

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-(4-hydroxy-1-methyl-2-oxo-1,2dihydroquinolin-3-yl)acetate

Svitlana V. Shishkina,^a* Oleg V. Shishkin,^a Igor V. Ukrainets^b and Elena V. Mospanova^b

^aSTC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61001, Ukraine, and ^bNational University of Pharmacy, 4 Blyukhera ave., Kharkiv 61002, Ukraine Correspondence e-mail: sveta@xray.isc.kharkov.com

Received 13 October 2010; accepted 10 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.082; data-to-parameter ratio = 19.5.

In the title compound, $C_{13}H_{13}NO_4$, the bicyclic quinolone fragment and the ester group are approximately orthogonal, making a dihedral angle of 83.3 (2)° and an intramolecular $C-H\cdots O$ interaction occurs. In the crystal, intermolecular $O-H\cdots O$ hydrogen bonding generates a zigzag chain along the *c* axis.

Related literature

Esters of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-acetic acids reveal appreciable biological activity, see: Ukrainets *et al.* (2010). For a related structure, see: Ukrainets *et al.* (2009). For van der Waals radii, see: Zefirov (1997). For reference bond lengths, see: Bürgi & Dunitz (1994).

Experimental

Crystal data C₁₃H₁₃NO₄

 $M_r = 247.24$

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.11 \text{ mm}^-$

Monoclinic, $P2_1/c$ a = 9.0792 (6) Å b = 11.4904 (6) Å c = 11.4071 (7) Å $\beta = 105.272$ (7)° V = 1148.00 (12) Å³

Data collection

Oxford Xcalibur3 diffractometer 11774 measured reflections 3295 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.082$ S = 0.723295 reflections 169 parameters T = 293 K $0.20 \times 0.10 \times 0.10 \text{ mm}$

1454 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{\rm max}=0.14~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.14~{\rm e}~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2O\cdots O1^{i}$ $C10-H10A\cdots O1^{i}$	0.921 (17) 0.97	1.760 (17) 2.48	2.6456 (12) 3.3335 (16)	160.2 (15) 147
Summatry and (i) y				

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlis RED*; data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* (Siemens, 1998); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2282).

References

- Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.
- Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siemens (1998). XP. Siemens Analytical X-ray Division Inc., Karlsruhe, Germany.
- Ukrainets, I. V., Mospanova, E. V., Davidenko, A. A., Tkach, A. A. & Gorokhova, O. V. (2010). *Khim. Geterotsikl. Soedin.* pp. 1173–1184.
- Ukrainets, I. V., Shishkina, S. V., Shishkin, O. V., Davidenko, A. A. & Tkach, A. A. (2009). Acta Cryst. E65, 0968.
- Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.

supporting information

Acta Cryst. (2010). E66, o3195 [https://doi.org/10.1107/S1600536810046453] Methyl 2-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetate Svitlana V. Shishkina, Oleg V. Shishkin, Igor V. Ukrainets and Elena V. Mospanova

S1. Comment

Esters of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-acetic acids reveal appreciable biological activity (Ukrainets *et al.*, 2010). It is interesting that the ethyl ester possesses stronger anti-inflammory activity than methyl ester. On the contrary, the methyl ester has pronounced analgetic activity. In this paper we report the molecular and crystal structure of the (4-hydroxy-1-methyl-2-oxo-1,2- dihydroquinolin-3-yl)-acetic acid methyl ester (1) (Fig. 1) with a comparative analysis with previously studied ethyl analogue (II) (Ukrainets *et al.*, 2009). In contrast to II the bicyclic fragment of I is not strictly planar (the C1—N1—C9—C8 torsion angle is -5.8 (2) °). The planar ester group at the C10 atom is orthogonal to the plane of quinoline ring (the C7—C8—C10—C11 torsion angle is 93.9 (1) °) and the C8—C10—C11—O3 torsion angle is -19.7 (2) °. The C9—O1 bond (1.251 (1) Å) is elongated comparing with its mean value (1.210 Å; Bürgi & Dunitz, 1994) owing to the formation of the intermolecular hydrogen atom of hydroxy group despite of repulsion with one of hydrogen atoms of neighbouring methylene group: the H10*a*···H2O distance is 2.09 Å [the van der Waals radii sum is 2.34 Å (Zefirov, 1997)]. In the crystal packing the molecules are connected by the O2—H2O···O1 intermolecular hydrogen bond into a zigzag chain along the [0 0 1] direction (Table 1, Fig. 2). Neighbouring chains are connected by the C-H···*π* interactions between the methyl group at N1-pyridyl atom and C1···C6 aromatic ring [-x, 1-y, 1-z; H···Cg distance (Cg is centre of aromatic ring) is 3.28 Å, C-H···Cg bond angle is 125 °].

