Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*C-meso-N-meso-5*,12-Dimethyl-7,14diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(II) bis[*O*,*O*'bis(4-methylphenyl) dithiophosphate]

Li-Ke Zou,* Bin Xie, Jian-Shen Feng and Chuan Lai

College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China Correspondence e-mail: zoulike@yahoo.com.cn

Received 13 November 2010; accepted 21 November 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.085; data-to-parameter ratio = 17.0.

The title complex, $[Ni(C_{24}H_{32}N_4)](C_{14}H_{14}O_2PS_2)_2$, comprises a centrosymmetric $[Ni(meso-diphenyl[14]dien)]^{2+}$ dication (meso-diphenyl[14]dien is *C-meso-N-meso-5*,12-dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) and two *O*,*O'*-bis(4-methylphenyl) dithiophosphate anions. The Ni^{II} ion lies on an inversion center and is chelated by a tetraamine macrocycle ligand in a slightly distorted NiN₄ square-planar geometry. Two S atoms from symmetry-related anions are located in pseudo-axial positions with respect to the Ni^{II} ion, with Ni···S distances of 3.1869 (8) Å. In the crystal, bifurcated intermolecular N-H···S(S) hydrogen bonds connect cations and pairs of anions into three-component clusters. Weak intermolecular C-H···S hydrogen bonds link these clusters into chains along [100].

Related literature

For the synthesis of the tetramine macrocyclic ligand, see: Curtis (2001). For general background to tetramine macrocycles, see: Aoki & Kimura (2002); For transition metal complexes with O,O'-dialkyldithiophosphate ligands, see: Drew *et al.* (1987); Liaw *et al.* (2005); Zou *et al.* (2009). For the synthesis and crystal structures of related macrocyclic nickel and copper complexes, see: Feng *et al.* (2009); He *et al.* (2010); Xie *et al.* (2009). For standard bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{C}_{24}\mathrm{H}_{32}\mathrm{N}_4)](\mathrm{C}_{14}\mathrm{H}_{14}\mathrm{O}_2\mathrm{PS}_2)_2 \\ & M_r = 1053.93 \\ & \mathrm{Monoclinic}, \ P2_1/n \\ & a = 10.04828 \ (18) \ \mathrm{\mathring{A}} \\ & b = 19.6896 \ (4) \ \mathrm{\mathring{A}} \\ & c = 13.5112 \ (3) \ \mathrm{\mathring{A}} \\ & \beta = 106.900 \ (2)^\circ \end{split}$$

Data collection

Oxford Diffraction Xcalibur Eos diffractometer Absorption correction: multi-scan (*CrysAlis PRO RED*; Oxford Diffraction, 2009) $T_{\rm min} = 0.930, T_{\rm max} = 1$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.085$ S = 1.015232 reflections 0.22 × 0.18 × 0.16 mm

V = 2557.69 (9) Å³

Mo $K\alpha$ radiation

 $\mu = 0.65 \text{ mm}^{-1}$

T = 150 K

Z = 2

11501 measured reflections 5232 independent reflections 4326 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$

307 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···S1	0.93	2.87	3.4652 (17)	123
$N2-H2 \cdot \cdot \cdot S2$	0.93	2.71	3.5789 (17)	156
$C5-H5B\cdots S2^{i}$	0.98	2.87	3.815 (2)	162

Symmetry code: (i) x - 1, y, z.

Data collection: *CrysAlis PRO CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO CCD*; data reduction: *CrysAlis PRO RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Education Committee of Sichuan Province (No. 09ZA057), the Science and Technology Office of Zigong City (Nos. 08X01 and 10X05) and the Committee of Science and Technology of Sichuan Province (No. 2010GZ0130).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5160).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Aoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129–155.
- Curtis, N. F. (2001). Inorg. Chim Acta, 317, 27-32.
- Drew, M. G. B., Forsyth, G. A., Hasan, M., Hobson, R. J. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1027–1033.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Feng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022.
- He, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.
- Liaw, B. J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C.-W. (2005). Inorg. Chem. 44, 9921–9929.
- Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053.
- Zou, L.-K., Xie, B., Xie, J.-Q., Feng, J.-S., Chang, X.-L. & Zhang, X.-L. (2009). Transition Met. Chem. 34, 395–401.

