2-fluoro-5-methoxybenzylidene)cyclohexan-1-one

Crystal data

 $C_{22}H_{20}F_{2}O_{3}$ $M_{r} = 370.38$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.2334 (10) Å b = 9.7601 (11) Å c = 21.433 (2) Å $a = 90.195 (2)^{\circ}$ $\beta = 100.568 (2)^{\circ}$ $\gamma = 92.934 (2)^{\circ}$ $V = 1896.1 (4) \text{ Å}^{3}$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.990, T_{\max} = 0.990$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters not refined
$wR(F^2) = 0.147$	$w = 1/[\sigma^2(F_o^2) + (0.055P)^2]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
6634 reflections	$(\Delta/\sigma)_{\rm max} = 0.015$
492 parameters	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0102 (12)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 4

F(000) = 776

 $\theta = 2.3 - 23.1^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, colorless

 $0.10 \times 0.10 \times 0.10$ mm

10069 measured reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

6634 independent reflections

3949 reflections with $I > 2\sigma(I)$

T = 273 K

 $R_{\rm int} = 0.101$

 $h = -10 \rightarrow 10$

 $k = -11 \rightarrow 11$

 $l = -18 \rightarrow 25$

 $D_{\rm x} = 1.297 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3025 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	0.64586 (15)	-0.51316 (13)	0.03944 (7)	0.0840 (4)
01	0.59989 (17)	-0.11281 (16)	-0.08404 (7)	0.0687 (4)

O4	0.94423 (17)	0.60048 (16)	-0.09902(8)	0.0769 (5)
F2	0.94845 (17)	0.08313 (16)	-0.19582(7)	0.0938 (5)
C5	0.7533 (2)	0.0813 (2)	-0.04416 (10)	0.0525 (5)
C6	0.6674 (2)	-0.0492(2)	-0.03706(10)	0.0521 (5)
C7	0.9400 (2)	0.4676 (2)	-0.12065(11)	0.0602 (6)
C8	0.5428(2)	-0.2508(2)	0 13952 (10)	0.0577 (6)
H8	0.5357	-0.1562	0.1412	0.069*
C9	0.6657 (2)	-0.1030(2)	0.02818(10)	0.000
C10	0.0007(2) 0.8601(2)	0.1050(2)	-0.09952(10)	0.0515(5)
H10	0.8033	0.3770	-0.0689	0.0505 (0)
03	0.4590 (2)	-0.25806(18)	0.23530 (8)	0.0859 (5)
C12	0.4370(2)	0.23600(10)	-0.17015(11)	0.0655 (5)
C12 C13	0.9400(3)	-0.2322(2)	0.17013(11) 0.03145(10)	0.0000(0)
U13	0.0103 (2)	0.2322 (2)	-0.0072	0.0501 (5)
C14	0.5820	0.2785	0.0072	0.007°
C14	0.3881(2) 0.7815(2)	-0.3100(2)	0.08700(10) 0.10228(11)	0.0341(3)
U15	0.7815(2)	0.1087 (2)	-0.10238 (11)	0.0595 (6)
HIS CIC	0.7441	0.0433	-0.1336	0.0/1*
C16	0.6001 (2)	-0.4513(2)	0.08892 (11)	0.0631 (6)
CI7	0.8626 (2)	0.2266 (2)	-0.12325 (10)	0.0576 (6)
C18	0.7318 (2)	-0.0142 (2)	0.08455 (10)	0.0603 (6)
H18A	0.7671	-0.0722	0.1202	0.072*
H18B	0.6561	0.0409	0.0961	0.072*
C19	0.5085 (2)	-0.3297(2)	0.18834 (11)	0.0633 (6)
C20	0.5209 (3)	-0.4707 (3)	0.18760 (12)	0.0742 (7)
H20	0.4980	-0.5238	0.2208	0.089*
C21	0.8076 (3)	0.1678 (2)	0.01397 (10)	0.0664 (6)
H21A	0.7292	0.2237	0.0222	0.080*
H21B	0.8891	0.2288	0.0068	0.080*
C22	0.5255 (3)	0.7126 (3)	0.62792 (12)	0.0742 (7)
H22	0.5377	0.6186	0.6268	0.089*
C23	0.3185 (3)	0.5673 (3)	0.51074 (11)	0.0715 (7)
C24	0.5675 (3)	-0.5308 (3)	0.13702 (13)	0.0727 (7)
H24	0.5766	-0.6252	0.1358	0.087*
C25	1.0243 (3)	0.4454 (3)	-0.16668 (12)	0.0723 (7)
H25	1.0792	0.5179	-0.1805	0.087*
05	0.6789 (2)	0.7139 (2)	0.72684 (9)	0.1000 (6)
C27	1.0266 (3)	0.3162 (3)	-0.19182(12)	0.0780 (7)
H27	1.0820	0.3002	-0.2230	0.094*
02	0.2913 (2)	0.5903 (2)	0.39992 (8)	0.1026 (6)
C29	0.8584 (2)	0.0796 (2)	0.07149 (11)	0.0682 (6)
H29A	0.9384	0.0251	0.0638	0.082*
H29B	0.8948	0.1382	0.1083	0.082*
C30	0 5948 (3)	0.7889(3)	0.68033 (13)	0.0799(7)
C31	0.2607(3)	0.5211(3)	0.44426(12)	0.0769(7)
F4	-0.1739(2)	0.4179(2)	0.28990 (8)	0.1210 (6)
C33	0 1666 (3)	0 3919 (3)	0.43095(12)	0.0733(7)
C34	0.3691 (3)	0.6978 (3)	0.51894(12)	0.0803(7)
UJ4 H34	0.3588	0.0270 (3)	0.4821	0.0003 (7)
1157	0.5500	0./7/2	0.7021	0.090

