organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1'-(p-Phenylenedimethylidene)diimidazol-3-ium bis{2-[(2-carboxyphenyl)disulfanyl]benzoate} dihydrate

Zhengming Liu,^a Qiang Liu,^b Limin Yuan^a and Wenlong Liu^b*

^aTesting Center, Yangzhou University, Yangzhou 225002, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China Correspondence e-mail: liuwl@yzu.edu.cn

Received 7 November 2010; accepted 13 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.134; data-to-parameter ratio = 13.1.

The title salt, C₁₄H₁₆N₄²⁺·2C₁₄H₉O₄S₂⁻·2H₂O, was obtained by the co-crystalization of 2,2'-dithiodibenzoic acid with 1,4bis(imidazol-1-vlmethyl)benzene. It consists of 2-[(2-carboxyphenyl)disulfanyl]benzoate anions, centrosymmetric 1,1'-(pphenylenedimethylidene)diimidazol-3-ium cations and water molecules. O-H···O, O-H···S and N-H···O hydrogenbonding interactions among the components lead to the formation of a three-dimensional network.

Related literature

For background to the co-crystalization of 2,2'-dithiodibenzoic acid with bipyridine-type molecules, see: Bi et al. (2002); Broker & Tiekink (2007); Broker et al. (2008); Hu et al. (2004).

• 2

Experimental

Crystal data $C_{14}H_{16}N_4^{\ 2+}\cdot 2C_{14}H_9O_4S_2^{\ -}\cdot 2H_2O$

 $M_{\rm m} = 887.00$

```
Triclinic, P1
a = 4.6776 (11) \text{ Å}
b = 12.201 (3) Å
c = 18.850 (4) Å
\alpha = 107.985 (3)^{\circ}
\beta = 90.686 \ (3)^{\circ}
\gamma = 100.634 (3)
```


Data collection OMA DE A DEV COD

Bruker SMART APEX CCD	7640 measured reflections
diffractometer	3708 independent reflections
Absorption correction: multi-scan	2720 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.030$
$T_{\min} = 0.876, \ T_{\max} = 0.894$	

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WB\cdots S1^{i}$	0.88(2)	2.80 (3)	3.507 (3)	138 (4)
$O1W - H1WB \cdots O2^{i}$	0.88(2)	2.30 (2)	3.141 (4)	159 (4)
$N1 - H1 \cdots O1^{ii}$	0.91(2)	1.75 (2)	2.657 (3)	176 (3)
$O4-H4A\cdots O1^{ii}$	0.87(2)	1.73 (3)	2.567 (3)	161 (4)
$O1W-H1WA\cdots O2$	0.88 (2)	1.94 (2)	2.811 (3)	171 (4)

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the Foundation of the Key Laboratory of Environmental Materials and Environmental Engineering of Jiangsu Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5063).

References

Bi, W., Sun, D., Cao, R. & Hong, M. (2002). Acta Cryst. E58, 0837-0839. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.

Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109. Bruker (2002). SMART for WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Hu, R.-F., Wen, Y.-H., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. E60, 02029-02031

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o3230 [https://doi.org/10.1107/S1600536810047021]

1,1'-(p-Phenylenedimethylidene)diimidazol-3-ium bis{2-[(2-carboxyphenyl)-disulfanyl]benzoate} dihydrate

Zhengming Liu, Qiang Liu, Limin Yuan and Wenlong Liu

S1. Comment

The dicarboxylic acid DTBA has been shown to be effective and reliable in forming a range of co-crystals with a series of bipyridine-type molecules leading to varying supramolecular architectures(Broker & Tiekink, 2007; Broker *et al.*, 2008). In comparison, the use of biimidazole-type molecules to co-crystal with DTBA remains largely unexplored. Herein, the formation of co-crystals of 2,2'-dithiodibenzoic acid with 1,4-bis(imidazol-1-ylmethyl)benzene is described, which were isolated from methanol. The asymmetric unit of the title compound comprises a singly deprotonated DTBA anion, half a 1,4-bis(imidazolium-1-ylmethyl)benzene dication, disposed about a centre of inversion, and a solvent water molecule of crystallization (Fig. 1). The dihedral angle between the two phenyl rings of HDTBA⁻ and torsion angle (C2/S1/S2/C9) are 73.54 (7)° and -84.93 (12)°, respectively. There are extensive hydrogen-bonding interactions between the carboxyl groups, protonated N atoms and water molecules of (I). As shown in Fig. 2, hydrogen-bonding interactions link water molecules to (C₁₄H₉O₄S₂)⁻ anions, (C₁₄H₁₆N₄)²⁺ cations and connect (C₁₄H₉O₄S₂)⁻ anions to (C₁₄H₁₆N₄)²⁺ cations to form an extended three-dimensional network.