supporting information

Acta Cryst. (2010). E66, m1663-m1664 [https://doi.org/10.1107/S160053681004849X]

(*C-meso-N-meso-5*,12-Dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclo-tetradeca-4,11-diene)nickel(II) bis[*O*,*O*'-bis(4-methylphenyl) dithiophosphate]

Li-Ke Zou, Bin Xie, Jian-Shen Feng and Chuan Lai

S1. Comment

The significance of synthetic tetramine macrocycles is most obvious because of their strong chelating ability and analogy to naturally occurring macrocyclic systems, therefore the synthesis and potential use of their transition-metal complexes have been extensively studied (Aoki *et al.*, 2002). At the same time, the transition-metal complexes of O,O'- dialkyl-dithiophosphate ligands (DDP) have attracted our attention due to their luxuriant variety of coordination bonding characteristics (Drew *et al.*, 1987; Liaw *et al.*, 2005) and potential application as mimetic hydrolases for carboxylic acid esters (Zou *et al.*, 2009). For these reasons, we have recently reported several structures of tetramine macrocyclic transition-metal adducts with O,O'-dialkyldithiophosphate (Feng *et al.*, 2009; Xie *et al.*, 2009; He *et al.*, 2010). Herein, we report the structure of [Ni(*meso*-diphenyl[14]dien)][S₂P(OC₆H₄Me-4)₂]₂, where *meso*-diphenyl[14]dien is *C-meso-N-meso*-5,12-dimethyl-7,14- diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

The molecular of the title complex comprises a complex mononuclear $[Ni(meso-diphenyl[14]dien)]^{2+}$ cation and two O,O'-bis(4-methylphenyl) dithiophosphate anions. The Ni^{II} atom lies on an inversion centre and is chelated by four N atoms from the macrocyclic tetramine *meso*-diphenyl[14]dien in a slightly distorted NiN₄ square-planar geometry (Fig.1). Two uncoordinated O,O'-bis(4-methylphenyl) dithiophosphate anions occupy pseudo-axial positions with Cu···S distances of 3.1869 (7) Å, forming a octahedral type arrangement. Intermolecular N—H···S and C—H···S hydrogen bonds are present between the anions and the cations. All bond lengths (Allen *et al.*, 1987) and angles in the complex are within normal ranges.

S2. Experimental

The tetraamine macrocyclic ligand 5,12-Dimethyl-7,14-diphenyl-1,4,8,11- tetraazacyclotetradeca-4,11-diene (diphenyl-[14]dien) and $[Ni(diphenyl[14]dien)](ClO_4)_2$ (a mixture of *meso-* and *rac-* isomers) were prepared according to the procedure described by Curtis (2001).

The title complex was prepared by a modified method according to our previous work (Xie *et al.*, 2009). A cellulose thimble containing 0.634 g (1 mmol) of mixed isomers of [Ni(diphenyl[14]dien)](ClO₄)₂ was placed in a Soxhlet apparatus. The isomers were slowly extracted to a solution of 0.767 g (2 mmol) $[(C_2H_5)_2NH_2][S_2P(OC_6H_4Me-4)_2]$ in 70 mL methanol (extraction solvent) and the less soluble *meso*-isomer of the adduct, [Ni(diphenyl[14]dien)] [S_2P(OC_6H_4Me-4)_2]_2, was slowly pricipitated out during the extraction procedure. The whole extraction process lasted about 36 hours and then refluxed for another 4 hours. After cooling to room temperature, the solid was filtered off and washed successively with methanol, acetone and diethyl ether. The crude product was dissolved in hot dimethyl-formamide and filtered, the filtrate was kept at room temperature and pale-violet block crystals suitable for X-ray diffraction studies were obtained after three months.

S3. Refinement

H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 1.00Å (methine), 0.99Å (methylene), 0.98Å (methyl), 0.95Å (aromatic) and N—H = 0.93 Å. The $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(C, N)$ for all other carbon and nitrogen bound H atoms.