C35	-0.0142 (3)	0.2610 (3)	0.34497 (12)	0.0787 (8)
C36	0.0179 (3)	0.1235 (3)	0.35708 (12)	0.0826 (8)
H36	0.1025	0.1030	0.3856	0.099*
C37	0.8455 (3)	0.6307 (3)	-0.05740 (13)	0.0797 (7)
H37A	0.7462	0.6047	-0.0775	0.120*
H37B	0.8534	0.7272	-0.0478	0.120*
H37C	0.8706	0.5804	-0.0188	0.120*
C38	0.4382 (3)	0.7727 (3)	0.57692 (13)	0.0776 (7)
C39	0.3083 (3)	0.4666 (3)	0.56284 (12)	0.0808 (7)
H39A	0.3055	0.5166	0.6018	0.097*
H39B	0.3959	0.4139	0.5699	0.097*
C40	-0.1396 (4)	0.2852 (4)	0.30224 (14)	0.0935 (9)
C41	0.0852 (3)	0.3759 (3)	0.37287 (13)	0.0840 (8)
H41	0.0928	0.4493	0.3459	0.101*
O6	-0.0522 (3)	-0.1187 (2)	0.33634 (11)	0.1141 (7)
F3	0.3415 (3)	0.97700 (19)	0.53269 (11)	0.1524 (9)
C44	0.1740 (3)	0.3700 (3)	0.54768 (12)	0.0921 (9)
H44A	0.0863	0.4217	0.5457	0.111*
H44B	0.1757	0.3042	0.5816	0.111*
C45	0.1653 (3)	0.2928 (3)	0.48495 (12)	0.0846 (8)
H45A	0.2485	0.2349	0.4879	0.102*
H45B	0.0756	0.2343	0.4766	0.102*
C46	0.5792 (4)	0.9275 (3)	0.68372 (16)	0.0975 (9)
H46	0.6264	0.9786	0.7190	0.117*
C47	-0.0755 (3)	0.0179 (4)	0.32694 (15)	0.0913 (9)
C48	0.3954 (4)	-0.3343 (3)	0.28049 (13)	0.1087 (10)
H48A	0.3209	-0.3989	0.2589	0.163*
H48B	0.3517	-0.2730	0.3060	0.163*
H48C	0.4704	-0.3826	0.3072	0.163*
C49	0.4926 (4)	0.9889 (3)	0.6342 (2)	0.1229 (12)
H49	0.4792	1.0825	0.6358	0.147*
C50	-0.2011 (4)	0.0478 (4)	0.28457 (16)	0.1095 (11)
H50	-0.2637	-0.0229	0.2643	0.131*
C51	-0.2339(4)	0.1829 (5)	0.27229 (16)	0.1145 (11)
H51	-0.3189	0.2037	0.2441	0.137*
C52	0.4259 (4)	0.9131 (3)	0.58215 (17)	0.1020 (9)
C54	0.0799 (4)	-0.1549 (4)	0.3739 (2)	0.1360 (14)
H54A	0.1614	-0.1118	0.3581	0.204*
H54B	0.0861	-0.2527	0.3726	0.204*
H54C	0.0830	-0.1252	0.4169	0.204*
C55	0.7647 (4)	0.7839 (3)	0.77809 (15)	0.1175 (11)
H55A	0.8265	0.8535	0.7630	0.176*
