Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hexaaquamagnesium(II) bis(pyridinium-2,6-dicarboxylate)

Hoda Pasdar, ${ }^{\text {a }}$ Sanaz Heidari, ${ }^{\text {a* Hossein Aghabozorg }}{ }^{\text {a }}$ and Behrouz Notash ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and ${ }^{\text {b }}$ Department of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
Correspondence e-mail: heidari.sanaz3335@yahoo.com
Received 11 October 2010; accepted 11 November 2010
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.038 ; w R$ factor $=0.095$; data-to-parameter ratio $=14.7$.

In the title compound, $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}$, a single sixcoordinate Mg^{2+} cation (site symmetry $2 / m$) is bonded to six water molecules in a distorted octahedral geometry. The crystal packing between the complex cation and the zwitterionic organic cation (m symmetry) is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aghabozorg et al. (2005); Grossel et al. (2006); Ptasiewicz-Bak \& Leciejewicz (2003); Dale et al. (2003); Yang et al. (2005); Kariuki \& Jones (1989)

Experimental

Crystal data
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2} \quad M_{r}=464.63$

Monoclinic, $\mathrm{C} 2 / \mathrm{m}$
$a=13.432$ (3) A
$Z=2$
$b=11.108$ (2) \AA
$c=6.5845$ (13) \AA
$\beta=92.79$ (3) ${ }^{\circ}$
$V=981.3(3) \AA^{3}$
Mo $K \alpha$ radiation
$\mu=0.17 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.35 \times 0.30 \times 0.15 \mathrm{~mm}$

Data collection

Stoe IPDS II diffractometer
Absorption correction: numerical (X-RED and X-SHAPE;
Stoe \& Cie, 2005)
$T_{\text {min }}=0.940, T_{\text {max }}=0.973$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.095$
$S=1.12$
1383 reflections
94 parameters

5499 measured reflections 1383 independent reflections 1178 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 . ${ }^{\text {O } 11}$	0.862 (19)	1.834 (19)	2.6940 (14)	174.6 (19)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}$	0.85 (2)	1.93 (2)	2.7758 (14)	171 (2)
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {i }}$	0.89 (2)	1.92 (2)	2.7960 (14)	167.5 (19)
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.93	2.58	3.308 (3)	136

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+1$.

Data collection: X-AREA (Stoe \& Cie, 2005); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to the Islamic Azad University, North Branch, for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2069).

References

Aghabozorg, H., Akbari Saei, A. \& Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.
Aghabozorg, H., Manteghi, F. \& Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.
Dale, S. H., Elsegood, M. R. J. \& Kainth, S. (2003). Acta Cryst. C59, m505m508.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Grossel, M. C., Dwyer, A. N., Hursthouse, M. B. \& Orton, J. B. (2006). CrystEngComm, 8, 123-128.
Kariuki, B. M. \& Jones, W. (1989). Acta Cryst. C45, 1297-1299.
Ptasiewicz-Bak, H. \& Leciejewicz, J. (2003). J. Coord. Chem. 56, 173-180.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Yang, Q., Gao, S. \& Huo, L.-H. (2005). Acta Cryst. E61, m277-m278.

supporting information

Hexaaquamagnesium(II) bis(pyridinium-2,6-dicarboxylate)

Hoda Pasdar, Sanaz Heidari, Hossein Aghabozorg and Behrouz Notash

S1. Comment

Pyridine-2,6-dicarboxylic acid is commonly used as proton donor in proton transfer systems (Aghabozorg et al. 2008). It has been reported that the carboxylate groups are deprotonated and the pyridine ring is protonated in compounds containing pyridine-2,6-dicarboxylic acid(Aghabozorg et al. 2005; Grossel et al. 2006). In addition, the formation of a six-coordinated magnesium (II) ion by water molecules in aqueous solution in the presence of poly carboxylic acids has been observed (Dale et al. 2003; Ptasiewicz-Bak \& Leciejewicz 2003; Yang et al. 2005). The structure of hexa-aquamagnesium(II) pyrazine-2,6-dicarboxylate, $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{pz}-2,6-\mathrm{dc}]$, has also been reported which exhibits hydrogen bonding between the cationic magnesium species and a pyrazine-2,6-dicarboxylate anion (Ptasiewicz-Bak \& Leciejewicz 2003).

In the title compound, $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{pyH}-2,6-\mathrm{dc}]_{2}$, the cation is comprised of a six-coordinate $\mathrm{Mg}^{\text {II }}$ ion bound by water molecules in a distorted octahedral geometry. The dianion is comprised of a pyridine-2,6-dicarboxylic acid group (Fig. 1). Bond lengths and angles for $\mathrm{Mg}-\mathrm{O}$ are in normal ranges. Crystal packing is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intra and intermolecular hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bond interactions with the coordinated water molecules (Fig. 2). The pyridine ring in the dianion is protonated and the two carboxylic acid groups are deprotonated forming a proton transfer fragment.