Figure 1

The molecular structure of the title complex, showing the atom-numbering scheme with displacement ellipsoids at 30% probability level. H atoms on N are represented as small spheres of arbitrary radii and H atoms on C have been omitted for the sake of clarity. Hydrogen-bonds are shown as dashed lines. [Symmetry code: (i) -x + 1, -y, -z + 1].

(*C-meso-N-meso-5*,12-Dimethyl-7,14-diphenyl-1,4,8,11- tetraazacyclotetradeca-4,11-diene)nickel(II) bis[*O*,*O*'-bis(4-methylphenyl) dithiophosphate]

Crystal data

$[Ni(C_{24}H_{32}N_4)](C_{14}H_{14}O_2PS_2)_2$ $M_r = 1053.93$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.04828 (18) Å b = 19.6896 (4) Å c = 13.5112 (3) Å $\beta = 106.900$ (2)° V = 2557.69 (9) Å ³ Z = 2	F(000) = 1108 $D_x = 1.368 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 5452 reflections $\theta = 3.0-29.2^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 150 K Block, pale-violet $0.22 \times 0.18 \times 0.16 \text{ mm}$
Data collection Oxford Diffraction Xcalibur Eos diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.0874 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> RED; Oxford Diffraction, 2009) $T_{\min} = 0.930, T_{\max} = 1.0$	11501 measured reflections 5232 independent reflections 4326 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$ $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -24 \rightarrow 22$ $l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix. Tuli	шар
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
5232 reflections	$w = 1/[\sigma^2(F_o^2) + (0.033P)^2 + 1.139P]$
307 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.28 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Nil	0.5000	0.0000	0.5000	0.01821 (10)
N2	0.65018 (15)	0.05440 (8)	0.58612 (13)	0.0187 (4)
H2	0.6883	0.0785	0.5417	0.022*
N1	0.36007 (16)	0.06810 (8)	0.49274 (12)	0.0194 (4)
C7	0.7393 (2)	0.14121 (10)	0.72455 (16)	0.0231 (4)
C3	0.6128 (2)	0.10500 (10)	0.65498 (16)	0.0230 (4)
Н3	0.5655	0.0804	0.7001	0.028*
C12	0.8221 (2)	0.18311 (11)	0.68330 (17)	0.0273 (5)
H12	0.8003	0.1886	0.6105	0.033*
C1	0.37339 (19)	0.12907 (10)	0.52677 (16)	0.0215 (4)
C4	0.22025 (19)	0.04534 (10)	0.42970 (17)	0.0257 (5)
H4A	0.1666	0.0842	0.3917	0.031*
H4B	0.1683	0.0256	0.4748	0.031*
C6	0.7588 (2)	0.00694 (10)	0.64466 (16)	0.0248 (5)
H6A	0.7291	-0.0150	0.7007	0.030*
H6B	0.8467	0.0317	0.6761	0.030*
C2	0.5110 (2)	0.15594 (11)	0.59068 (18)	0.0301 (5)
H2B	0.4934	0.1910	0.6379	0.036*
H2A	0.5562	0.1788	0.5437	0.036*
C5	0.2573 (2)	0.18000 (11)	0.50298 (18)	0.0294 (5)
H5A	0.2449	0.1989	0.4338	0.044*
H5C	0.2801	0.2167	0.5542	0.044*
H5B	0.1711	0.1577	0.5054	0.044*
C11	0.9352 (2)	0.21660 (12)	0.74757 (18)	0.0330 (5)
H11	0.9908	0.2450	0.7187	0.040*

