metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaguadiazidocobalt(II) 3,3'-dicarboxylato-1,1'-ethylenedipyridinium

Yan-Qing Wen, Chun-Yan Tian and En-Qing Gao*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China

Correspondence e-mail: eggao@chem.ecnu.edu.cn

Received 21 October 2010; accepted 9 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.024; wR factor = 0.074; data-to-parameter ratio = 12.4.

The asymmetric unit of the title compound, $[Co(N_3)_2(H_2O)_4]$. C14H12N2O4, comprises half of the cobalt(II) complex molecule and a half of the 3,3'-dicarboxylato-1,1'-ethylenedipyridinium molecule. The Co^{II} atom is located on an inversion centre and hence the complex molecule adopts a centrosymmetric trans-octahedral geometry. The zwitterionic organic molecule is also centrosymmetric with the centre of the C-C bond of the ethylene moiety coinciding with an inversion centre. The adduct of metal complex and organic molecule is associated into a three-dimenional network through $O-H \cdots O$ hydrogen bonds.

Related literature

For background to hydrogen bonds, see: Braga & Grepioni (2000); Fabbiani et al. (2010); Salitros et al. (2010); Schultheis et al. (2010). For the synthesis of the ligand, see: Loeb et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990).

OH2 H2O

Experimental

Crystal data

 $[Co(N_3)_2(H_2O)_4] \cdot C_{14}H_{12}N_2O_4$ $\gamma = 95.011 \ (2)^{\circ}$ $M_r = 487.31$ V = 488.71 (7) Å³ Triclinic, $P\overline{1}$ Z = 1a = 7.4309 (6) Å Mo $K\alpha$ radiation b = 7.7507 (7) Å $\mu = 0.94 \text{ mm}^{-3}$ c = 8.5582 (7) Å T = 296 K $\alpha = 95.463 \ (2)^{\circ}$ $0.25 \times 0.20 \times 0.15~\text{mm}$ $\beta = 90.586 (2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2008) $T_{\min} = 0.799, T_{\max} = 0.872$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of
$wR(F^2) = 0.074$	independent and constrained
S = 1.12	refinement
1907 reflections	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
9 restraints	

6091 measured reflections

 $R_{\rm int} = 0.015$

1907 independent reflections

1889 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Co1-O4	2.0780 (12)	Co1-O3	2.1431 (12)
Co1-N2	2.0958 (15)		

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3B\cdots O1^i$	0.84 (2)	2.01 (2)	2.8180 (18)	163 (2)
$O3-H3C\cdots O1^{ii}$	0.84 (2)	1.91 (2)	2.7395 (17)	172 (2)
$O4-H4C\cdots O2^{iii}$	0.86 (2)	1.84 (2)	2.6901 (18)	173 (3)
$O4-H4B\cdots O2$	0.81 (2)	2.03 (2)	2.8028 (18)	159 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are thankful for financial support from the Shanghai Leading Academic Discipline Project (B409).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2284).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Braga, D. & Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

- Fabbiani, P. A. F., Levendis, C. D., Buth, G., Kuhs, F. W., Shanklandd, N. & Sowa, H. (2010). *CrystEngComm*, **12**, 2354–2360.
- Loeb, S. J., Tiburcio, J., Vella, S. J. & Wisner, J. A. (2006). Org. Biomol. Chem. 4, 667–680.
- Salitros, I., Pavlik, J., Boca, R., Fuhr, O., Rajaduraia, C. & Ruben, M. (2010). CrystEngComm, 12, 2361–2368.
- Schultheis, N., Bethune, S. & Henck, J. O. (2010). CrystEngComm, 12, 2436–2442.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, m1566–m1567 [https://doi.org/10.1107/S1600536810046143] Tetraaquadiazidocobalt(II) 3,3'-dicarboxylato-1,1'-ethylenedipyridinium Yan-Qing Wen, Chun-Yan Tian and En-Qing Gao