H55B	0.8252	0.7208	0.8039	0.176*
H55C	0.7019	0.8258	0.8029	0.176*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.1075 (10)	0.0526 (8)	0.1018 (11)	0.0057 (7)	0.0447 (9)	-0.0015 (7)
01	0.0905 (11)	0.0540 (10)	0.0632 (10)	-0.0054 (8)	0.0210 (9)	-0.0035 (8)
O4	0.0902 (11)	0.0533 (10)	0.0936 (12)	-0.0070 (8)	0.0364 (10)	0.0036 (8)
F2	0.1283 (12)	0.0732 (10)	0.0938 (11)	0.0039 (9)	0.0572 (9)	-0.0062 (8)
C5	0.0541 (12)	0.0410 (12)	0.0645 (14)	0.0075 (9)	0.0151 (10)	0.0029 (10)
C6	0.0572 (12)	0.0434 (12)	0.0591 (14)	0.0080 (10)	0.0183 (11)	-0.0030 (10)
C7	0.0629 (13)	0.0544 (15)	0.0648 (14)	0.0012 (11)	0.0163 (11)	0.0092 (11)
C8	0.0638 (13)	0.0511 (13)	0.0594 (14)	-0.0038 (10)	0.0160 (11)	0.0065 (11)
C9	0.0541 (11)	0.0437 (12)	0.0594 (13)	0.0057 (9)	0.0180 (10)	0.0009 (10)
C10	0.0642 (13)	0.0559 (14)	0.0602 (14)	0.0032 (11)	0.0237 (11)	0.0092 (11)
O3	0.1237 (14)	0.0769 (12)	0.0651 (11)	-0.0099 (10)	0.0422 (10)	0.0060 (9)
C12	0.0820 (15)	0.0563 (15)	0.0671 (15)	0.0027 (12)	0.0283 (13)	0.0022 (12)
C13	0.0669 (13)	0.0447 (13)	0.0606 (13)	0.0033 (10)	0.0222 (11)	-0.0028 (10)
C14	0.0573 (12)	0.0472 (13)	0.0603 (14)	0.0004 (10)	0.0178 (10)	0.0058 (10)
C15	0.0664 (13)	0.0504 (13)	0.0651 (15)	0.0049 (10)	0.0222 (11)	0.0045 (11)
C16	0.0705 (14)	0.0533 (14)	0.0684 (15)	0.0007 (11)	0.0213 (12)	0.0024 (12)
C17	0.0617 (13)	0.0541 (14)	0.0598 (14)	0.0024 (10)	0.0189 (11)	0.0093 (11)
C18	0.0670 (13)	0.0535 (13)	0.0616 (14)	0.0004 (11)	0.0158 (11)	0.0040 (11)
C19	0.0717 (14)	0.0625 (16)	0.0565 (14)	-0.0056 (12)	0.0162 (11)	0.0068 (12)
C20	0.0850 (16)	0.0688 (18)	0.0674 (16)	-0.0083 (13)	0.0134 (13)	0.0227 (13)
C21	0.0795 (15)	0.0544 (14)	0.0632 (15)	-0.0096 (11)	0.0108 (12)	0.0057 (11)
C22	0.0987 (18)	0.0635 (16)	0.0681 (17)	0.0113 (14)	0.0334 (14)	0.0018 (13)