C9	0.8874 (2)	0.16789 (13)	0.89515 (18)	0.0382 (6)
H9	0.9094	0.1626	0.9680	0.046*
C8	0.7738 (2)	0.13401 (12)	0.83067 (17)	0.0310 (5)
H8	0.7190	0.1055	0.8600	0.037*
C10	0.9680 (2)	0.20904 (12)	0.85370 (19)	0.0368 (6)
H10	1.0459	0.2322	0.8977	0.044*
P1	0.73840 (5)	0.08481 (3)	0.33089 (4)	0.02337 (13)
S1	0.54518 (6)	0.10019 (3)	0.32732 (5)	0.03221 (15)
S2	0.88615 (6)	0.11448 (3)	0.45192 (4)	0.03143 (14)
O2	0.75506 (14)	0.11660 (7)	0.22395 (11)	0.0274 (3)
O1	0.77128 (15)	0.00483 (7)	0.31873 (11)	0.0272 (3)
C20	0.8809 (2)	0.11224 (11)	0.19887 (16)	0.0255 (5)
C23	1.1212 (2)	0.10828 (13)	0.13572 (17)	0.0332 (6)
C14	0.5849 (2)	-0.02229 (11)	0.16048 (17)	0.0286 (5)
H14	0.5515	0.0231	0.1527	0.034*
C13	0.6975 (2)	-0.04031 (11)	0.24365 (17)	0.0261 (5)
C25	0.9101 (2)	0.05523 (12)	0.14963 (17)	0.0306 (5)
H25	0.8484	0.0175	0.1366	0.037*
C17	0.6815 (3)	-0.15446 (12)	0.1808 (2)	0.0385 (6)
H17	0.7156	-0.1997	0.1883	0.046*
C21	0.9712 (2)	0.16664 (11)	0.21960 (17)	0.0304 (5)
H21	0.9519	0.2053	0.2552	0.037*
C16	0.5682 (2)	-0.13849 (12)	0.09778 (19)	0.0349 (6)
C15	0.5220 (2)	-0.07171 (12)	0.08889 (18)	0.0314 (5)
H15	0.4450	-0.0594	0.0320	0.038*
C18	0.7466 (2)	-0.10621 (11)	0.25325 (19)	0.0324 (5)
H18	0.8247	-0.1184	0.3094	0.039*
C22	1.0910 (2)	0.16418 (13)	0.18768 (17)	0.0342 (6)
H22	1.1533	0.2016	0.2018	0.041*
C26	1.2453 (2)	0.10744 (16)	0.0941 (2)	0.0518 (8)
H26B	1.2785	0.0607	0.0935	0.078*
H26C	1.3196	0.1355	0.1382	0.078*
H26A	1.2182	0.1256	0.0235	0.078*
C24	1.0306 (2)	0.05370 (13)	0.11934 (17)	0.0341 (5)
H24	1.0516	0.0141	0.0865	0.041*
C19	0.4963 (3)	-0.19066 (14)	0.0184 (2)	0.0526 (8)
H19A	0.4047	-0.2011	0.0265	0.079*
H19C	0.5525	-0.2322	0.0282	0.079*
H19B	0.4851	-0.1726	-0.0512	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01354 (17)	0.01832 (19)	0.0208 (2)	0.00210 (14)	0.00195 (14)	-0.00173 (15)
N2	0.0153 (8)	0.0185 (8)	0.0218 (9)	0.0012 (7)	0.0042 (7)	0.0012 (7)
N1	0.0160 (8)	0.0202 (9)	0.0208 (9)	0.0003 (7)	0.0037 (7)	0.0022 (7)
C7	0.0198 (10)	0.0246 (11)	0.0238 (11)	0.0035 (8)	0.0043 (8)	-0.0058 (9)
C3	0.0199 (10)	0.0281 (11)	0.0219 (11)	-0.0018 (9)	0.0074 (8)	-0.0063 (9)