S1. Comment

Hydrogen bonds play a key role in biological systems and materials, and they have been widely used as a putative supramolecular tool for engineering organic and metal-organic solids (Fabbiani et al., 2010; Salitros et al., 2010; Schultheis et al., 2010; Braga & Grepioni, 2000). In this paper, we report the structure of the title compound, (I), which contains a neutral metal complex molecule, $[Co(N_3)_2(H_2O)_4]$, and a zwitterionic dicarboxylate, 1,2-bis(3-carboxylatopyridinium)ethane (Fig. 1). The metal complex molecule is centrosymmetric, with the octahedral-coordinated Co^{II} by two azide anions and four water molecules in a *trans* arrangement (Fig. 1, Table 1). Two opposite Co-O distances are longer than the Co-N and other Co-O ones, defining an axially elongated geometry. The zwitterionic molecule is also centrosymmetric (Fig.1). The inorganic complex molecules and the carboxylate groups are associated into a sheet through O—H···O hydrogen bonds involving the coordinated aqua ligands (O3 and O4) and the carboxylate oxygen atoms (O1 and O2) (Fig. 2, Table 2). The two O4 aqua ligands from symmetry related complex molecules and two O2 atoms from symmetry related organic molecules form a hydrogen-bonded ring which can be denoted by the graph set $R_4^2(8)$ (Bernstein *et al.*, 1995; Etter, 1990). Similar hydrogen-bonded rings are formed by O1 and O3. The carboxylate group forms a $R_2^2(8)$ hydrogen-bonded ring with two aqua ligands from the same complex molecule. Besides, a large hydrogen-bonded ring $[R_4^4(16)]$ is formed by two carboxylate groups and four agua ligands from two complex molecules. The organic ligands interlink the hydrogen-bonded sheets of the metal complexes into the three-dimensional structure (Fig. 3).

S2. Experimental

The zwitterionic ligand ($[H_2L^1]Br_2$) was synthesised from 1,2-dibromoethane and ethyl nicotinate according to the published procedure (Loeb *et al.*, 2006). An aqueous solution (4 mL) of $[H_2L^1]Br_2$ (0.1 mmol) and NaN₃ (1 mmol) was added to a DMF solution (1.5 mL) of Co(ClO₄)₂.6H₂O (0.2 mmol) with stirring. The resulting solution was allowed to evaporate slowly at room temperature, yielding light-red block crystals of (I) in three days. Yield: 75%. Anal. calcd (found) (%) for CoC₁₄H₂₀N₈O₈: C, 34.79 (34.51); H, 4.39 (4.14); N, 22.87 (23.00). Main IR bands (KBr, *v*/cm⁻¹): 3427*m*, 3097w, 2042 s, 1637 s, 1606 s, 1392*m*, 765*m*, 688*m*.

S3. Refinement

All hydrogen atoms attached to carbon atoms were placed at calculated positions and refined with the riding model using AFIX 43 and AFIX 23 instructions for aromatic C—H and secondary CH₂. The water hydrogen atoms were initially located from difference Fourier maps and refined isotropically with restraints on O—H distance (0.85 Å) and H—O—H angle, and $U_{iso}(H) = 1.5U_{eq}(O)$. The 'rigid-bond' restraint was applied on the azide moiety (N2—N3—N4) using the *SHELXL* DELU instruction.

Figure 1

The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, -y, 1 - z; (ii) 1 - x, -y, -z].

Figure 2

Two-dimensional layer structure connected through intermolecula O—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x, -y + 1, -z + 1].

Figure 3

Three dimensional structure connected by the organic ligands interlinking the hydrogen-bonded sheets.

Tetraaquadiazidocobalt(II) 3,3'-dicarboxylato-1,1'-ethylenedipyridinium

Crystal data

$[Co(N_3)_2(H_2O)_4] \cdot C_{14}H_{12}N_2O_4$	Z = 1
$M_r = 487.31$	F(000) = 251
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.656 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 7.4309 (6) Å	Cell parameters from 15377 reflections
b = 7.7507 (7) Å	$\theta = 3.4 - 27.5^{\circ}$
c = 8.5582 (7) Å	$\mu = 0.94 \text{ mm}^{-1}$
$\alpha = 95.463 \ (2)^{\circ}$	T = 296 K
$\beta = 90.586 \ (2)^{\circ}$	Block, red
$\gamma = 95.011 \ (2)^{\circ}$	$0.25 \times 0.20 \times 0.15 \text{ mm}$
$V = 488.71 (7) Å^3$	
Data collection	
Bruker APEXII CCD area-detector	6091 measured reflections
diffractometer	1907 independent reflections
Radiation source: fine-focus sealed tube	1889 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.015$
phi and ω scans	$\theta_{\text{max}} = 26.1^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2008)	$k = -9 \rightarrow 8$
$T_{\min} = 0.799, \ T_{\max} = 0.872$	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.074$	neighbouring sites
S = 1.12	H atoms treated by a mixture of independent
1907 reflections	and constrained refinement
154 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 0.2239P]$
9 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.0000	0.0000	0.5000	0.02282 (12)	
C1	0.3729 (2)	0.5896 (2)	0.3420 (2)	0.0283 (3)	
C2	0.5025 (2)	0.4708 (2)	0.26023 (19)	0.0258 (3)	
C3	0.6822 (2)	0.5278 (2)	0.2423 (2)	0.0335 (4)	
H3A	0.7234	0.6424	0.2751	0.040*	
C4	0.4437 (2)	0.3011 (2)	0.20731 (19)	0.0255 (3)	
H4A	0.3228	0.2613	0.2153	0.031*	
C5	0.8009 (2)	0.4148 (3)	0.1756 (3)	0.0392 (4)	
H5A	0.9215	0.4530	0.1625	0.047*	
C6	0.7382 (2)	0.2466 (2)	0.1293 (2)	0.0339 (4)	
H6A	0.8173	0.1685	0.0875	0.041*	
C7	0.5003 (2)	0.0111 (2)	0.08913 (19)	0.0286 (3)	
H7A	0.3795	-0.0177	0.1265	0.034*	
H7B	0.5803	-0.0667	0.1303	0.034*	
N1	0.56206 (18)	0.19334 (17)	0.14405 (16)	0.0257 (3)	
N2	0.0817 (2)	-0.0222 (2)	0.26583 (18)	0.0399 (4)	
N3	-0.0146 (2)	-0.1006 (2)	0.16704 (17)	0.0320 (3)	
N4	-0.1073 (3)	-0.1740 (2)	0.0672 (2)	0.0461 (4)	
01	0.43867 (18)	0.73681 (16)	0.39597 (19)	0.0435 (4)	
O2	0.21281 (17)	0.52889 (16)	0.35044 (18)	0.0405 (3)	
03	0.27781 (16)	-0.00456 (16)	0.56790 (15)	0.0319 (3)	
H3B	0.347 (3)	0.086 (2)	0.569 (3)	0.048*	
H3C	0.321 (3)	-0.082 (2)	0.508 (3)	0.048*	
O4	0.02796 (18)	0.26995 (16)	0.50991 (18)	0.0379 (3)	