S2. Experimental

2,2'-Dithiodibenzoic acid (153 mg, 0.5 mmol) was dissolved in 15 ml me thanol, and a solution of 1,4-bis(imidazol-1-ylmethyl)benzene (191 mg, 0.8 mmol) in 20 ml me thanol was added dropwise under intense agitation. The resulting mixture was stirred under reflux conditions for 1 h and allowed to cool to room temperature, filtered. After allowing the solution to stand for five days, colourless block-like crystals of (I) were obtained in 42% yield.

S3. Refinement

The O-bound and N-bound H atoms were located in difference Fourier maps and were refined with the distance restraints O—H = 0.84 ± 0.02 Å, N—H = 0.87 ± 0.03 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$. The temperature factor of N-bound H atom was refined.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$.

The refinement of O-bound and N-bound H atoms and the C—C distances in the phenylene ring were performed using 9 least-squares restraints by applying *DFIX* instructions of *SHELXTL*.

Figure 1

Molecular structures of the title compound, showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

The three-dimensional packing structure of the title compound, Hydrogen bonds are shown as dashed lines.

1,1'-(p-Phenylenedimethylidene)diimidazol-3-ium bis{2-[(2-carboxyphenyl)disulfanyl]benzoate} dihydrate

```
Crystal data
```

$C_{14}H_{16}N_4^{2+}\cdot 2C_{14}H_9O_4S_2^{-}\cdot 2H_2O$	Z = 1
$M_r = 887.00$	F(000) = 462
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.469 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 4.6776 (11) Å	Cell parameters from 1975 reflections
b = 12.201 (3) Å	$\theta = 2.3 - 24.5^{\circ}$
c = 18.850 (4) Å	$\mu = 0.30 \text{ mm}^{-1}$
$\alpha = 107.985 \ (3)^{\circ}$	T = 296 K
$\beta = 90.686 \ (3)^{\circ}$	Block, colourless
$\gamma = 100.634 (3)^{\circ}$	$0.45 \times 0.43 \times 0.38 \text{ mm}$
$V = 1002.9 (4) Å^3$	
Data collection	
Bruker SMART APEX CCD	7640 measured reflections
44 AA	

Drunter Shin http://www.	
diffractometer	3708 independent reflections
Radiation source: fine-focus sealed tube	2720 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
φ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 5$
(SADABS; Sheldrick, 2004)	$k = -14 \rightarrow 14$
$T_{\min} = 0.876, \ T_{\max} = 0.894$	$l = -20 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
3708 reflections	and constrained refinement
284 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0676P)^2 + 0.1163P]$
9 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Z	U_{iso}^*/U_{aa}
$\overline{C1}$	0.9224 (5)	0.7640 (2)	0.21093 (14)	0.0356 (6)
C2	0.9027(5)	0.6438 (2)	0.19945 (14)	0.0352 (6)
C3	1.0412 (6)	0.5796 (2)	0.14067 (15)	0.0443 (7)
H3	1.0227	0.4990	0.1313	0.053*
C4	1.2053 (6)	0.6331 (2)	0.09606 (16)	0.0500 (7)
H4	1.2968	0.5885	0.0571	0.060*
C5	1.2351 (6)	0.7522 (3)	0.10862 (17)	0.0483 (7)
Н5	1.3507	0.7889	0.0794	0.058*
C6	1.0910 (6)	0.8157 (2)	0.16511 (16)	0.0437 (7)
H6	1.1066	0.8958	0.1729	0.052*
C7	0.7699 (6)	0.8391 (2)	0.27118 (16)	0.0405 (6)
C8	0.5723 (5)	0.1938 (2)	0.13953 (14)	0.0375 (6)
C9	0.5950 (5)	0.3156 (2)	0.15799 (14)	0.0357 (6)
C10	0.4493 (6)	0.3591 (2)	0.11132 (15)	0.0433 (7)
H10	0.4668	0.4399	0.1224	0.052*
C11	0.2789 (6)	0.2841 (3)	0.04877 (17)	0.0496 (7)
H11	0.1817	0.3148	0.0184	0.060*
C12	0.2513 (6)	0.1640 (3)	0.03089 (17)	0.0530 (8)
H12	0.1350	0.1135	-0.0110	0.064*
C13	0.3991 (6)	0.1202 (2)	0.07623 (16)	0.0461 (7)
H13	0.3825	0.0393	0.0642	0.055*
C14	0.7222 (6)	0.1414 (2)	0.18676 (16)	0.0445 (7)
S 1	0.69255 (16)	0.57314 (5)	0.25775 (4)	0.0440 (2)
S2	0.81448 (17)	0.41403 (6)	0.23901 (4)	0.0461 (2)