Acta Cryst. (2010). E66, m1663-m1664

supporting information

C12	0.0248 (10)	0.0302 (12)	0.0257 (12)	0.0012 (9)	0.0052 (9)	-0.0035 (10)
C1	0.0192 (10)	0.0217 (11)	0.0238 (11)	0.0028 (8)	0.0068 (8)	0.0009 (9)
C4	0.0142 (9)	0.0213 (11)	0.0369 (13)	0.0017 (8)	-0.0001 (9)	0.0005 (10)
C6	0.0201 (10)	0.0213 (11)	0.0267 (12)	0.0029 (8)	-0.0030 (8)	0.0037 (9)
C2	0.0204 (10)	0.0256 (12)	0.0405 (14)	0.0028 (9)	0.0029 (9)	-0.0102 (10)
C5	0.0230 (10)	0.0204 (11)	0.0416 (14)	0.0046 (9)	0.0044 (9)	-0.0028 (10)
C11	0.0265 (11)	0.0286 (13)	0.0429 (15)	-0.0019 (10)	0.0088 (10)	-0.0077 (11)
C9	0.0380 (13)	0.0442 (15)	0.0259 (13)	0.0053 (11)	-0.0009 (10)	-0.0084 (11)
C8	0.0302 (12)	0.0359 (13)	0.0263 (12)	0.0012 (10)	0.0072 (9)	-0.0027 (10)
C10	0.0262 (11)	0.0359 (13)	0.0399 (15)	0.0000 (10)	-0.0036 (10)	-0.0142 (12)
P1	0.0218 (3)	0.0267 (3)	0.0235 (3)	0.0008 (2)	0.0095 (2)	0.0013 (2)
S1	0.0223 (3)	0.0446 (4)	0.0323 (3)	0.0051 (2)	0.0119 (2)	0.0032 (3)
S2	0.0263 (3)	0.0397 (3)	0.0285 (3)	-0.0055 (2)	0.0084 (2)	-0.0055 (3)
O2	0.0245 (7)	0.0321 (8)	0.0281 (8)	0.0041 (6)	0.0117 (6)	0.0071 (7)
01	0.0287 (8)	0.0258 (8)	0.0256 (8)	0.0026 (6)	0.0055 (6)	0.0008 (7)
C20	0.0226 (10)	0.0339 (12)	0.0215 (11)	0.0019 (9)	0.0088 (8)	0.0068 (10)
C23	0.0220 (11)	0.0558 (16)	0.0203 (11)	0.0021 (11)	0.0037 (9)	0.0110 (11)
C14	0.0326 (12)	0.0261 (11)	0.0283 (12)	-0.0017 (10)	0.0109 (10)	0.0045 (10)
C13	0.0288 (11)	0.0278 (12)	0.0255 (12)	-0.0030 (9)	0.0138 (9)	0.0012 (10)
C25	0.0308 (12)	0.0367 (13)	0.0259 (12)	-0.0037 (10)	0.0107 (9)	-0.0001 (10)
C17	0.0433 (14)	0.0233 (12)	0.0577 (17)	-0.0031 (11)	0.0284 (13)	0.0003 (12)
C21	0.0329 (12)	0.0280 (12)	0.0303 (13)	0.0003 (10)	0.0091 (10)	0.0058 (10)
C16	0.0395 (13)	0.0307 (13)	0.0425 (15)	-0.0141 (11)	0.0247 (12)	-0.0050 (11)
C15	0.0316 (12)	0.0356 (13)	0.0286 (12)	-0.0094 (10)	0.0113 (10)	0.0009 (11)
C18	0.0335 (12)	0.0282 (12)	0.0390 (14)	0.0019 (10)	0.0160 (10)	0.0043 (11)
C22	0.0282 (11)	0.0421 (14)	0.0301 (13)	-0.0079 (11)	0.0052 (10)	0.0121 (11)
C26	0.0261 (12)	0.092 (2)	0.0389 (15)	0.0024 (14)	0.0126 (11)	0.0119 (15)
C24	0.0343 (12)	0.0459 (15)	0.0236 (12)	0.0058 (11)	0.0107 (10)	-0.0011 (11)
C19	0.0566 (17)	0.0418 (16)	0.066 (2)	-0.0235 (13)	0.0277 (15)	-0.0154 (14)

Geometric parameters (Å, °)

Ni1—N2	1.9385 (15)	C10—H10	0.9500
Ni1—N2 ⁱ	1.9385 (15)	P1—S1	1.9517 (7)
Ni1—N1	1.9247 (16)	P1—S2	1.9514 (8)
Ni1—N1 ⁱ	1.9247 (16)	P1—O2	1.6273 (15)
N2—H2	0.9300	P1—O1	1.6271 (15)
N2—C3	1.484 (2)	O2—C20	1.403 (2)
N2—C6	1.479 (2)	O1—C13	1.390 (3)
N1—C1	1.279 (3)	C20—C25	1.379 (3)
N1-C4	1.485 (2)	C20—C21	1.379 (3)
С7—С3	1.521 (3)	C23—C22	1.386 (3)
C7—C12	1.397 (3)	C23—C26	1.510 (3)
С7—С8	1.381 (3)	C23—C24	1.384 (3)
С3—Н3	1.0000	C14—H14	0.9500
C3—C2	1.513 (3)	C14—C13	1.389 (3)
С12—Н12	0.9500	C14—C15	1.388 (3)
C12—C11	1.381 (3)	C13—C18	1.381 (3)