supporting information

H4B	0.090 (3)	0.323 (3)	0.449 (3)	0.057*
H4C	-0.053 (3)	0.334 (3)	0.547 (3)	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Col	0.02008 (17)	0.02004 (17)	0.02747 (17)	-0.00003 (11)	0.00302 (11)	-0.00082 (11)
C1	0.0273 (8)	0.0202 (7)	0.0363 (8)	0.0007 (6)	0.0062 (7)	-0.0031 (6)
C2	0.0247 (8)	0.0210 (7)	0.0305 (8)	0.0009 (6)	0.0035 (6)	-0.0024 (6)
C3	0.0282 (9)	0.0247 (8)	0.0445 (10)	-0.0047 (7)	0.0040 (7)	-0.0067 (7)
C4	0.0220 (7)	0.0230 (8)	0.0301 (8)	0.0002 (6)	0.0040 (6)	-0.0026 (6)
C5	0.0231 (8)	0.0348 (9)	0.0565 (12)	-0.0035 (7)	0.0081 (8)	-0.0077 (8)
C6	0.0247 (8)	0.0311 (9)	0.0447 (10)	0.0045 (7)	0.0068 (7)	-0.0056 (7)
C7	0.0331 (8)	0.0179 (7)	0.0336 (9)	0.0000 (6)	0.0054 (7)	-0.0030 (6)
N1	0.0256 (7)	0.0203 (6)	0.0297 (7)	0.0006 (5)	0.0035 (5)	-0.0043 (5)
N2	0.0335 (8)	0.0555 (10)	0.0297 (8)	-0.0006 (7)	0.0064 (6)	0.0028 (7)
N3	0.0314 (8)	0.0343 (8)	0.0318 (8)	0.0069 (6)	0.0117 (7)	0.0059 (6)
N4	0.0475 (10)	0.0485 (10)	0.0398 (9)	-0.0053 (8)	0.0032 (8)	-0.0011 (8)
O1	0.0330 (7)	0.0226 (6)	0.0701 (10)	-0.0026 (5)	0.0105 (6)	-0.0159 (6)
O2	0.0282 (6)	0.0241 (6)	0.0665 (9)	-0.0017 (5)	0.0160 (6)	-0.0082 (6)
O3	0.0230 (6)	0.0274 (6)	0.0434 (7)	0.0016 (5)	0.0014 (5)	-0.0067 (5)
04	0.0356 (7)	0.0210 (6)	0.0575 (8)	0.0026 (5)	0.0178 (6)	0.0028 (5)

Geometric parameters (Å, °)