01	0.7530 (4)	0.94073 (15)	0.26811 (11)	0.0504 (5)
O2	0.6751 (5)	0.80190 (17)	0.32150 (12)	0.0636 (6)
O3	0.8747 (5)	0.19838 (17)	0.24241 (13)	0.0676 (7)
O4	0.6690 (6)	0.02564 (17)	0.16259 (13)	0.0670 (7)
H4A	0.737 (8)	0.003 (3)	0.1976 (19)	0.100*
C15	0.3094 (6)	0.1496 (3)	0.35488 (17)	0.0514 (7)
H15	0.3404	0.1817	0.3162	0.062*
C16	0.3162 (9)	0.0374 (3)	0.4231 (2)	0.0735 (10)
H16	0.3513	-0.0234	0.4398	0.088*
C17	0.1658 (8)	0.1195 (3)	0.4573 (2)	0.0731 (11)
H17	0.0816	0.1277	0.5026	0.088*
C18	0.0401 (6)	0.2974 (2)	0.43199 (18)	0.0513 (7)
H18A	-0.1118	0.2936	0.4662	0.062*
H18B	-0.0463	0.3040	0.3868	0.062*
C19	0.2748 (5)	0.4039 (2)	0.46723 (14)	0.0406 (6)
C20	0.4029 (7)	0.4741 (3)	0.42709 (17)	0.0623 (9)
H20	0.3376	0.4576	0.3774	0.075*
C21	0.3731 (7)	0.4311 (3)	0.54080 (16)	0.0656 (9)
H21	0.2879	0.3853	0.5692	0.079*
N1	0.4076 (5)	0.0579 (2)	0.36030 (15)	0.0512 (6)
H1	0.519 (5)	0.016 (2)	0.3270 (14)	0.056 (9)*
N2	0.1594 (5)	0.18873 (19)	0.41342 (13)	0.0466 (6)
O1W	0.2006 (6)	0.7532 (2)	0.40459 (14)	0.0758 (7)
H1WA	0.351 (5)	0.761 (4)	0.378 (2)	0.114*
H1WB	0.049 (5)	0.747 (4)	0.374 (2)	0.114*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0361 (14)	0.0302 (13)	0.0407 (15)	0.0070 (11)	-0.0009 (11)	0.0114 (11)
C2	0.0401 (14)	0.0307 (13)	0.0356 (14)	0.0101 (11)	0.0003 (11)	0.0098 (11)
C3	0.0482 (16)	0.0360 (14)	0.0505 (17)	0.0155 (12)	0.0083 (13)	0.0120 (13)
C4	0.0498 (17)	0.0509 (17)	0.0504 (18)	0.0191 (14)	0.0140 (14)	0.0121 (14)
C5	0.0459 (16)	0.0509 (17)	0.0537 (18)	0.0078 (13)	0.0100 (14)	0.0252 (14)
C6	0.0470 (16)	0.0321 (14)	0.0559 (18)	0.0072 (12)	0.0038 (14)	0.0201 (13)
C7	0.0451 (16)	0.0284 (13)	0.0477 (16)	0.0093 (11)	0.0017 (13)	0.0105 (12)
C8	0.0435 (15)	0.0298 (13)	0.0393 (15)	0.0086 (11)	0.0084 (12)	0.0103 (12)
C9	0.0403 (14)	0.0293 (13)	0.0380 (14)	0.0082 (11)	0.0092 (11)	0.0103 (11)
C10	0.0503 (16)	0.0351 (14)	0.0475 (16)	0.0142 (12)	0.0005 (13)	0.0141 (13)
C11	0.0501 (17)	0.0482 (17)	0.0500 (18)	0.0097 (14)	-0.0029 (14)	0.0148 (14)
C12	0.0528 (18)	0.0459 (17)	0.0484 (18)	-0.0006 (14)	-0.0066 (14)	0.0043 (14)
C13	0.0561 (17)	0.0312 (14)	0.0462 (17)	0.0035 (13)	0.0066 (14)	0.0083 (13)
C14	0.0612 (18)	0.0312 (14)	0.0445 (17)	0.0142 (13)	0.0093 (14)	0.0137 (13)
S 1	0.0631 (5)	0.0266 (3)	0.0436 (4)	0.0107 (3)	0.0119 (3)	0.0114 (3)
S2	0.0665 (5)	0.0276 (3)	0.0438 (4)	0.0100 (3)	-0.0065 (3)	0.0108 (3)
01	0.0689 (13)	0.0263 (9)	0.0578 (12)	0.0160 (9)	0.0077 (10)	0.0122 (9)
O2	0.0914 (16)	0.0426 (12)	0.0683 (15)	0.0263 (11)	0.0380 (13)	0.0250 (11)
O3	0.1023 (18)	0.0354 (11)	0.0633 (15)	0.0134 (11)	-0.0240 (13)	0.0143 (11)