S2. Experimental

(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-acetic acid is synthesised using the published method (Ukrainets *et al.*, 2010). Yield 96%; m.p. 452-454 K.

S3. Refinement

All hydrogen atoms were located from electron density difference maps and were refined in the riding mode approximation with U_{iso} constrained to be 1.5 times U_{eq} of the carrier atom for the methyl group and 1.2 times U_{eq} of the carrier atom for the other atoms. The hydrogen atom of the hydroxyl group was refined in an isotropic mode.

Figure 1

View of the title compound with atomic membering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Crystal packing of the title molecules. The hydrogen bonds are shown by dashed lines.

Methyl 2-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetate

Crystal data	
C ₁₃ H ₁₃ NO ₄	F(000) = 520
$M_r = 247.24$	$D_{\rm x} = 1.431 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.0792 (6) Å	Cell parameters from 3049 reflections
b = 11.4904 (6) Å	$\theta = 2.9 - 32.1^{\circ}$
c = 11.4071 (7) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 105.272 \ (7)^{\circ}$	T = 293 K
$V = 1148.00 (12) Å^3$	Block, colourless
Z = 4	$0.20 \times 0.10 \times 0.10$ mm

Data collection

Oxford Xcalibur3 diffractometer	3295 independent reflections 1454 reflections with $I > 2\sigma(I)$
Radiation source: Enhance (Mo) X-ray Source	$R_{\rm int} = 0.031$
Graphite monochromator	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
Detector resolution: 16.1827 pixels mm ⁻¹	$h = -12 \rightarrow 12$
ω scans	$k = -15 \rightarrow 16$
11774 measured reflections	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.082$	H atoms treated by a mixture of independent
S = 0.72	and constrained refinement
3295 reflections	$w = 1/[\sigma^2(F_o^2) + (0.044P)^2]$
169 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.14 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.27207 (11)	0.49052 (8)	0.49471 (8)	0.0442 (3)	
01	0.39749 (11)	0.33292 (7)	0.44953 (8)	0.0582 (3)	
O2	0.26304 (11)	0.34913 (8)	0.82386 (8)	0.0565 (3)	
H2O	0.3143 (18)	0.2811 (15)	0.8511 (15)	0.100 (6)*	
03	0.19057 (12)	0.11214 (7)	0.58965 (9)	0.0613 (3)	
O4	0.41580 (10)	0.02233 (7)	0.61834 (8)	0.0576 (3)	
C1	0.19562 (14)	0.54717 (10)	0.56935 (11)	0.0412 (3)	
C2	0.11931 (15)	0.65295 (10)	0.53520 (13)	0.0538 (4)	
H2	0.1204	0.6877	0.4618	0.065*	
C3	0.04276 (16)	0.70527 (12)	0.61044 (14)	0.0615 (4)	
H3	-0.0073	0.7755	0.5873	0.074*	
C4	0.03911 (16)	0.65520(11)	0.71953 (14)	0.0591 (4)	
H4	-0.0132	0.6916	0.7693	0.071*	
C5	0.11239 (14)	0.55205 (11)	0.75432 (12)	0.0500 (3)	
H5	0.1093	0.5183	0.8277	0.060*	
C6	0.19244 (13)	0.49640 (9)	0.68027 (10)	0.0404 (3)	
C7	0.27042 (13)	0.38819 (10)	0.71437 (10)	0.0411 (3)	