Co1—04	2.0780 (12)	C5—C6	1.366 (3)
Co1—O4 ⁱ	2.0780 (12)	С5—Н5А	0.9300
Co1—N2	2.0958 (15)	C6—N1	1.349 (2)
Co1—N2 ⁱ	2.0958 (15)	C6—H6A	0.9300
Co1-O3 ⁱ	2.1431 (12)	C7—N1	1.478 (2)
Co1—O3	2.1431 (12)	C7—C7 ⁱⁱ	1.519 (3)
C101	1.245 (2)	С7—Н7А	0.9700
C1—O2	1.246 (2)	С7—Н7В	0.9700
C1—C2	1.521 (2)	N2—N3	1.188 (2)
C2—C4	1.381 (2)	N3—N4	1.164 (2)
С2—С3	1.384 (2)	O3—H3B	0.836 (15)
С3—С5	1.386 (3)	O3—H3C	0.839 (15)
С3—НЗА	0.9300	O4—H4B	0.813 (16)
C4—N1	1.348 (2)	O4—H4C	0.856 (16)
C4—H4A	0.9300		
O4—Co1—O4 ⁱ	180.0	N1—C4—H4A	120.1
O4—Co1—N2	91.41 (6)	C2—C4—H4A	120.1
O4 ⁱ —Co1—N2	88.59 (6)	C6—C5—C3	119.02 (16)
O4—Co1—N2 ⁱ	88.59 (6)	C6—C5—H5A	120.5
O4 ⁱ —Co1—N2 ⁱ	91.41 (6)	С3—С5—Н5А	120.5
N2—Co1—N2 ⁱ	180.0	N1—C6—C5	120.23 (16)
O4-Co1-O3 ⁱ	88.83 (5)	N1—C6—H6A	119.9

O4 ⁱ —Co1—O3 ⁱ	91.17 (5)	С5—С6—Н6А	119.9
N2-Co1-O3 ⁱ	92.17 (6)	N1	109.09 (16)
N2 ⁱ —Co1—O3 ⁱ	87.83 (6)	N1—C7—H7A	109.9
O4—Co1—O3	91.17 (5)	C7 ⁱⁱ —C7—H7A	109.9
O4 ⁱ —Co1—O3	88.83 (5)	N1—C7—H7B	109.9
N2—Co1—O3	87.83 (6)	C7 ⁱⁱ —C7—H7B	109.9
N2 ⁱ —Co1—O3	92.17 (6)	H7A—C7—H7B	108.3
O3 ⁱ —Co1—O3	180.0	C4—N1—C6	121.82 (14)
O1—C1—O2	126.73 (15)	C4—N1—C7	120.05 (13)
O1—C1—C2	116.50 (14)	C6—N1—C7	118.13 (14)
O2—C1—C2	116.75 (14)	N3—N2—Co1	120.05 (12)
C4—C2—C3	118.77 (14)	N4—N3—N2	178.01 (19)
C4—C2—C1	120.22 (14)	Co1—O3—H3B	119.4 (17)
C3—C2—C1	120.97 (14)	Co1—O3—H3C	107.1 (17)
C2—C3—C5	120.26 (16)	НЗВ—ОЗ—НЗС	108.0 (19)
С2—С3—НЗА	119.9	Co1—O4—H4B	122.9 (18)
С5—С3—НЗА	119.9	Co1—O4—H4C	123.1 (17)
N1—C4—C2	119.85 (14)	H4B—O4—H4C	109 (2)
01-C1-C2-C4	175 22 (17)	$C_{2}C_{4}N_{1}C_{6}$	-0.5(3)
$0^{2}-C^{1}-C^{2}-C^{4}$	-36(2)	$C_2 - C_4 - N_1 - C_7$	$179\ 21\ (14)$
01 - C1 - C2 - C3	-25(3)	C_{5} C_{6} N_{1} C_{4}	-1.6(3)
$0^{2}-C^{1}-C^{2}-C^{3}$	178 67 (17)	$C_{5} - C_{6} - N_{1} - C_{7}$	17870(17)
C4-C2-C3-C5	-15(3)	$C7^{ii}$ $C7$ $N1$ $C4$	108.4(2)
C1 - C2 - C3 - C5	176 28 (18)	$C7^{ii}$ — $C7$ — $N1$ — $C6$	-71.9(2)
C_{3} C_{2} C_{4} N_{1}	2, 0, (2)	04-Co1-N2-N3	-12240(16)
C1 - C2 - C4 - N1	-175.75(15)	$O4^{i}$ —Co1—N2—N3	57.60 (16)
C2—C3—C5—C6	-0.6 (3)	$O3^{i}$ —Co1—N2—N3	-33.51 (16)
C3—C5—C6—N1	2.1 (3)	O3—Co1—N2—N3	146.49 (16)
	\[\] \[\[\] \[\ /

Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D··· A	D—H··· A
O3—H3 <i>B</i> …O1 ⁱⁱⁱ	0.84 (2)	2.01 (2)	2.8180 (18)	163 (2)
O3—H3 <i>C</i> ···O1 ^{iv}	0.84 (2)	1.91 (2)	2.7395 (17)	172 (2)
O4—H4 <i>C</i> ···O2 ^v	0.86 (2)	1.84 (2)	2.6901 (18)	173 (3)
O4—H4 <i>B</i> ⋯O2	0.81 (2)	2.03 (2)	2.8028 (18)	159 (2)

Symmetry codes: (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*, -*y*+1, -*z*+1.