supporting information

O4	0.1058 (19)	0.0289 (10)	0.0678 (15)	0.0140 (11)	-0.0092 (13)	0.0178 (10)
C15	0.0584 (19)	0.0508 (18)	0.0452 (17)	0.0190 (15)	0.0045 (15)	0.0108 (14)
C16	0.104 (3)	0.0493 (19)	0.079 (3)	0.0279 (19)	0.024 (2)	0.0288 (19)
C17	0.106 (3)	0.0486 (19)	0.074 (2)	0.0176 (19)	0.040 (2)	0.0295 (18)
C18	0.0451 (16)	0.0388 (15)	0.0627 (19)	0.0098 (13)	0.0029 (14)	0.0049 (14)
C19	0.0419 (15)	0.0333 (14)	0.0432 (16)	0.0086 (11)	0.0046 (12)	0.0067 (12)
C20	0.076 (2)	0.057 (2)	0.0456 (18)	-0.0079 (17)	-0.0084 (16)	0.0171 (16)
C21	0.085 (2)	0.0540 (19)	0.0502 (19)	-0.0174 (17)	-0.0008 (17)	0.0245 (16)
N1	0.0537 (15)	0.0364 (13)	0.0564 (16)	0.0104 (11)	0.0033 (13)	0.0034 (12)
N2	0.0457 (13)	0.0360 (13)	0.0523 (15)	0.0053 (10)	0.0051 (11)	0.0070 (11)
O1W	0.0771 (17)	0.0846 (18)	0.0666 (17)	0.0079 (15)	0.0150 (13)	0.0294 (14)

Geometric parameters (Å, °)