C23	0.0922 (17)	0.0703 (18)	0.0614 (16)	0.0245 (14)	0.0337 (13)	0.0114 (12)
C24	0.0839 (16)	0.0494 (14)	0.0856 (18)	0.0006 (12)	0.0185 (14)	0.0153 (13)
C25	0.0761 (15)	0.0691 (17)	0.0772 (17)	-0.0067 (13)	0.0311 (13)	0.0148 (13)
05	0.1470 (17)	0.0775 (13)	0.0736 (13)	-0.0049 (12)	0.0182 (12)	0.0008 (11)
C27	0.0853 (17)	0.084 (2)	0.0748 (17)	0.0039 (14)	0.0420 (14)	0.0101 (14)
O2	0.1667 (18)	0.0881 (14)	0.0632 (11)	0.0080 (13)	0.0474 (12)	0.0147 (10)
C29	0.0729 (14)	0.0639 (15)	0.0650 (15)	-0.0100 (12)	0.0087 (12)	0.0079 (12)
C30	0.0995 (19)	0.0662 (18)	0.0807 (19)	0.0013 (15)	0.0351 (16)	0.0068 (15)
C31	0.1073 (19)	0.0776 (18)	0.0566 (15)	0.0314 (15)	0.0355 (14)	0.0123 (13)
F4	0.1282 (13)	0.1394 (17)	0.1007 (12)	0.0539 (12)	0.0215 (10)	0.0341 (11)
C33	0.0932 (17)	0.0785 (19)	0.0570 (16)	0.0277 (15)	0.0305 (14)	0.0111 (13)
C34	0.1038 (19)	0.080 (2)	0.0666 (17)	0.0287 (16)	0.0325 (14)	0.0184 (14)
C35	0.0879 (18)	0.098 (2)	0.0588 (15)	0.0259 (17)	0.0311 (14)	0.0082 (15)
C36	0.0878 (18)	0.099 (2)	0.0680 (17)	0.0251 (17)	0.0271 (14)	0.0042 (16)
C37	0.0767 (15)	0.0667 (17)	0.101 (2)	0.0059 (13)	0.0291 (15)	-0.0043 (14)
C38	0.0963 (18)	0.0647 (17)	0.0798 (19)	0.0160 (14)	0.0339 (15)	0.0086 (14)
C39	0.0998 (18)	0.089 (2)	0.0597 (15)	0.0095 (16)	0.0302 (14)	0.0125 (13)
C40	0.097 (2)	0.122 (3)	0.0701 (19)	0.041 (2)	0.0291 (17)	0.0216 (19)
C41	0.107 (2)	0.088 (2)	0.0671 (18)	0.0394 (17)	0.0333 (16)	0.0119 (15)
O6	0.1315 (18)	0.0947 (18)	0.1233 (18)	0.0054 (14)	0.0425 (15)	-0.0041 (13)
F3	0.196 (2)	0.0803 (13)	0.1656 (19)	0.0409 (13)	-0.0178 (16)	0.0237 (12)
C44	0.113 (2)	0.104 (2)	0.0666 (17)	0.0101 (18)	0.0360 (15)	0.0221 (15)
C45	0.1054 (19)	0.088 (2)	0.0659 (17)	0.0096 (15)	0.0288 (14)	0.0173 (14)