supporting information

C1—C2	1.498 (3)	С25—Н25	0.9500
C1—C5	1.500 (3)	C25—C24	1.387 (3)
C4—H4A	0.9900	С17—Н17	0.9500
C4—H4B	0.9900	C17—C16	1.382 (3)
C4—C6 ⁱ	1.495 (3)	C17—C18	1.385 (3)
C6—C4 ⁱ	1.495 (3)	C21—H21	0.9500
С6—Н6А	0.9900	C21—C22	1.393 (3)
С6—Н6В	0.9900	C16—C15	1.388 (3)
C2—H2B	0.9900	C16—C19	1.509 (3)
C2—H2A	0.9900	С15—Н15	0.9500
С5—Н5А	0.9800	C18—H18	0.9500
C5—H5C	0.9800	С22—Н22	0.9500
С5—Н5В	0.9800	C26—H26B	0.9800
C11—H11	0.9500	C26—H26C	0.9800
C11—C10	1.383 (3)	C26—H26A	0.9800
C9—H9	0.9500	C24—H24	0.9500
C9—C8	1 389 (3)	C19—H19A	0.9800
C9-C10	1 375 (3)	C19 - H19C	0.9800
C8—H8	0.9500	C19—H19B	0.9800
	0.7200		0.9000
Ni1—N2—H2	106.8	C8—C7—C12	118 43 (19)
$N2^{i}$ Ni1 N2	180	C8-C9-H9	119.9
$N_2 - C_3 - C_7$	112 54 (15)	C10-C11-H11	119.8
N2_C3_H3	108.0	C10-C9-H9	119.0
$N_2 = C_3 = C_2$	109.70 (16)	C10-C9-C8	119.9 120.1(2)
$N_2 - C_6 - C_4^{i}$	107 56 (16)	S2_P1_S1	120.1(2) 118 90 (4)
N2C6H6A	110.2	$0^2 - P_1 - S_1$	116.90(4)
N2C6H6B	110.2	02 - P1 - S1	112 29 (6)
N1 Ni1 N2	04.32(7)	02 - 11 - 52 01 - P1 - S1	112.27(0)
$\frac{1}{1} \frac{1}{1} \frac{1}$	94.32 (7) 85.68 (7)	01 - 1 - 31 01 - 1 - 31	112.17(0) 104.30(6)
NII NII NO	85.68 (7)	01 - 1 - 32	104.30(0)
$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2}$	03.08(7)	$C_{20} = 0.02$ P1	101.90(8) 121.56(13)
NII — NII — NZ	94.32 (7) 180	$C_{20} = 02 = 11$	121.30 (13)
N1 - N1 - N1	100 121.44.(17)	$C_{20} = C_{23} = H_{23}$	120.4
N1 - C1 - C2	121.44(17) 122.84(18)	$C_{20} = C_{23} = C_{24}$	119.1 (2)
N1 = C1 = C3	125.04 (10)	C_{20} C_{21} C_{22}	120.4
N1 = C4 = H4R	110.2	$C_{20} = C_{21} = C_{22}$	119.2(2)
N1 = C4 = H4B	110.2	$C_{23} = C_{22} = C_{21}$	121.4 (2)
$N1 - C4 - C0^{-1}$	107.38 (10)	$C_{23} = C_{22} = H_{22}$	119.3
C7C3H3	108.0	$C_{23} = C_{20} = H_{20}B$	109.5
C/C12H12	119.7	C23—C26—H26C	109.5
C/-C8-C9	121.0 (2)	C23—C26—H26A	109.5
C/-C8-H8	119.5	$C_{23} = C_{24} = C_{25}$	121.8 (2)
C3—N2—N1	116.89 (11)	C23—C24—H24	119.1
C3—N2—H2	106.8	C14—C13—O1	124.28 (19)
C3—C2—H2B	108.1	C14—C15—H15	119.0
С3—С2—Н2А	108.1	C13—O1—P1	127.73 (13)
C12—C7—C3	121.19 (18)	C13—C14—H14	120.5
C12—C11—H11	119.8	C13—C18—C17	119.7 (2)