supporting information

C8	0.34114 (14)	0.33278 (9)	0.63922 (11)	0.0416 (3)
C9	0.33855 (14)	0.38309 (10)	0.52337 (11)	0.0433 (3)
C10	0.42339 (14)	0.21863 (10)	0.66808 (12)	0.0487 (3)
H10B	0.5113	0.2192	0.6348	0.058*
H10A	0.4607	0.2112	0.7556	0.058*
C11	0.32703 (16)	0.11471 (10)	0.61955 (11)	0.0439 (3)
C12	0.33896 (18)	-0.08538 (12)	0.57708 (14)	0.0681 (4)
H12C	0.2641	-0.1004	0.6209	0.102*
H12B	0.4120	-0.1477	0.5910	0.102*
H12A	0.2895	-0.0800	0.4918	0.102*
C13	0.27996 (17)	0.54417 (12)	0.38000 (11)	0.0600 (4)
H13C	0.3199	0.6217	0.3953	0.090*
H13B	0.1795	0.5472	0.3254	0.090*
H13A	0.3456	0.4988	0.3442	0.090*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0566 (7)	0.0417 (6)	0.0338 (6)	-0.0103 (5)	0.0112 (5)	-0.0002 (4)
01	0.0705 (6)	0.0588 (6)	0.0493 (6)	-0.0083 (5)	0.0230 (5)	-0.0177 (4)
O2	0.0725 (7)	0.0558 (6)	0.0474 (6)	0.0058 (5)	0.0269 (5)	0.0123 (5)
03	0.0581 (6)	0.0474 (6)	0.0775 (7)	-0.0025 (5)	0.0159 (5)	-0.0014 (4)
O4	0.0650 (6)	0.0387 (5)	0.0674 (6)	0.0057 (4)	0.0144 (5)	-0.0046 (4)
C1	0.0428 (7)	0.0371 (7)	0.0410 (7)	-0.0088(5)	0.0064 (5)	-0.0028 (5)
C2	0.0580 (9)	0.0469 (8)	0.0511 (9)	-0.0068 (7)	0.0049 (7)	0.0062 (6)
C3	0.0560 (9)	0.0444 (8)	0.0781 (11)	0.0047 (7)	0.0071 (8)	-0.0007(7)
C4	0.0554 (9)	0.0539 (9)	0.0672 (10)	0.0045 (7)	0.0150 (7)	-0.0136 (7)
C5	0.0506 (8)	0.0524 (8)	0.0467 (8)	-0.0019 (6)	0.0125 (6)	-0.0069 (6)
C6	0.0444 (7)	0.0354 (6)	0.0403 (7)	-0.0057(5)	0.0090 (5)	-0.0048 (5)
C7	0.0478 (7)	0.0382 (7)	0.0375 (7)	-0.0080 (6)	0.0117 (6)	-0.0002 (5)
C8	0.0464 (7)	0.0355 (6)	0.0435 (7)	-0.0070(5)	0.0127 (6)	-0.0027 (5)
C9	0.0468 (7)	0.0417 (7)	0.0423 (8)	-0.0117 (6)	0.0131 (6)	-0.0099 (5)
C10	0.0529 (8)	0.0414 (7)	0.0537 (8)	0.0001 (6)	0.0174 (6)	-0.0016 (6)
C11	0.0577 (9)	0.0385 (7)	0.0377 (7)	0.0003 (7)	0.0164 (6)	0.0019 (5)
C12	0.0916 (11)	0.0384 (8)	0.0681 (10)	0.0022 (7)	0.0100 (8)	-0.0086 (6)
C13	0.0731 (10)	0.0644 (9)	0.0426 (8)	-0.0146 (7)	0.0152 (7)	0.0062 (6)

Geometric parameters (Å, °)

N1—C9	1.3751 (15)	C4—H4	0.9300
N1-C1	1.3936 (15)	C5—C6	1.4049 (16)
N1-C13	1.4652 (15)	С5—Н5	0.9300
O1—C9	1.2512 (14)	C6—C7	1.4330 (16)
O2—C7	1.3454 (14)	С7—С8	1.3574 (16)
O2—H2O	0.921 (17)	C8—C9	1.4370 (17)
O3—C11	1.1957 (14)	C8—C10	1.5023 (15)
O4—C11	1.3351 (14)	C10—C11	1.4975 (17)
O4—C12	1.4378 (15)	C10—H10B	0.9700