C46	0.123 (2)	0.071 (2)	0.099 (2)	-0.0025 (18)	0.0245 (19)	-0.0082 (17)
C47	0.091 (2)	0.110 (3)	0.081 (2)	0.011 (2)	0.0364 (17)	-0.0005 (19)
C48	0.162 (3)	0.104 (2)	0.0699 (18)	-0.014 (2)	0.0522 (19)	0.0138 (16)
C49	0.146 (3)	0.058 (2)	0.162 (4)	0.013 (2)	0.020 (3)	-0.005 (2)
C50	0.101 (2)	0.137 (3)	0.093 (2)	0.001 (2)	0.026 (2)	-0.006 (2)
C51	0.098 (2)	0.158 (4)	0.088 (2)	0.019 (3)	0.0149 (19)	0.012 (2)
C52	0.125 (2)	0.070 (2)	0.111 (2)	0.0194 (19)	0.016 (2)	0.0157 (19)
C54	0.109 (3)	0.091 (3)	0.218 (4)	0.025 (2)	0.049 (3)	0.038 (3)
C55	0.166 (3)	0.104 (3)	0.076 (2)	-0.010 (2)	0.009 (2)	-0.0054 (18)

Geometric parameters (Å, °)

F1—C16	1.362 (3)	O2—C31	1.234 (3)
O1—C6	1.231 (2)	С29—Н29А	0.9700
O4—C7	1.372 (3)	С29—Н29В	0.9700
O4—C37	1.427 (3)	C30—C46	1.371 (4)
F2—C12	1.371 (3)	C31—C33	1.490 (4)
C5—C15	1.346 (3)	F4—C40	1.364 (4)
C5—C6	1.489 (3)	C33—C41	1.335 (3)
C5—C21	1.495 (3)	C33—C45	1.512 (3)
C6—C9	1.498 (3)	C34—C38	1.464 (4)
C7—C10	1.375 (3)	С34—Н34	0.9300
C7—C25	1.387 (3)	C35—C40	1.370 (4)
C8—C19	1.375 (3)	C35—C36	1.404 (4)
C8—C14	1.392 (3)	C35—C41	1.465 (4)
С8—Н8	0.9300	C36—C47	1.387 (4)
C9—C13	1.343 (3)	С36—Н36	0.9300
C9—C18	1.501 (3)	С37—Н37А	0.9600
C10—C17	1.404 (3)	С37—Н37В	0.9600
C10—H10	0.9300	С37—Н37С	0.9600
O3—C19	1.381 (3)	C38—C52	1.386 (4)
O3—C48	1.416 (3)	C39—C44	1.504 (4)
C12—C27	1.366 (3)	С39—Н39А	0.9700
C12—C17	1.385 (3)	С39—Н39В	0.9700
C13—C14	1.465 (3)	C40—C51	1.368 (5)
С13—Н13	0.9300	C41—H41	0.9300
C14—C16	1.389 (3)	O6—C47	1.370 (4)
C15—C17	1.457 (3)	O6—C54	1.395 (4)
C15—H15	0.9300	F3—C52	1.368 (3)
C16—C24	1.361 (3)	C44—C45	1.526 (4)
C18—C29	1.515 (3)	C44—H44A	0.9700
C18—H18A	0.9700	C44—H44B	0.9700
C18—H18B	0.9700	C45—H45A	0.9700
C19—C20	1.387 (3)	C45—H45B	0.9700
C20—C24	1.378 (3)	C46—C49	1.367 (4)
С20—Н20	0.9300	C46—H46	0.9300
C21—C29	1.522 (3)	C47—C50	1.381 (4)
C21—H21A	0.9700	C48—H48A	0.9600