C12—C11—C10	120.3 (2)	C13—C18—H18	120.1
C1—N1—Ni1	129.59 (14)	C25—C20—O2	119.94 (19)
C1—N1—C4	118.19 (16)	C25—C24—H24	119.1
C1—C2—C3	116.97 (17)	C17—C16—C15	117.5 (2)
C1—C2—H2B	108.1	C17—C16—C19	122.2 (2)
C1—C2—H2A	108.1	C17—C18—H18	120.1
C1—C5—H5A	109.5	C21—C20—O2	119.30 (19)
C1—C5—H5C	109.5	C21—C20—C25	120.69 (19)
C1—C5—H5B	109.5	C21—C22—H22	119.3
C4—N1—Ni1	111.99 (12)	С16—С17—Н17	119.1
C4 ⁱ —C6—H6A	110.2	C16—C17—C18	121.8 (2)
C4 ⁱ —C6—H6B	110.2	C16—C15—C14	122.1 (2)
H4A—C4—H4B	108.5	С16—С15—Н15	119.0
C6—N2—Ni1	107.25 (12)	С16—С19—Н19А	109.5
C6—N2—H2	106.8	С16—С19—Н19С	109.5
C6—N2—C3	111.77 (15)	C16—C19—H19B	109.5
C6 ⁱ —C4—H4A	110.2	C15—C14—H14	120.5
C6 ⁱ —C4—H4B	110.2	C15—C14—C13	118.9 (2)
H6A—C6—H6B	108.5	C15—C16—C19	120.3 (2)
C2—C3—C7	110.38 (16)	C18—C13—O1	115.63 (19)
С2—С3—Н3	108.0	C18—C13—C14	120.0 (2)
C2—C1—C5	114.66 (17)	C18—C17—H17	119.1
H2B—C2—H2A	107.3	C22—C23—C26	121.6 (2)
H5A—C5—H5C	109.5	C22—C21—H21	120.4
H5A—C5—H5B	109.5	H26B—C26—H26C	109.5
H5C—C5—H5B	109.5	H26B—C26—H26A	109.5
C11—C12—C7	120.5 (2)	H26C—C26—H26A	109.5
C11—C12—H12	119.7	C24—C23—C22	117.8 (2)
C11—C10—H10	120.2	C24—C23—C26	120.5 (2)
С9—С8—Н8	119.5	C24—C25—H25	120.4
C9—C10—C11	119.7 (2)	H19A—C19—H19C	109.5
С9—С10—Н10	120.2	H19A—C19—H19B	109.5
C8—C7—C3	120.38 (19)	H19C—C19—H19B	109.5
Ni1—N2—C3—C7	175.86 (13)	C8—C7—C12—C11	-0.2 (3)
Ni1—N2—C3—C2	-60.84 (19)	C8—C9—C10—C11	0.1 (4)
Ni1—N2—C6—C4 ⁱ	45.69 (18)	C10—C9—C8—C7	-0.4 (3)
Ni1—N1—C1—C2	-6.0 (3)	P1	85.7 (2)
Ni1—N1—C1—C5	171.17 (15)	P1	-97.2 (2)
Ni1—N1—C4—C6 ⁱ	-25.2 (2)	P1-01-C13-C14	4.3 (3)
N2 ⁱ —Ni1—N1—C1	-174.21 (19)	P1-01-C13-C18	-178.36 (15)
N2—Ni1—N1—C1	5.79 (19)	S1—P1—O2—C20	-177.67 (14)
N2—Ni1—N1—C4	180.00 (13)	S1—P1—O1—C13	50.57 (17)
N2 ⁱ —Ni1—N1—C4	0.00 (13)	S2—P1—O2—C20	50.91 (16)
N2—C3—C2—C1	62.2 (2)	S2—P1—O1—C13	-179.45 (15)
N1—Ni1—N2—C3	28.14 (14)	O2—P1—O1—C13	-62.47 (17)
N1 ⁱ —Ni1—N2—C3	-151.86 (14)	O2—C20—C25—C24	175.78 (19)
N1—Ni1—N2—C6	154.50 (13)	O2—C20—C21—C22	-175.25 (18)