C1—C6	1,4005 (16)	C10—H10A	0.9700
C1—C2	1.4025 (17)	C12 - H12C	0.9600
$C^2 - C^3$	1 3766 (19)	C12—H12B	0.9600
C2—H2	0.9300	C12—H12A	0.9600
C3—C4	1.379 (2)	C13—H13C	0.9600
C3—H3	0.9300	C13—H13B	0.9600
C4-C5	1 3660 (17)	C13—H13A	0.9600
	1.2000 (17)		0.9000
C9—N1—C1	122.15 (10)	C7—C8—C10	124.17 (11)
C9—N1—C13	117.93 (11)	C9—C8—C10	116.07 (11)
C1-N1-C13	119.90 (11)	01—C9—N1	119.49 (11)
C7—O2—H2O	116.9 (10)	01	121.83 (12)
C11-O4-C12	116.46 (10)	N1-C9-C8	118.66 (11)
N1-C1-C6	119.31 (11)	C11—C10—C8	114.01 (10)
N1-C1-C2	121.62 (11)	C11—C10—H10B	108.8
C6-C1-C2	119.06 (12)	C8-C10-H10B	108.8
C_{3} $-C_{2}$ $-C_{1}$	119.00 (12)	C11—C10—H10A	108.8
$C_3 - C_2 - H_2$	120.0	C8-C10-H10A	108.8
C1 - C2 - H2	120.0	H10B— $C10$ — $H10A$	107.6
$C^2 - C^3 - C^4$	121.09(13)	03-011-04	124 09 (11)
C2—C3—H3	119.5	03-C11-C10	125.86 (11)
C4—C3—H3	119.5	04-C11-C10	110.01(11)
$C_{5}-C_{4}-C_{3}$	119.90 (13)	04-C12-H12C	109.5
C5-C4-H4	120.1	04-C12-H12B	109.5
$C_3 - C_4 - H_4$	120.1	$H_{12}C_{}C_{12}$ $H_{12}B$	109.5
C4-C5-C6	120.65 (13)	04-C12-H12A	109.5
C4—C5—H5	119.7	$H_{12}C_{}C_{12}$ $H_{12}A$	109.5
C6-C5-H5	119.7	H12B $C12$ $H12A$	109.5
$C_1 - C_6 - C_5$	119.7	N1-C13-H13C	109.5
C1 - C6 - C7	118 71 (11)	N1—C13—H13B	109.5
C_{5} C_{6} C_{7}	121 91 (11)	H_{13C} $-C_{13}$ $-H_{13B}$	109.5
02 - C7 - C8	125.26 (11)	N1 - C13 - H13A	109.5
02 - C7 - C6	11355(10)	H_{13C} $-C_{13}$ H_{13A}	109.5
$C_{2}^{-} = C_{1}^{-} = C_{0}^{-}$	121 18 (11)	H13B_C13_H13A	109.5
C_{2}^{-}	119 75 (11)		109.5
07-00-07	11)./5 (11)		
C9-N1-C1-C6	3 30 (16)	02 - C7 - C8 - C9	178 97 (10)
C_{13} N1 $-C_{1}$ $-C_{6}$	-178 30 (10)	C6-C7-C8-C9	0.14(17)
C9-N1-C1-C2	-17555(11)	02-C7-C8-C10	-0.41(19)
$C_{13} = N_{1} = C_{1} = C_{2}$	2 85 (17)	C6-C7-C8-C10	-17924(10)
N1 - C1 - C2 - C3	2.05(17) 178 85 (11)	$C_1 = N_1 = C_2 = O_1$	175.24(10)
-66263	-0.01(17)	C13 - N1 - C9 - 01	-2.86(16)
$C_1 - C_2 - C_3 - C_4$	-0.2(2)	C1 - N1 - C9 - C8	-5.80(16)
$C_{2} = C_{3} = C_{4} = C_{5}$	0.2(2)	C13 - N1 - C9 - C8	175 77 (11)
$C_{2} = C_{3} = C_{4} = C_{5} = C_{5}$	0.0(2)	C7 - C8 - C9 - 01	-177 38 (11)
$N_1 - C_1 - C_5 - C_5$	-178 52 (11)	$C_10-C_8-C_9-01$	2.05(17)
C_{2}	0.36(16)	C7 - C8 - C9 - N1	2.03(17) 4.03(17)
12 - 01 - 00 - 03	0.00(10)	$C_{10} = C_{20} = C_{20} = C_{10}$	-17654(10)
	0.22 (13)	U10-00-09-NI	170.34 (10)

supporting information

C2—C1—C6—C7	179.87 (11)	C7—C8—C10—C11	93.90 (14)
C4—C5—C6—C1	-0.53 (18)	C9—C8—C10—C11	-85.50 (13)
C4—C5—C6—C7	179.98 (11)	C12—O4—C11—O3	0.54 (18)
C1—C6—C7—O2	178.39 (10)	C12-O4-C11-C10	178.27 (11)
C5—C6—C7—O2	-2.12 (16)	C8—C10—C11—O3	-19.67 (18)
C1—C6—C7—C8	-2.65 (16)	C8—C10—C11—O4	162.65 (10)
C5—C6—C7—C8	176.84 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
02—H2 <i>O</i> …O1 ⁱ	0.921 (17)	1.760 (17)	2.6456 (12)	160.2 (15)
C10—H10A…O1 ⁱ	0.97	2.48	3.3335 (16)	147
С5—Н5…О2	0.93	2.40	2.7138 (16)	100

Symmetry code: (i) x, -y+1/2, z+1/2.