C1—C6	1.391 (3)	C14—O3	1.200 (3)
C1—C2	1.400 (3)	C14—O4	1.317 (3)
C1—C7	1.502 (4)	S1—S2	2.0515 (10)
C2—C3	1.389 (3)	O4—H4A	0.87 (2)
C2—S1	1.793 (3)	C15—N1	1.316 (4)
C3—C4	1.376 (4)	C15—N2	1.325 (4)
С3—Н3	0.9300	С15—Н15	0.9300
C4—C5	1.378 (4)	C16—C17	1.337 (5)
C4—H4	0.9300	C16—N1	1.342 (4)
C5—C6	1.375 (4)	C16—H16	0.9300
С5—Н5	0.9300	C17—N2	1.356 (4)
С6—Н6	0.9300	C17—H17	0.9300
С7—О2	1.226 (3)	C18—N2	1.478 (3)
C7—O1	1.276 (3)	C18—C19	1.503 (4)
C8—C13	1.391 (4)	C18—H18A	0.9700
C8—C9	1.400 (3)	C18—H18B	0.9700
C8—C14	1.482 (4)	C19—C20	1.374 (3)
C9—C10	1.389 (4)	C19—C21	1.374 (3)
C9—S2	1.790 (3)	C20-C21 ⁱ	1.381 (3)
C10—C11	1.380 (4)	С20—Н20	0.9300
C10—H10	0.9300	C21-C20 ⁱ	1.381 (3)
C11—C12	1.379 (4)	C21—H21	0.9300
C11—H11	0.9300	N1—H1	0.911 (17)
C12—C13	1.378 (4)	O1W—H1WA	0.876 (18)
C12—H12	0.9300	O1W—H1WB	0.883 (18)
C13—H13	0.9300		
C6—C1—C2	118.7 (2)	C8—C13—H13	119.2
C6—C1—C7	118.9 (2)	O3—C14—O4	122.8 (3)
C2—C1—C7	122.4 (2)	O3—C14—C8	123.6 (2)
C3—C2—C1	118.8 (2)	O4—C14—C8	113.6 (3)
C3—C2—S1	120.61 (19)	C2—S1—S2	106.04 (8)
C1—C2—S1	120.52 (19)	C9—S2—S1	105.87 (8)
C4—C3—C2	121.1 (2)	C14—O4—H4A	107 (3)