C21 U21D	0.0700	C40 1140D	0.000
	0.9700	C48—H48B	0.9600
C22—C30	1.381 (3)	C48—H48C	0.9600
C22—C38	1.385 (3)	C49—C52	1.366 (5)
C22—H22	0.9300	C49—H49	0.9300
C23—C34	1.334 (4)	C50—C51	1.383 (5)
C23—C31	1.486 (4)	С50—Н50	0.9300
C23—C39	1.502 (3)	C51—H51	0.9300
C24—H24	0.9300	C54—H54A	0.9600
C25—C27	1.372 (3)	C54—H54B	0.9600
С25—Н25	0.9300	C54—H54C	0.9600
O5—C30	1.383 (3)	С55—Н55А	0.9600
O5—C55	1.386 (3)	С55—Н55В	0.9600
С27—Н27	0.9300	С55—Н55С	0 9600
027 1127	0.7200		0.9000
C7—O4—C37	116.94 (17)	C23—C31—C33	120.4 (2)
C15—C5—C6	116.80 (19)	C41 - C33 - C31	117.1(2)
$C_{15} = C_{5} = C_{21}$	125 17 (19)	$C_{41} = C_{33} = C_{45}$	125.2(3)
C6-C5-C21	117.96 (19)	C_{31} C_{33} C_{45}	125.2(3) 117.6(2)
01 C6 C5	117.50(15) 120.62(10)	$C_{23} = C_{34} = C_{38}$	117.0(2) 130.1(2)
01 - 00 - 00	120.02(19) 120.22(19)	$C_{23} = C_{34} = C_{38}$	115.0
01 - 0 - 03	120.33(18) 110.04(10)	$C_{23} = C_{34} = H_{24}$	115.0
$C_{3} = C_{0} = C_{3}$	119.04(19)	$C_{30} = C_{34} = H_{34}$	113.0 117.2(2)
04 - 07 - 025	124.4(2)	C40 - C35 - C36	11/.3(3)
04-07-025	115.3 (2)	C40 - C35 - C41	120.1(3)
C10-C7-C25	120.3 (2)	C36—C35—C41	122.6 (3)
C19—C8—C14	121.1 (2)	C47—C36—C35	120.6 (3)
С19—С8—Н8	119.4	С47—С36—Н36	119.7
С14—С8—Н8	119.4	С35—С36—Н36	119.7
C13—C9—C6	116.31 (19)	O4—C37—H37A	109.5
C13—C9—C18	124.71 (19)	O4—C37—H37B	109.5
C6—C9—C18	118.90 (18)	H37A—C37—H37B	109.5
C7—C10—C17	121.2 (2)	O4—C37—H37C	109.5
С7—С10—Н10	119.4	Н37А—С37—Н37С	109.5
C17—C10—H10	119.4	Н37В—С37—Н37С	109.5
C19—O3—C48	118.0 (2)	C52—C38—C22	115.7 (3)
C27—C12—F2	118.2 (2)	C52—C38—C34	120.7 (3)
C27—C12—C17	124.2 (2)	C22—C38—C34	123.5 (2)
F2—C12—C17	117.6 (2)	C23—C39—C44	112.5 (2)
C9-C13-C14	128.9 (2)	С23—С39—Н39А	109.1
C9-C13-H13	115.6	C44—C39—H39A	109.1
C14—C13—H13	115.6	C23_C39_H39B	109.1
C16-C14-C8	116.4 (2)	C44—C39—H39B	109.1
$C_{16} - C_{14} - C_{13}$	120.4(2)	H304_C30_H30B	107.8
C8 - C14 - C13	120.7(2) 127 94 (19)	$F_4 C_40 C_51$	118 3 (3)
$C_{5} = C_{15} = C_{15}$	122.97(19) 1200(2)	$F_{4} = C_{40} = C_{51}$	110.3(3)
$C_{5} = C_{15} = C_{17}$	127.0 (2)	$C_{1} = C_{10} = C_{23}$	1222(2)
$C_{17} = C_{15} = H_{15}$	115.5	$C_{31} - C_{40} - C_{33}$	123.2(3) 120.2(2)
$C1/-C13\Pi13$	113.3	$C_{22} = C_{41} = U_{23}$	130.2 (3)
C24—C16—F1	118.5 (2)	C35—C41—H41	114.9
C24—C16—C14	123.2 (2)	C35—C41—H41	114.9