S2. Experimental

A solution of pyridine-2,6-dicarboxylic acid $\left(\right.$ pydcH $\left._{2}\right)(0.1671 \mathrm{~g}, 1 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$ was added to a solution of pyridazine (pydz) $(0.072 \mathrm{ml}, 1 \mathrm{mmol})$ in ethanol $(8 \mathrm{ml})$ and stirred for 2 hrs . Then an aqueous solution of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ $(0.1282 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added to mixture of $\mathrm{pydcH}_{2}-\mathrm{pydz}$ and stirred for 1 h .1 mL DMSO was then added to the mixture to clear the solution and stirred for more 2 hrs . Slow evaporation of the resulting solution gave colorless crystals of the title compound after three weeks which were suitable for X-ray analysis (decomposition $>260^{\circ} \mathrm{C}$).

S3. Refinement

The hydrogen atoms from the water molecules and pyridinium group were found in a difference Fourier map and refined isotropically without restraint. The $\mathrm{C}-\mathrm{H}$ protons of the aromatic ring were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{pyH}-2,6-\mathrm{dc}]_{2}$ with displacement ellipsoids drawn at 30% probability level. Symmetry codes: (i: $x, 1-y, z$; ii: $1-x, y,-z$; iv: $1-x,-y,-z$).

Figure 2
The packing diagram of $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{pyH}-2,6-\mathrm{dc}]_{2}$ viewed down the c-axis. The intra and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as blue and green dashed lines, respectively.

Hexaaquamagnesium(II) bis(pyridinium-2,6-dicarboxylate)

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}$
$M_{r}=464.63$
Monoclinic, $C 2 / m$
Hall symbol: -C 2 y
$a=13.432$ (3) \AA
$b=11.108$ (2) \AA
$c=6.5845(13) \AA$
$\beta=92.79(3)^{\circ}$
$V=981.3(3) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& F(000)=484.0 \\
& D_{\mathrm{x}}=1.572 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1383 \text { reflections } \\
& \theta=2.4-29.1^{\circ} \\
& \mu=0.17 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Plate, colorless } \\
& 0.35 \times 0.30 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS II

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 0.15 pixels mm^{-1}
rotation method scans
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe \& Cie, 2005)
$T_{\min }=0.940, T_{\max }=0.973$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.095$
$S=1.12$
1383 reflections
94 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& 5499 \text { measured reflections } \\
& 1383 \text { independent reflections } \\
& 1178 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=29.1^{\circ}, \theta_{\min }=2.4^{\circ} \\
& h=-17 \rightarrow 18 \\
& k=-14 \rightarrow 15 \\
& l=-9 \rightarrow 8
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0414 P)^{2}+0.5177 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}

Special details

Experimental. shape of crystal determined optically
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Mg1	0.5000	0.0000	0.0000	$0.0249(2)$
O1	$0.40364(11)$	$0.31353(9)$	$0.27234(16)$	$0.0499(3)$