С4—С3—Н3	119.5	N1-C15-N2	109.0 (3)
С2—С3—Н3	119.5	N1—C15—H15	125.5
C3—C4—C5	120.5 (3)	N2—C15—H15	125.5
C3—C4—H4	119.7	C17—C16—N1	108.1 (3)
C5—C4—H4	119.7	C17—C16—H16	125.9
C6-C5-C4	118.8 (3)	N1-C16-H16	125.9
C6-C5-H5	120.6	C16-C17-N2	123.9 107.0(3)
$C_4 C_5 H_5$	120.0	$C_{10} = C_{17} = N_2$	107.0 (3)
$C_{4} - C_{5} - H_{5}$	120.0 122.0(2)	10 - 17 - 117	120.5
$C_{5} = C_{0} = C_{1}$	122.0 (2)	$N_2 = C_1 R = C_{10}$	120.3
Сэ—Со—Но	119.0	N2	111.0 (2)
С1—С6—Н6	119.0	N2—C18—H18A	109.4
02	123.3 (2)	C19—C18—H18A	109.4
O2—C7—C1	119.2 (2)	N2—C18—H18B	109.4
O1—C7—C1	117.5 (2)	C19—C18—H18B	109.4
C13—C8—C9	119.1 (2)	H18A—C18—H18B	108.0
C13—C8—C14	119.2 (2)	C20—C19—C21	118.3 (2)
C9—C8—C14	121.7 (2)	C20-C19-C18	121.7 (2)
C10—C9—C8	118.8 (2)	C21—C19—C18	120.0 (2)
C10—C9—S2	120.34 (19)	C19-C20-C21 ⁱ	121.2 (3)
C8—C9—S2	120.83 (19)	C19—C20—H20	119.4
C11—C10—C9	120.9 (3)	C21 ⁱ —C20—H20	119.4
C11—C10—H10	119.6	C19—C21—C20 ⁱ	120.5 (3)
C9-C10-H10	119.6	C19—C21—H21	119.7
C_{12} C_{11} C_{10}	120.7(3)	$C20^{i}$ $C21$ $H21$	119.7
C_{12} C_{11} H_{11}	110 7	C_{15} N1 C_{16}	108.1.(3)
C_{10} C_{11} H_{11}	110.7	C15 N1 $H1$	100.1(3) 125.3(10)
C_{12} C_{12} C_{11}	119.7 119.9(2)	C_{15} N_1 H_1	125.5(19)
$C_{12} = C_{12} = C_{11}$	110.0 (5)	C10 N1 $ H1$	120.0(19) 107.8(2)
С13—С12—Н12	120.0	C15 N2 C18	107.8 (3)
CII—CI2—HI2	120.6	C15 - N2 - C18	125.6 (3)
C12—C13—C8	121.7 (3)	C17—N2—C18	126.2 (3)
С12—С13—Н13	119.2	H1WA—O1W—H1WB	104 (3)
C(C1 C2 C2	20(4)	C_{14} C_{2} C_{12} C_{12}	170 1 (2)
$C_{0} - C_{1} - C_{2} - C_{3}$	-2.9 (4)	C14 - C8 - C13 - C12	1/9.1 (3)
C/-CI-C2-C3	177.6 (2)	C13 - C8 - C14 - O3	-1/9.7(3)
C6C1C2S1	1/9.13 (19)	09-08-014-03	-1.2 (4)
C7—C1—C2—S1	-0.4 (3)	C13—C8—C14—O4	-0.7 (4)
C1—C2—C3—C4	2.6 (4)	C9—C8—C14—O4	177.8 (2)
S1—C2—C3—C4	-179.4 (2)	C3—C2—S1—S2	16.6 (2)
C2—C3—C4—C5	-0.2(4)	C1—C2—S1—S2	-165.39 (19)
C3—C4—C5—C6	-1.9 (4)	C10—C9—S2—S1	16.4 (2)
C4—C5—C6—C1	1.6 (4)	C8—C9—S2—S1	-165.10 (18)
C2—C1—C6—C5	0.8 (4)	C2—S1—S2—C9	-84.96 (12)
C7—C1—C6—C5	-179.6 (3)	N1-C16-C17-N2	1.7 (4)
C6—C1—C7—O2	-164.2 (3)	N2-C18-C19-C20	100.9 (3)
C2—C1—C7—O2	15.3 (4)	N2-C18-C19-C21	-77.0 (3)
C6—C1—C7—O1	13.9 (4)	C21-C19-C20-C21 ⁱ	0.8 (5)
C2—C1—C7—O1	-166.5 (2)	C18—C19—C20—C21 ⁱ	-177.2(3)
C13—C8—C9—C10	-1.6 (4)	C20—C19—C21—C20 ⁱ	-0.8(5)

supporting information

C14—C8—C9—C10	179.9 (2)	C18-C19-C21-C20 ⁱ	177.2 (3)
C13—C8—C9—S2	179.85 (19)	N2-C15-N1-C16	0.6 (4)
C14—C8—C9—S2	1.4 (3)	C17—C16—N1—C15	-1.5 (4)
C8—C9—C10—C11	1.6 (4)	N1-C15-N2-C17	0.5 (4)
S2—C9—C10—C11	-179.8 (2)	N1-C15-N2-C18	173.2 (2)
C9—C10—C11—C12	-0.5 (4)	C16—C17—N2—C15	-1.4 (4)
C10-C11-C12-C13	-0.6 (4)	C16—C17—N2—C18	-174.1 (3)
C11—C12—C13—C8	0.6 (4)	C19—C18—N2—C15	-78.1 (3)
C9—C8—C13—C12	0.5 (4)	C19—C18—N2—C17	93.3 (4)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D^{\dots}A$	D—H···A
O1 <i>W</i> —H1 <i>WB</i> ····S1 ⁱⁱ	0.88 (2)	2.80 (3)	3.507 (3)	138 (4)
O1W—H1 WB ···O2 ⁱⁱ	0.88 (2)	2.30 (2)	3.141 (4)	159 (4)
N1—H1···O1 ⁱⁱⁱ	0.91 (2)	1.75 (2)	2.657 (3)	176 (3)
O4—H4A···O1 ⁱⁱⁱ	0.87 (2)	1.73 (3)	2.567 (3)	161 (4)
O1 <i>W</i> —H1 <i>WA</i> ···O2	0.88 (2)	1.94 (2)	2.811 (3)	171 (4)

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) *x*, *y*-1, *z*.