F1-C16-C14	118.3 (2)	C47—O6—C54	118.4 (3)
C12—C17—C10	115.72 (19)	C39—C44—C45	112.5 (2)
C12—C17—C15	120.5 (2)	C39—C44—H44A	109.1
C10—C17—C15	123.8 (2)	C45—C44—H44A	109.1
C9—C18—C29	112.16 (18)	C39—C44—H44B	109.1
C9—C18—H18A	109.2	C45—C44—H44B	109.1
C29—C18—H18A	109.2	H44A—C44—H44B	107.8
C9—C18—H18B	109.2	C33—C45—C44	110.8 (2)
C29—C18—H18B	109.2	C33—C45—H45A	109.5
H18A—C18—H18B	107.9	C44—C45—H45A	109.5
C8—C19—O3	114.9 (2)	C33—C45—H45B	109.5
C8—C19—C20	120.6 (2)	C44—C45—H45B	109.5
O3—C19—C20	124.4 (2)	H45A—C45—H45B	108.1
C24—C20—C19	119.0 (2)	C49—C46—C30	118.6 (3)
C24—C20—H20	120.5	C49—C46—H46	120.7
С19—С20—Н20	120.5	C30—C46—H46	120.7
C5—C21—C29	111.31 (19)	O6—C47—C50	116.0 (3)
C5—C21—H21A	109.4	O6—C47—C36	124.1 (3)
C29—C21—H21A	109.4	C50—C47—C36	119.9 (3)
C5—C21—H21B	109.4	O3—C48—H48A	109.5
C29—C21—H21B	109.4	O3—C48—H48B	109.5
H21A—C21—H21B	108.0	H48A—C48—H48B	109.5
C30—C22—C38	121.5 (3)	O3—C48—H48C	109.5
C30—C22—H22	119.3	H48A—C48—H48C	109.5
C38—C22—H22	119.3	H48B—C48—H48C	109.5
C34—C23—C31	116.4 (2)	C46—C49—C52	120.1 (3)
C34—C23—C39	125.6 (2)	C46—C49—H49	119.9
C31—C23—C39	117.9 (2)	С52—С49—Н49	119.9
C16—C24—C20	119.6 (2)	C47—C50—C51	120.1 (4)
C16—C24—H24	120.2	С47—С50—Н50	120.0
C20—C24—H24	120.2	С51—С50—Н50	120.0
C27—C25—C7	119.9 (2)	C40—C51—C50	119.0 (3)
С27—С25—Н25	120.1	C40—C51—H51	120.5
C7—C25—H25	120.1	C50—C51—H51	120.5
C30—O5—C55	118.4 (2)	C49—C52—F3	119.2 (3)
C12—C27—C25	118.7 (2)	C49—C52—C38	123.1 (3)
С12—С27—Н27	120.7	F3—C52—C38	117.7 (3)
С25—С27—Н27	120.7	O6—C54—H54A	109.5
C18—C29—C21	110.31 (18)	O6—C54—H54B	109.5
С18—С29—Н29А	109.6	H54A—C54—H54B	109.5
С21—С29—Н29А	109.6	O6—C54—H54C	109.5
С18—С29—Н29В	109.6	H54A—C54—H54C	109.5
C21—C29—H29B	109.6	H54B—C54—H54C	109.5
H29A—C29—H29B	108.1	O5—C55—H55A	109.5
C46—C30—O5	124.6 (3)	О5—С55—Н55В	109.5
C46—C30—C22	121.0 (3)	H55A—C55—H55B	109.5
O5—C30—C22	114.4 (2)	O5—C55—H55C	109.5
O2—C31—C23	119.6 (3)	H55A—C55—H55C	109.5

O2—C31—C33	119.9 (2)	H55B—C55—H55C	109.5