O2	$0.36594(9)$	$0.18375(8)$	$0.51657(15)$	$0.0396(3)$
O3	0.5000	$0.18182(12)$	0.0000	$0.0360(3)$
O4	$0.41819(12)$	0.0000	$0.2566(2)$	$0.0357(3)$
O5	$0.36739(11)$	0.0000	$-0.1931(2)$	$0.0341(3)$
N1	$0.37142(12)$	0.5000	$0.4931(2)$	$0.0257(3)$
C1	$0.31770(16)$	0.5000	$0.8796(3)$	$0.0347(4)$
H1	0.2989	0.5000	1.0137	0.042^{*}
C2	$0.33156(11)$	$0.39121(12)$	$0.78070(19)$	$0.0312(3)$
H2	0.3225	0.3186	0.8476	0.037^{*}
C3	$0.35898(9)$	$0.39277(10)$	$0.58164(18)$	$0.0253(3)$
C4	$0.37779(11)$	$0.28571(11)$	$0.4447(2)$	$0.0310(3)$
H3	$0.4708(14)$	$0.2281(19)$	$0.084(3)$	$0.053(5)^{*}$
H4	$0.4046(15)$	$0.0617(19)$	$0.327(3)$	$0.057(6)^{*}$
H5	$0.3664(16)$	$0.0661(19)$	$-0.270(3)$	$0.065(6)^{*}$
H1A	$0.3899(19)$	0.5000	$0.366(4)$	$0.046(7)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg1	$0.0367(5)$	$0.0173(4)$	$0.0211(4)$	0.000	$0.0062(3)$	0.000
O1	$0.0892(9)$	$0.0278(5)$	$0.0351(5)$	$0.0102(5)$	$0.0267(6)$	$-0.0011(4)$
O2	$0.0626(7)$	$0.0192(4)$	$0.0374(5)$	$0.0041(4)$	$0.0054(5)$	$0.0011(4)$
O3	$0.0602(10)$	$0.0177(6)$	$0.0315(7)$	0.000	$0.0172(6)$	0.000
O4	$0.0566(9)$	$0.0226(6)$	$0.0296(7)$	0.000	$0.0179(6)$	0.000
O5	$0.0467(8)$	$0.0295(7)$	$0.0262(6)$	0.000	$0.0034(6)$	0.000
N1	$0.0353(8)$	$0.0203(7)$	$0.0220(6)$	0.000	$0.0081(6)$	0.000
C1	$0.0486(12)$	$0.0344(10)$	$0.0217(8)$	0.000	$0.0080(7)$	0.000
C2	$0.0422(8)$	$0.0253(6)$	$0.0265(6)$	$0.0000(5)$	$0.0059(5)$	$0.0048(5)$
C3	$0.0303(6)$	$0.0192(5)$	$0.0267(5)$	$0.0018(4)$	$0.0036(4)$	$0.0007(4)$
C4	$0.0410(7)$	$0.0210(6)$	$0.0312(6)$	$0.0050(5)$	$0.0048(5)$	$-0.0027(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Mg} 1-\mathrm{O}^{\text {i }}$	2.0197 (14)	O5-H5	0.89 (2)
Mg 1 -O3	2.0197 (14)	N1-C3 ${ }^{\text {ii }}$	1.3401 (13)
$\mathrm{Mg} 1-\mathrm{O} 4^{\text {i }}$	2.0601 (15)	N1-C3	1.3401 (13)
Mg1-O4	2.0601 (15)	N1-H1A	0.89 (3)
$\mathrm{Mg} 1-\mathrm{O} 5^{\text {i }}$	2.1375 (16)	$\mathrm{C} 1-\mathrm{C} 2$	1.3897 (16)
Mg 1 -O5	2.1375 (16)	C1-C2 ${ }^{\text {ii }}$	1.3897 (16)
O1-C4	1.2422 (17)	C1-H1	0.9300
$\mathrm{O} 2-\mathrm{C} 4$	1.2406 (16)	C2-C3	1.3788 (17)
$\mathrm{O} 3-\mathrm{H} 3$	0.862 (19)	C2-H2	0.9300
O4-H4	0.85 (2)	C3-C4	1.5208 (17)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 3$	180.0	$\mathrm{Mg} 1-\mathrm{O} 5-\mathrm{H} 5$	109.1 (13)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 4^{\text {i }}$	90.0	C3iin ${ }^{\text {iid }}$ - C 3	125.46 (15)
$\mathrm{O} 3-\mathrm{Mg} 1-\mathrm{O} 4^{\text {i }}$	90.0	$\mathrm{C} 3{ }^{\text {ii- }}$ - $1-\mathrm{H} 1 \mathrm{~A}$	117.27 (8)
$\mathrm{O}^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 4$	90.0	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	117.27 (8)

$\mathrm{O} 3-\mathrm{Mg} 1-\mathrm{O} 4$	90.0	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {ii }}$	120.82 (17)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 4$	180.00 (8)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.6
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 5^{\mathrm{i}}$	90.0	$\mathrm{C} 2{ }^{\text {iii }}-\mathrm{C} 1-\mathrm{H} 1$	119.6
$\mathrm{O} 3-\mathrm{Mg} 1-\mathrm{O} 5^{\mathrm{i}}$	90.0	C3-C2-C1	118.87 (12)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 5^{\mathrm{i}}$	91.46 (6)	C3-C2-H2	120.6
$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 5^{\mathrm{i}}$	88.54 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6
O3 ${ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 5$	90.0	N1-C3-C2	117.99 (12)
$\mathrm{O} 3-\mathrm{Mg} 1-\mathrm{O} 5$	90.0	N1-C3-C4	114.17 (11)
$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 5$	88.54 (6)	C2-C3-C4	127.84 (11)
$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 5$	91.46 (6)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 1$	128.49 (12)
O5 ${ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 5$	180.00 (8)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	117.37 (12)
$\mathrm{Mg} 1-\mathrm{O} 3-\mathrm{H} 3$	126.6 (13)	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	114.14 (11)
$\mathrm{Mg} 1-\mathrm{O} 4-\mathrm{H} 4$	125.5 (14)		
$\mathrm{C} 2 \mathrm{ii}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.3 (3)	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	-178.85 (14)
C3ii-N1-C3-C2	-0.3 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	1.3 (2)
C3ii-N1-C3-C4	179.77 (12)	N1-C3-C4-O1	1.23 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	0.3 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	-178.66 (14)
C1-C2-C3-C4	-179.83 (15)		

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x,-y+1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3—H3 $\cdots \mathrm{O} 1$	$0.862(19)$	$1.834(19)$	$2.6940(14)$	$174.6(19)$
O4—H4 $\cdots \mathrm{O} 2$	$0.85(2)$	$1.93(2)$	$2.7758(14)$	$171(2)$
O5—H5 $^{\text {(1ii }}$	$0.89(2)$	$1.92(2)$	$2.7960(14)$	$167.5(19)$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\text {iv }}$	0.93	2.58	$3.308(3)$	136

Symmetry codes: (iii) $x, y, z-1$; (iv) $-x+1 / 2, y+1 / 2,-z+1$.