$N1^{i}$ — $Ni1$ — $N2$ — $C6$ N1— $C1$ — $C2$ — $C3C7$ — $C3$ — $C2$ — $C1C7$ — $C12$ — $C11$ — $C10C3—N2—C6—C4^{i}C3$ — $C7$ — $C12$ — $C11C3$ — $C7$ — $C8$ — $C9C12$ — $C7$ — $C3$ — $N2C12$ — $C7$ — $C3$ — $C2C12$ — $C7$ — $C3$ — $C2C12$ — $C11$ — $C10$ — $C9C1—N1—C4—C6^{i}C4$ — $N1$ — $C1$ — $C2C4$ — $N1$ — $C1$ — $C5C6$ — $N2$ — $C3$ — $C7$	$\begin{array}{c} -25.50\ (13)\\ -28.3\ (3)\\ -173.27\ (18)\\ 0.0\ (3)\\ 175.03\ (16)\\ 178.85\ (18)\\ -178.67\ (19)\\ 64.4\ (2)\\ -58.5\ (2)\\ 0.4\ (3)\\ 0.1\ (3)\\ 149.72\ (18)\\ -179.86\ (19)\\ -2.7\ (3)\\ 51.8\ (2)\\ 175.02\ (16)\\ \end{array}$	$\begin{array}{c} 01 & -P1 & -O2 & -C20 \\ 01 & -C13 & -C18 & -C17 \\ C20 & -C25 & -C24 & -C23 \\ C20 & -C21 & -C22 & -C23 \\ C14 & -C13 & -C18 & -C17 \\ C13 & -C14 & -C15 & -C16 \\ C25 & -C20 & -C21 & -C22 \\ C17 & -C16 & -C15 & -C14 \\ C21 & -C20 & -C25 & -C24 \\ C16 & -C17 & -C18 & -C13 \\ C15 & -C14 & -C13 & -O1 \\ C15 & -C14 & -C13 & -C18 \\ C18 & -C17 & -C16 & -C15 \\ C18 & -C17 & -C16 & -C19 \\ C22 & -C23 & -C24 & -C25 \\ C26 & -C22 & -C21 \\ \end{array}$	$\begin{array}{c} -60.14 (16) \\ -178.68 (19) \\ -1.1 (3) \\ -0.1 (3) \\ -1.2 (3) \\ 0.0 (3) \\ 1.7 (3) \\ -0.7 (3) \\ -1.2 (3) \\ 0.4 (3) \\ 178.26 (19) \\ 1.0 (3) \\ 0.5 (3) \\ -180.0 (2) \\ 2.6 (3) \\ 175 (2) \\ 100 $
C4—N1—C1—C5	-2.7 (3)	C18—C17—C16—C19	-180.0 (2)
C6—N2—C3—C7	51.8 (2)	C22—C23—C24—C25	2.6 (3)
C6—N2—C3—C2	175.07 (16)	C26—C23—C22—C21	175.4 (2)
C5—C1—C2—C3	154.36 (19)	C26—C23—C24—C25	-174.9 (2)
C8—C7—C3—N2	-116.5 (2)	C24—C23—C22—C21	-2.1 (3)
C8—C7—C3—C2	120.6 (2)	C19—C16—C15—C14	179.8 (2)

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H…A	$D \cdots A$	<i>D</i> —H… <i>A</i>
0.93	2.87	3.4652 (17)	123
0.93	2.71	3.5789 (17)	156
0.98	2.87	3.815 (2)	162
	<i>D</i> —H 0.93 0.93 0.98	D—H H···A 0.93 2.87 0.93 2.71 0.98 2.87	D—H H…A D…A 0.93 2.87 3.4652 (17) 0.93 2.71 3.5789 (17) 0.98 2.87 3.815 (2)

Symmetry code: (ii) x-1, y, z.